PROJECT TABLE OF CONTENTS

DIVISION 01 - GENERAL REQUIREMENTS

- 01 11 00 SUMMARY OF WORK
- 01 14 00 WORK RESTRICTIONS
- 01 30 00 ADMINISTRATIVE REQUIREMENTS
- 01 33 00 SUBMITTAL PROCEDURES
- 01 35 13 SPECIAL PROJECT PROCEDURES
- 01 35 26 GOVERNMENTAL SAFETY REQUIREMENTS
- 01 42 00 SOURCES FOR REFERENCE PUBLICATIONS
- 01 50 00 TEMPORARY CONSTRUCTION FACILITIES AND CONTROLS
- 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS
- 01 78 00 CLOSEOUT SUBMITTAL
- 01 78 23 OPERATION AND MAINTENANCE DATA

DIVISION 02 - EXISTING CONDITIONS

- 02 41 00 DEMOLITION
- 02 82 16.00 20 ENGINEERING CONTROL OF ASBESTOS CONTAINING MATERIALS

DIVISION 03 - CONCRETE

- 03 20 00.00 10 CONCRETE REINFORCING
- 03 30 53 MISCELLANEOUS CAST-IN-PLACE CONCRETE

DIVISION 04 - MASONRY

- 04 20 00 UNIT MASONRY

DIVISION 05 - METALS

- 05 50 13 MISCELLANEOUS METAL FABRICATIONS

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

- 06 10 00 ROUGH CARPENTRY
- 06 61 16 SOLID POLYMER (SOLID SURFACING) FABRICATIONS

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

- 07 21 16 MINERAL FIBER BLANKET INSULATION
- 07 22 00 ROOF AND DECK INSULATION
- 07 24 00 EXTERIOR INSULATION AND FINISH SYSTEMS
- 07 52 00 MODIFIED BITUMINOUS MEMBRANE ROOFING
- 07 60 00 FLASHING AND SHEET METAL
- 07 84 00 FIRESTOPPING
- 07 92 00 JOINT SEALANTS

DIVISION 08 - OPENINGS

- 08 11 13 STEEL DOORS AND FRAMES
- 08 14 00 WOOD DOORS
- 08 33 13 COILING COUNTER DOORS
- 08 33 23 OVERHEAD COILING GRILLES
- 08 41 13 ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS
- 08 51 13 ALUMINUM WINDOWS
- 08 71 00 DOOR HARDWARE
- 08 81 00 GLAZING
DIVISION 09 - FINISHES

- 09 22 00 SUPPORTS FOR PLASTER AND GYPSUM BOARD
- 09 29 00 GYPSUM BOARD
- 09 30 13 CERAMIC TILING
- 09 51 00 ACOUSTICAL CEILINGS
- 09 65 00 RESILIENT FLOORING
- 09 67 23.13 STANDARD RESINOUS FLOORING
- 09 68 00 CARPETING
- 09 77 20 DECORATIVE FIBERGLASS REINFORCED WALL PANELS
- 09 90 00 PAINTS AND COATINGS

DIVISION 10 - SPECIALTIES

- 10 14 00.20 INTERIOR SIGNAGE
- 10 26 13 WALL AND CORNER GUARDS

DIVISION 12 - FURNISHINGS

- 12 24 13 ROLLER WINDOW SHADES

DIVISION 21 - FIRE SUPPRESSION

- 21 13 13.00 10 WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION

DIVISION 22 - PLUMBING

- 22 00 00 PLUMBING, GENERAL PURPOSE

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

- 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS
- 23 03 00.00 20 BASIC MECHANICAL MATERIALS AND METHODS
- 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC
- 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS
- 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC
- 23 64 10 WATER CHILLERS, VAPOR COMPRESSION TYPE
- 23 64 26 CHILLED, CHILLED-HOT, AND CONDENSER WATER PIPING SYSTEMS
- 23 73 13.00 40 MODULAR INDOOR CENTRAL-STATION AIR-HANDLING UNITS

DIVISION 26 - ELECTRICAL

- 26 20 00 INTERIOR DISTRIBUTION SYSTEM

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

- 28 31 00 FIRE DETECTION AND ALARM SYSTEMS

 REVISED 7/26/2018

ASBESTOS SURVEYS
ABI Model 11x17
Asbestos LBP Survey 20 Oct 2014
Landing Zone Asbestos Final Report
Landing Zone Asbestos Removal Drawing

-- End of Project Table of Contents --
PART 1 GENERAL

1.1 WORK COVERED BY CONTRACT DOCUMENTS

1.1.1 Project Description

Architecture: This project focuses primarily on the Library and Velocity Subs portions of Building 90337, involving approximately 9,100 square feet of interior space, and approximately 1,538 square feet of exterior space at the southwest corner to create a new outside patio to serve the new Coffee Café facility. This will include selective demolition of interior finish systems including asbestos removal and minor roof structure. New work will include slight reconfiguration with non load-bearing interior partitions, doors and finish systems.

1.1.2 Location

The work is located at Building 90337, approximately as indicated. The exact location will be shown by the Contracting Officer.

1.2 OCCUPANCY OF PREMISES

The entire building will be vacated during the entire course of the work.

Before work is started, arrange with the Contracting Officer a sequence of procedure, means of access, space for storage of materials and equipment, and use of approaches, corridors, and stairways.

1.3 LOCATION OF UNDERGROUND UTILITIES

Obtain digging permits prior to start of excavation, and comply with Installation requirements for locating and marking underground utilities. Digging permits must be submitted at least 2 weeks prior to excavating. Contact local utility locating service a minimum of 72 hours prior to excavating, to mark utilities, and within sufficient time required if work occurs on a Monday or after a Holiday. Verify existing utility locations indicated on contract drawings, within area of work.

[1.4 GOVERNMENT-FURNISHED MATERIAL AND EQUIPMENT

Pursuant to Contract Clause "FAR 52.245-1, Government Property", the Government will furnish the following materials and equipment for installation by the Contractor:

<table>
<thead>
<tr>
<th>DESIGNATION NO.</th>
<th>DESCRIPTION</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>[_____]</td>
<td>[_____]</td>
<td>[_____]</td>
</tr>
</tbody>
</table>
Quantities indicated for the above-listed items marked with an asterisk are estimates. It is the intention of the Government to furnish all quantities of the asterisk items required to complete the work as specified, and the various quantities will be adjusted when necessary. Quantities stated for the above items not marked with an asterisk are all that will be furnished by the Government. Provide any additional quantities that are required.

1.4.1 Delivery Schedule

[Notify the Contracting Officer in writing at least [_____] calendar days in advance of the date on which the materials and equipment are required. Pick up materials and equipment no later than 30 calendar days after such date.]

[Materials and equipment will be available on or after [_____] calendar days after the award of contract.]

1.4.2 Delivery Location

The materials and equipment [are located at [______]] [are located within [_____] miles of the jobsite] [will be delivered to [______]] [the salvage receiving point [______]].

1.5 GOVERNMENT-INSTALLED WORK

[______].

1.6 SALVAGE MATERIAL AND EQUIPMENT

Items designated by the Contracting Officer to be salvaged remain the property of the Government. Segregate, itemize, deliver and off-load the salvaged property at the Government designated storage area located within the base perimeter.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

Not used.

-- End of Section --
PART 1 GENERAL

1.1 SPECIAL SCHEDULING REQUIREMENTS

a. Have materials, equipment, and personnel required to perform the work at the site prior to the commencement of the work.

b. The entire building will be vacated during the entire course of the work.

c. Permission to interrupt any roads or utility service must be requested a minimum of 14 calendar days prior to the desired date of interruption. Road cuts are not allowed unless specifically identified in the design documents.

1.2 CONTRACTOR ACCESS AND USE OF PREMISES

1.2.1 Base Regulations

Ensure that Contractor personnel employed on the Base become familiar with and obey Base regulations including safety, fire, traffic and security regulations. Keep within the limits of the work and avenues of ingress and egress. Wear hard hats in designated areas. Do not enter any restricted areas unless required to do so and until cleared for such entry. Mark Contractor equipment for identification.

1.2.1.1 Identification Badges and Installation Access

Application for and use of badges will be as directed by the Contracting Officer. Immediately report instances of lost or stolen badges to the Contracting Officer.

1.2.1.2 No Smoking Policy

Smoking is prohibited within and outside of all buildings on installation, except in designated smoking areas. This applies to existing buildings, buildings under construction and buildings under renovation. Discarding tobacco materials other than into designated tobacco receptacles is considered littering and is subject to fines. The Contracting Officer will identify designated smoking areas.

1.2.2 Working Hours

Regular working hours must consist of a period between 7 a.m. and 4:00 p.m., Monday through Friday, excluding Government holidays.

1.2.3 Work Outside Regular Hours

Work outside regular working hours requires Contracting Officer approval. Make application 72 hours prior to such work to allow arrangements to be
made by the Government for inspecting the work in progress, giving the specific dates, hours, location, type of work to be performed, contract number and project title. Based on the justification provided, the Contracting Officer may approve work outside regular hours. During periods of darkness, the different parts of the work must be lighted in a manner approved by the Contracting Officer. Make utility cutovers after normal working hours or on Saturdays, Sundays, and Government holidays unless directed otherwise.

1.2.4 Utility Cutovers and Interruptions

a. Make utility cutovers and interruptions after normal working hours or on Saturdays, Sundays, and Government holidays. Conform to procedures required paragraph WORK OUTSIDE REGULAR HOURS.

b. Ensure that new utility lines are complete, except for the connection, before interrupting existing service.

c. Interruption to water, sanitary sewer, storm sewer, telephone service, electric service, air conditioning, heating, fire alarm, compressed air, and other major utilities are considered utility cutovers pursuant to the paragraph WORK OUTSIDE REGULAR HOURS.

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

Not Used

-- End of Section --
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01 30 00</td>
<td>SD-01 Preconstruction Submittals</td>
<td>CONTRACT PROGRESS</td>
<td>1.4</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>SD-04 Samples</td>
<td>SCHEDULE/REPORT</td>
<td></td>
</tr>
<tr>
<td>01 33 00</td>
<td>SD-01 Preconstruction Submittals</td>
<td>Submittal Register</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>01 35 26</td>
<td>SD-07 Certificates</td>
<td>Confined Space Entry Permit</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>01 50 00</td>
<td>SD-01 Preconstruction Submittals</td>
<td>Construction Site Plan</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>01 57 19</td>
<td>SD-01 Preconstruction Submittals</td>
<td>Backflow Preventer Tests</td>
<td>1.4</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>01 57 19</td>
<td>SD-01 Preconstruction Submittals</td>
<td>Regulatory Notifications</td>
<td>1.5.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>01 57 19</td>
<td>SD-01 Preconstruction Submittals</td>
<td>Environmental Protection Plan</td>
<td>1.6</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>01 57 19</td>
<td>SD-01 Preconstruction Submittals</td>
<td>Stormwater Notice of Intent</td>
<td>3.2.1.2</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>01 57 19</td>
<td>SD-01 Preconstruction Submittals</td>
<td>Stormwater Pollution Prevention Plan (SWPPP)</td>
<td>3.2.1.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>01 57 19</td>
<td>SD-01 Preconstruction Submittals</td>
<td>Dewatering Permit</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>01 57 19</td>
<td>SD-01 Preconstruction Submittals</td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td>01 57 19</td>
<td>SD-01 Preconstruction Submittals</td>
<td>Solid Waste Management Report</td>
<td>3.7.1.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>01 57 19</td>
<td>SD-01 Preconstruction Submittals</td>
<td>SD-11 Closeout Submittals</td>
<td></td>
</tr>
<tr>
<td>CONTRACTOR:</td>
<td>CONTRACTOR:</td>
<td>APPROVING AUTHORITY</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Date of Action</td>
<td>Date FWD to Oth Reviewer</td>
<td>Date FWD to Appr Auth</td>
<td></td>
</tr>
<tr>
<td>Date RD to Contr</td>
<td>Date RD to Oth Reviewer</td>
<td>Date RCD from Contr</td>
<td></td>
</tr>
<tr>
<td>Approval Needed By</td>
<td>Material Needed By</td>
<td>Action Code</td>
<td></td>
</tr>
<tr>
<td>Action Code</td>
<td>Date RCD from Appr Auth</td>
<td>Mail to Contr</td>
<td></td>
</tr>
</tbody>
</table>

As-Submitted Items

<table>
<thead>
<tr>
<th>Activity</th>
<th>Specification</th>
<th>Description</th>
<th>Item Submitted</th>
<th>Approval Needed By</th>
<th>Action Code</th>
<th>Date FWD to Oth Reviewer</th>
<th>Date FWD to Appr Auth</th>
<th>Date RCD from Contr</th>
<th>Date RCD from Oth Reviewer</th>
<th>Date RCD from Appr Auth</th>
<th>Mail to Contr</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 57 19</td>
<td>Standard Sections 01</td>
<td>Stormwater Pollution Prevention</td>
<td>3.2.1.4 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 57 19</td>
<td>Standard Sections 01</td>
<td>Plan Compliance Notebook</td>
<td></td>
</tr>
<tr>
<td>01 57 19</td>
<td>Standard Sections 01</td>
<td>Stormwater Notice of Termination</td>
<td>3.2.1.5 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 57 19</td>
<td>Standard Sections 01</td>
<td>Solid Waste Management Report</td>
<td>3.7.1.1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 57 19</td>
<td>Standard Sections 01</td>
<td>Regulatory Notifications</td>
<td>1.5.1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 57 19</td>
<td>Standard Sections 01</td>
<td>Certification of No Asbestos/Lead-based Paint/PCB Letter</td>
<td>3.20 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 78 00</td>
<td>Standard Sections 01</td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td>01 78 00</td>
<td>Standard Sections 01</td>
<td>Warranty Management Plan</td>
<td>1.4.1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 78 00</td>
<td>Standard Sections 01</td>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
</tr>
<tr>
<td>01 78 00</td>
<td>Standard Sections 01</td>
<td>SD-10 Operation and Maintenance Data</td>
<td></td>
</tr>
<tr>
<td>01 78 00</td>
<td>Standard Sections 01</td>
<td>Operation and Maintenance Manuals</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 78 00</td>
<td>Standard Sections 01</td>
<td>SD-11 Closeout Submittals As-Built Drawings</td>
<td>3.1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 78 00</td>
<td>Standard Sections 01</td>
<td>Record Drawings</td>
<td>3.2 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 78 23</td>
<td>Standard Sections 01</td>
<td>SD-10 Operation and Maintenance Data</td>
<td></td>
</tr>
<tr>
<td>01 78 23</td>
<td>Standard Sections 01</td>
<td>O&M Database</td>
<td>1.3 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 78 23</td>
<td>Standard Sections 01</td>
<td>Training Content</td>
<td>3.1.1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line</td>
<td>Activity</td>
<td>Transmittal</td>
<td>Specification</td>
<td>SD</td>
<td>Submittal Description</td>
<td>Classificati on: GOVT or A/E Revwr</td>
<td>Approval Needed By</td>
<td>Material Needed By</td>
<td>Action Code</td>
<td>Date Of Action</td>
<td>Date FWD to APPR / Auth Date</td>
<td>Date RCD From CONTR</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------------</td>
<td>----------------</td>
<td>----</td>
<td>-----------------------</td>
<td>--------------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>26</td>
<td>02 41 00</td>
<td>01</td>
<td>Preconstruction Submittals</td>
<td>Demolition Plan</td>
<td>1.2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>02 41 00</td>
<td>01</td>
<td>Preconstruction Submittals</td>
<td>Existing Conditions</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>02 41 00</td>
<td>07</td>
<td>Certificates</td>
<td>Notification</td>
<td>1.6</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>02 82 16.00 20</td>
<td>03</td>
<td>Product Data</td>
<td>Local Exhaust Equipment</td>
<td>3.1.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>02 82 16.00 20</td>
<td>03</td>
<td>Product Data</td>
<td>Vacuums</td>
<td>3.1.5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>02 82 16.00 20</td>
<td>03</td>
<td>Product Data</td>
<td>Respirators</td>
<td>3.1.1.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>02 82 16.00 20</td>
<td>03</td>
<td>Product Data</td>
<td>Pressure Differential Automatic Recording Instrument</td>
<td>3.1.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>02 82 16.00 20</td>
<td>03</td>
<td>Product Data</td>
<td>Amended Water</td>
<td>1.2.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
<td>(l)</td>
<td>(m)</td>
</tr>
<tr>
<td>34</td>
<td>02 82 16.00 20</td>
<td>03</td>
<td>Product Data</td>
<td>Material Safety Data Sheets (Msds) for all materials</td>
<td>1.3.8</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>02 82 16.00 20</td>
<td>06</td>
<td>Test Reports</td>
<td>Air Sampling Results</td>
<td>1.5.5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>02 82 16.00 20</td>
<td>06</td>
<td>Test Reports</td>
<td>Pressure Differential Recordings For Local Exhaust System</td>
<td>1.5.6</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>02 82 16.00 20</td>
<td>06</td>
<td>Test Reports</td>
<td>Asbestos Disposal Quantity Report</td>
<td>3.3.3.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>02 82 16.00 20</td>
<td>06</td>
<td>Test Reports</td>
<td>Clearance Sampling</td>
<td>3.2.5.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Asbestos Hazard Abatement Plan</td>
<td>1.3.9</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Testing Laboratory</td>
<td>1.3.10</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Private Qualified Person Documentation</td>
<td>1.5.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Contractor's License</td>
<td>1.5.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Competent Person</td>
<td>1.5.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Worker's License</td>
<td>1.5.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Landfill Approval</td>
<td>1.3.11</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Employee Training</td>
<td>1.3.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Medical Certification</td>
<td>1.3.12</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Waste Shipment Records</td>
<td>1.3.11</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Respiratory Protection Program</td>
<td>1.3.6</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Delivery Tickets</td>
<td>1.3.11</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Vacuums</td>
<td>3.1.5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Water Filtration Equipment</td>
<td>3.1.2.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Ventilation Systems</td>
<td>3.1.5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Equipment Used To Contain Airborne Asbestos Fibers</td>
<td>3.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>02 82 16.00 20</td>
<td>07</td>
<td>Certificates</td>
<td>Notifications</td>
<td>1.3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>02 82 16.00 20</td>
<td>11</td>
<td>Closeout Submittals</td>
<td>Notifications</td>
<td>1.3.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>02 82 16.00 20</td>
<td>11</td>
<td>Closeout Submittals</td>
<td>Rental Equipment</td>
<td>1.6.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>02 82 16.00 20</td>
<td>11</td>
<td>Closeout Submittals</td>
<td>Respirator Program Records</td>
<td>1.3.6.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>02 82 16.00 20</td>
<td>11</td>
<td>Closeout Submittals</td>
<td>Permits and Licenses</td>
<td>1.3.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>03 20 00.00 10</td>
<td>02</td>
<td>Shop Drawings</td>
<td>Reinforcement</td>
<td>3.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>03 20 00.00 10</td>
<td>07</td>
<td>Certificates</td>
<td>Reinforcing Steel</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>03 30 53</td>
<td>02</td>
<td>Shop Drawings</td>
<td>Installation Drawings</td>
<td>1.5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>03 30 53</td>
<td>03</td>
<td>Product Data</td>
<td>Air-Entraining Admixture</td>
<td>2.2.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>03 30 53</td>
<td>03</td>
<td>Product Data</td>
<td>Water-Reducing or Retarding Admixture</td>
<td>2.2.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>03 30 53</td>
<td>03</td>
<td>Product Data</td>
<td>Curing Materials</td>
<td>2.2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>03 30 53</td>
<td>03</td>
<td>Product Data</td>
<td>Expansion Joint Filler Strips, Premolded</td>
<td>2.2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>03 30 53</td>
<td>03</td>
<td>Product Data</td>
<td>Batching and Mixing Equipment</td>
<td>3.1.3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>03 30 53</td>
<td>03</td>
<td>Product Data</td>
<td>Conveying and Placing Concrete</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>03 30 53</td>
<td>03</td>
<td>Product Data</td>
<td>Mix Design Data</td>
<td>2.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>03 30 53</td>
<td>03</td>
<td>Product Data</td>
<td>Ready-Mix Concrete</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
<td>(l)</td>
<td>(m)</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>----------------</td>
<td>------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>71</td>
<td>03</td>
<td>30</td>
<td>53</td>
<td>03</td>
<td>Product</td>
<td>Data</td>
<td>Curing Compound</td>
<td>2.4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>03</td>
<td>30</td>
<td>53</td>
<td>03</td>
<td>Product</td>
<td>Data</td>
<td>Mechanical Reinforcing Bar Connectors</td>
<td>2.2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>03</td>
<td>30</td>
<td>53</td>
<td>06</td>
<td>Test</td>
<td>Reports</td>
<td>Aggregates</td>
<td>2.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>03</td>
<td>30</td>
<td>53</td>
<td>06</td>
<td>Test</td>
<td>Reports</td>
<td>Concrete Mixture Proportions</td>
<td>2.1.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>03</td>
<td>30</td>
<td>53</td>
<td>06</td>
<td>Test</td>
<td>Reports</td>
<td>Compressive Strength Testing</td>
<td>3.9.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>03</td>
<td>30</td>
<td>53</td>
<td>06</td>
<td>Test</td>
<td>Reports</td>
<td>Slump</td>
<td>3.9.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>03</td>
<td>30</td>
<td>53</td>
<td>06</td>
<td>Test</td>
<td>Reports</td>
<td>Air Content</td>
<td>3.9.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>03</td>
<td>30</td>
<td>53</td>
<td>06</td>
<td>Test</td>
<td>Reports</td>
<td>Water</td>
<td>2.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>03</td>
<td>30</td>
<td>53</td>
<td>07</td>
<td>Certificates</td>
<td>Cementitious Materials</td>
<td>2.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>03</td>
<td>30</td>
<td>53</td>
<td>07</td>
<td>Certificates</td>
<td>Aggregates</td>
<td>2.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>03</td>
<td>30</td>
<td>53</td>
<td>07</td>
<td>Certificates</td>
<td>Delivery Tickets</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>03</td>
<td>30</td>
<td>53</td>
<td>08</td>
<td>Manufacturer's Instructions</td>
<td>Chemical Floor Hardener</td>
<td>2.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>03</td>
<td>30</td>
<td>53</td>
<td>08</td>
<td>Manufacturer's Instructions</td>
<td>Curing Compound</td>
<td>2.4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>04</td>
<td>20</td>
<td>00</td>
<td>02</td>
<td>Shop</td>
<td>Drawings</td>
<td>Cut CMU</td>
<td>3.3.2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>04</td>
<td>20</td>
<td>00</td>
<td>02</td>
<td>Shop</td>
<td>Drawings</td>
<td>Detail Drawings</td>
<td>3.4.1.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>04</td>
<td>20</td>
<td>00</td>
<td>03</td>
<td>Product</td>
<td>Data</td>
<td>Cement</td>
<td>2.2.2.1</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>04</td>
<td>20</td>
<td>00</td>
<td>04</td>
<td>Samples</td>
<td>Concrete Masonry Units (CMU)</td>
<td>2.2.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>04</td>
<td>20</td>
<td>00</td>
<td>04</td>
<td>Samples</td>
<td>Anchors, Ties, and Bar Positioners</td>
<td>2.6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>04</td>
<td>20</td>
<td>00</td>
<td>04</td>
<td>Samples</td>
<td>Joint Reinforcement</td>
<td>2.6.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>04</td>
<td>20</td>
<td>00</td>
<td>05</td>
<td>Design</td>
<td>Data</td>
<td>Masonry Compressive Strength</td>
<td>2.1.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>04</td>
<td>20</td>
<td>00</td>
<td>05</td>
<td>Design</td>
<td>Data</td>
<td>Bracing Calculations</td>
<td>3.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>04</td>
<td>20</td>
<td>00</td>
<td>06</td>
<td>Test</td>
<td>Reports</td>
<td>Field Testing of Mortar</td>
<td>3.6.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>04</td>
<td>20</td>
<td>00</td>
<td>06</td>
<td>Test</td>
<td>Reports</td>
<td>Field Testing of Grout</td>
<td>3.6.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>04</td>
<td>20</td>
<td>00</td>
<td>06</td>
<td>Test</td>
<td>Reports</td>
<td>Cementitious Materials</td>
<td>2.4.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>04</td>
<td>20</td>
<td>00</td>
<td>06</td>
<td>Test</td>
<td>Reports</td>
<td>Admixtures for Masonry Mortar</td>
<td>2.4.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>04</td>
<td>20</td>
<td>00</td>
<td>06</td>
<td>Test</td>
<td>Reports</td>
<td>Admixtures for Grout</td>
<td>2.4.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>04</td>
<td>20</td>
<td>00</td>
<td>06</td>
<td>Test</td>
<td>Reports</td>
<td>Joint Reinforcement</td>
<td>2.6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>05</td>
<td>50</td>
<td>13</td>
<td>02</td>
<td>Shop</td>
<td>Drawings</td>
<td>Angles and Plates</td>
<td>2.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>06</td>
<td>10</td>
<td>00</td>
<td>06</td>
<td>Test</td>
<td>Reports</td>
<td>Preservative-treated</td>
<td>1.4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>06</td>
<td>10</td>
<td>00</td>
<td>06</td>
<td>Test</td>
<td>Reports</td>
<td>Preservative treatment</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>06</td>
<td>61</td>
<td>16</td>
<td>02</td>
<td>Shop</td>
<td>Drawings</td>
<td>Installation</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>06</td>
<td>61</td>
<td>16</td>
<td>03</td>
<td>Product</td>
<td>Data</td>
<td>Solid polymer material</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>06</td>
<td>61</td>
<td>16</td>
<td>03</td>
<td>Product</td>
<td>Data</td>
<td>Fabrications</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>06</td>
<td>61</td>
<td>16</td>
<td>04</td>
<td>Samples</td>
<td>Material</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>06</td>
<td>61</td>
<td>16</td>
<td>04</td>
<td>Samples</td>
<td>Counter Tops</td>
<td>2.3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>06</td>
<td>61</td>
<td>16</td>
<td>07</td>
<td>Certificates</td>
<td>Qualifications</td>
<td>1.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>06</td>
<td>61</td>
<td>16</td>
<td>10</td>
<td>Operation</td>
<td>and Maintenance Data</td>
<td>Clean-up</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>07</td>
<td>21</td>
<td>16</td>
<td>03</td>
<td>Product</td>
<td>Data</td>
<td>Blanket Insulation</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
<td>l</td>
<td>m</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>109</td>
<td>07 21 16</td>
<td>03 Product Data</td>
<td>Accessories</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>07 21 16</td>
<td>08 Manufacturer’s Instructions</td>
<td>Insulation</td>
<td>3.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>07 22 00</td>
<td>02 Shop Drawings</td>
<td>Insulation Board Layout</td>
<td>1.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>07 22 00</td>
<td>03 Product Data</td>
<td>Insulation</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>07 22 00</td>
<td>03 Product Data</td>
<td>Protection Board</td>
<td>1.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>07 22 00</td>
<td>03 Product Data</td>
<td>Fasteners</td>
<td>2.5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>07 22 00</td>
<td>03 Product Data</td>
<td>Sheathing Paper</td>
<td>2.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>07 22 00</td>
<td>06 Test Reports</td>
<td>Flame Spread Rating</td>
<td>1.7.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>07 22 00</td>
<td>07 Certificates</td>
<td>Installer Qualifications</td>
<td>1.6</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>07 22 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Fasteners</td>
<td>2.5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>07 22 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Insulation</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>07 24 00</td>
<td>02 Shop Drawings</td>
<td>Shop Drawings</td>
<td>3.3</td>
<td>G</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>07 24 00</td>
<td>03 Product Data</td>
<td>Sheathing Board</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>07 24 00</td>
<td>03 Product Data</td>
<td>Thermal Insulation</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>07 24 00</td>
<td>03 Product Data</td>
<td>Adhesive</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>07 24 00</td>
<td>03 Product Data</td>
<td>Mechanical Fasteners</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>07 24 00</td>
<td>03 Product Data</td>
<td>Accessorises</td>
<td>2.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>07 24 00</td>
<td>03 Product Data</td>
<td>Base Coat</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>07 24 00</td>
<td>03 Product Data</td>
<td>Portland Cement</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>07 24 00</td>
<td>03 Product Data</td>
<td>Reinforcing Fabric</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>07 24 00</td>
<td>03 Product Data</td>
<td>Finish Coat</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>07 24 00</td>
<td>03 Product Data</td>
<td>Joint Sealant</td>
<td>2.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>07 24 00</td>
<td>03 Product Data</td>
<td>Sealant Primer</td>
<td>2.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>07 24 00</td>
<td>03 Product Data</td>
<td>Bond Breaker</td>
<td>2.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>07 24 00</td>
<td>03 Product Data</td>
<td>Backer Rod</td>
<td>2.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>07 24 00</td>
<td>03 Product Data</td>
<td>Warranty</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>07 24 00</td>
<td>05 Design Data</td>
<td>Wind Load</td>
<td>1.2.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>07 24 00</td>
<td>06 Test Reports</td>
<td>Abrasion Resistance</td>
<td>1.2.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>07 24 00</td>
<td>06 Test Reports</td>
<td>Accelerated Weathering</td>
<td>1.2.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>07 24 00</td>
<td>06 Test Reports</td>
<td>Impact Resistance</td>
<td>1.2.2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>07 24 00</td>
<td>06 Test Reports</td>
<td>Mildew Resistance</td>
<td>1.2.3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>07 24 00</td>
<td>06 Test Reports</td>
<td>Salt Spray Resistance</td>
<td>1.2.3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>07 24 00</td>
<td>06 Test Reports</td>
<td>Absorption-Freeze-Thaw</td>
<td>1.2.3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>07 24 00</td>
<td>06 Test Reports</td>
<td>Wall Fire Test</td>
<td>1.2.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>07 24 00</td>
<td>06 Test Reports</td>
<td>Water Penetration</td>
<td>1.2.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>07 24 00</td>
<td>06 Test Reports</td>
<td>Water Resistance</td>
<td>1.2.3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>07 24 00</td>
<td>06 Test Reports</td>
<td>Full Scale or Intermediate Scale Fire Test</td>
<td>1.2.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>07 24 00</td>
<td>06 Test Reports</td>
<td>Surface Burning Characteristics</td>
<td>1.2.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>07 24 00</td>
<td>06 Test Reports</td>
<td>Radiant Heat</td>
<td>1.2.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
<td>(l)</td>
<td>(m)</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------------------------</td>
<td>----------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>144</td>
<td>07 24 00</td>
<td>06 Test Reports</td>
<td>Substrate</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>07 24 00</td>
<td>06 Test Reports</td>
<td>Wind Load</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>07 24 00</td>
<td>07 Certificates</td>
<td>Qualifications of EIFS Manufacturer</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>07 24 00</td>
<td>07 Certificates</td>
<td>Qualification of EIFS Installer</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>07 24 00</td>
<td>07 Certificates</td>
<td>Qualification of Sealant Installer</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>07 24 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Installation</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>07 24 00</td>
<td>10 Operation and Maintenance Data</td>
<td>EIFS</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>07 52 00</td>
<td>02 Shop Drawings</td>
<td>Roof plan</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>07 52 00</td>
<td>03 Product Data</td>
<td>Modified Bitumen Sheets</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>07 52 00</td>
<td>03 Product Data</td>
<td>Asphalt</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>07 52 00</td>
<td>03 Product Data</td>
<td>Primer</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>07 52 00</td>
<td>03 Product Data</td>
<td>Modified Bitumen Roof Cement</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>07 52 00</td>
<td>03 Product Data</td>
<td>Pre-Manufactured Accessories</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>07 52 00</td>
<td>03 Product Data</td>
<td>Fasteners And Plates</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>07 52 00</td>
<td>03 Product Data</td>
<td>Warranty</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>07 52 00</td>
<td>05 Design Data</td>
<td>Wind Uplift Calculations</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>07 52 00</td>
<td>07 Certificates</td>
<td>Qualification of Manufacturer</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>07 52 00</td>
<td>07 Certificates</td>
<td>Qualification of Applicator</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>07 52 00</td>
<td>07 Certificates</td>
<td>Qualification of Engineer of Record</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>07 52 00</td>
<td>07 Certificates</td>
<td>Bill of Lading</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>07 52 00</td>
<td>07 Certificates</td>
<td>Wind Uplift Resistance</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>07 52 00</td>
<td>07 Certificates</td>
<td>Fire Resistance</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>07 52 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Modified Bitumen Membrane Application</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>07 52 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Flashing</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>07 52 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Temperature Limitations for Asphalt</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>07 52 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Primer</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>07 52 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Fasteners</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>07 52 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Cold Weather Installation</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>07 52 00</td>
<td>11 Closeout Submittals</td>
<td>Warranty</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>07 52 00</td>
<td>11 Closeout Submittals</td>
<td>Information Card</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>07 52 00</td>
<td>11 Closeout Submittals</td>
<td>Instructions To Government Personnel</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>07 60 00</td>
<td>02 Shop Drawings</td>
<td>Covering on flat, sloped, or curved surfaces</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>07 60 00</td>
<td>02 Shop Drawings</td>
<td>Gutters</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>07 60 00</td>
<td>02 Shop Drawings</td>
<td>Downspouts</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>07 60 00</td>
<td>02 Shop Drawings</td>
<td>Expansion Joints</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>07 60 00</td>
<td>02 Shop Drawings</td>
<td>Gravel stops and fascias</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>07 60 00</td>
<td>02 Shop Drawings</td>
<td>Base flashing</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
<td>(l)</td>
<td>(m)</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>185</td>
<td>07 60 00</td>
<td>02 Shop Drawings</td>
<td>Counterflashing</td>
<td>3.1.11</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>07 60 00</td>
<td>02 Shop Drawings</td>
<td>Reglets</td>
<td>3.1.12</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>07 60 00</td>
<td>02 Shop Drawings</td>
<td>Drip edge</td>
<td>3.1.14</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>07 84 00</td>
<td>02 Shop Drawings</td>
<td>Firestopping Materials</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>07 84 00</td>
<td>06 Test Reports</td>
<td>Inspection</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>07 84 00</td>
<td>07 Certificates</td>
<td>Firestopping Materials</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>07 84 00</td>
<td>07 Certificates</td>
<td>Installer Qualifications</td>
<td>1.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>07 92 00</td>
<td>03 Product Data</td>
<td>Sealants</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>07 92 00</td>
<td>03 Product Data</td>
<td>Primers</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>07 92 00</td>
<td>03 Product Data</td>
<td>Bond Breakers</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>07 92 00</td>
<td>03 Product Data</td>
<td>Backstops</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>07 92 00</td>
<td>03 Product Data</td>
<td>Field Adhesion</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>07 92 00</td>
<td>07 Certificates</td>
<td>Sealant</td>
<td>3.4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>07 92 00</td>
<td>07 Certificates</td>
<td>Volatile Organic Compounds (VOC) Content</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>07 92 00</td>
<td>07 Certificates</td>
<td>Volatile Organic Compounds (VOC) Content</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>08 11 13</td>
<td>02 Shop Drawings</td>
<td>Doors</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>08 11 13</td>
<td>02 Shop Drawings</td>
<td>Doors</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>08 11 13</td>
<td>02 Shop Drawings</td>
<td>Frames</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>08 11 13</td>
<td>02 Shop Drawings</td>
<td>Frames</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>08 11 13</td>
<td>02 Shop Drawings</td>
<td>Weatherstripping</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>08 11 13</td>
<td>03 Product Data</td>
<td>Doors</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>08 11 13</td>
<td>03 Product Data</td>
<td>Frames</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>08 14 00</td>
<td>02 Shop Drawings</td>
<td>Doors</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>08 14 00</td>
<td>03 Product Data</td>
<td>Doors</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>08 14 00</td>
<td>03 Product Data</td>
<td>Accessories</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>08 14 00</td>
<td>03 Product Data</td>
<td>Water-resistant sealer</td>
<td>2.3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>08 14 00</td>
<td>03 Product Data</td>
<td>Warranty</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>08 33 13</td>
<td>02 Shop Drawings</td>
<td>Detail Drawings</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>08 33 13</td>
<td>03 Product Data</td>
<td>Warranty</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>08 33 13</td>
<td>03 Product Data</td>
<td>Rolling Counter Doors</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>08 33 13</td>
<td>03 Product Data</td>
<td>Installation</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>08 33 13</td>
<td>03 Product Data</td>
<td>Cleaning</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>08 33 13</td>
<td>06 Test Reports</td>
<td>Drop-test</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>08 33 13</td>
<td>11 Closeout Submittals</td>
<td>Fire-Rated Rolling Counter Door</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>08 33 23</td>
<td>02 Shop Drawings</td>
<td>Counterbalancing Mechanism</td>
<td>2.2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>08 33 23</td>
<td>02 Shop Drawings</td>
<td>Electric Door Operators</td>
<td>2.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>08 33 23</td>
<td>02 Shop Drawings</td>
<td>Bottom bars</td>
<td>2.2.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>08 33 23</td>
<td>02 Shop Drawings</td>
<td>Guides</td>
<td>2.1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CONTRACT SCHEDULE DATES</td>
<td>CONTRACT ACTION</td>
<td>APPROVING AUTHORITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>08 33 23</td>
<td>02</td>
<td>Shop Drawings</td>
<td>Mounting Brackets</td>
<td>2.2.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>08 33 23</td>
<td>02</td>
<td>Shop Drawings</td>
<td>Overhead Drum</td>
<td>2.2.1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>08 33 23</td>
<td>02</td>
<td>Shop Drawings</td>
<td>Installation Drawings</td>
<td>2.1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>08 33 23</td>
<td>03</td>
<td>Product Data</td>
<td>Hardware</td>
<td>2.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>08 33 23</td>
<td>03</td>
<td>Product Data</td>
<td>Counterbalancing Mechanism</td>
<td>2.2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>08 33 23</td>
<td>03</td>
<td>Product Data</td>
<td>Electric Door Operators</td>
<td>2.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>08 33 23</td>
<td>05</td>
<td>Design Data</td>
<td>Counterbalancing Mechanism</td>
<td>2.2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>08 33 23</td>
<td>05</td>
<td>Design Data</td>
<td>Electric Door Operators</td>
<td>2.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>08 33 23</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Operation and Maintenance Manuals</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>08 33 23</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Materials</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>08 33 23</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Devices</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>08 33 23</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Procedures</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>08 33 23</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Manufacturer’s Brochures</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>08 33 23</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Parts Lists</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>08 33 23</td>
<td>11</td>
<td>Closeout Submittals</td>
<td>Warranty</td>
<td>3.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>08 41 13</td>
<td>01</td>
<td>Preconstruction Submittals</td>
<td>Sample Warranty</td>
<td>1.2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>08 41 13</td>
<td>04</td>
<td>Samples</td>
<td>Finish and Color Samples</td>
<td>1.2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>08 41 13</td>
<td>06</td>
<td>Test Reports</td>
<td>Certified Test Reports</td>
<td>1.2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>08 41 13</td>
<td>07</td>
<td>Certificates</td>
<td>Manufacturer’s Product Warranty</td>
<td>3.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>08 51 13</td>
<td>02</td>
<td>Shop Drawings</td>
<td>Windows</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>08 51 13</td>
<td>02</td>
<td>Shop Drawings</td>
<td>Fabrication Drawings</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>08 51 13</td>
<td>03</td>
<td>Product Data</td>
<td>Windows</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>08 51 13</td>
<td>03</td>
<td>Product Data</td>
<td>Fasteners</td>
<td>2.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>08 51 13</td>
<td>03</td>
<td>Product Data</td>
<td>Window Performance</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>08 51 13</td>
<td>03</td>
<td>Product Data</td>
<td>Accessories</td>
<td>2.2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>08 51 13</td>
<td>03</td>
<td>Product Data</td>
<td>Adhesives</td>
<td>2.2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>08 51 13</td>
<td>03</td>
<td>Product Data</td>
<td>Thermal Performance</td>
<td>1.10.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>08 51 13</td>
<td>04</td>
<td>Samples</td>
<td>Finish Sample</td>
<td>1.4.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>08 51 13</td>
<td>05</td>
<td>Design Data</td>
<td>Structural Calculations for Deflection</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>08 51 13</td>
<td>05</td>
<td>Design Data</td>
<td>Design Analysis</td>
<td>1.4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>08 51 13</td>
<td>06</td>
<td>Test Reports</td>
<td>Minimum Condensation Resistance Factor</td>
<td>1.4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>08 51 13</td>
<td>06</td>
<td>Test Reports</td>
<td>Standard Airblast Test</td>
<td>1.10.2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>08 71 00</td>
<td>02</td>
<td>Shop Drawings</td>
<td>Hardware Schedule</td>
<td>1.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>08 71 00</td>
<td>02</td>
<td>Shop Drawings</td>
<td>Keying System</td>
<td>2.3.5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>08 71 00</td>
<td>03</td>
<td>Product Data</td>
<td>Hardware Items</td>
<td>2.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>08 71 00</td>
<td>08</td>
<td>Manufacturer’s Instructions</td>
<td>Installation</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT NO</td>
<td>CONTRACTOR</td>
<td>CONTRACT SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>259 08 71 00</td>
<td>10 Operation and Maintenance Data</td>
<td>Hardware Schedule</td>
<td>1.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260 08 71 00</td>
<td>11 Closeout Submittals</td>
<td>Key Bitting</td>
<td>1.5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>261 08 81 00</td>
<td>03 Product Data</td>
<td>Insulating Glass</td>
<td>1.5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262 08 81 00</td>
<td>07 Certificates</td>
<td>Insulating Glass</td>
<td>1.5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263 08 81 00</td>
<td>08 Manufacturer's Instructions</td>
<td>Setting and sealing materials</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>264 08 81 00</td>
<td>08 Manufacturer's Instructions</td>
<td>Glass setting</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>265 09 22 00</td>
<td>02 Shop Drawings</td>
<td>Metal support systems</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>266 09 29 00</td>
<td>03 Product Data</td>
<td>Gypsum Boards</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>267 09 29 00</td>
<td>03 Product Data</td>
<td>Accessories</td>
<td>2.1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>268 09 29 00</td>
<td>03 Product Data</td>
<td>Joint Treatment Materials</td>
<td>2.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>269 09 29 00</td>
<td>07 Certificates</td>
<td>Asbestos Free Materials</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270 09 30 13</td>
<td>02 Shop Drawings</td>
<td>Detail Drawings</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>271 09 30 13</td>
<td>03 Product Data</td>
<td>Tile</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>272 09 30 13</td>
<td>03 Product Data</td>
<td>Tile</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>273 09 30 13</td>
<td>03 Product Data</td>
<td>Setting-Bed</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>274 09 30 13</td>
<td>03 Product Data</td>
<td>Mortar, Grout, and Adhesive</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>275 09 30 13</td>
<td>04 Samples</td>
<td>Tile</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>276 09 30 13</td>
<td>04 Samples</td>
<td>Transition Strips</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>277 09 30 13</td>
<td>04 Samples</td>
<td>Transition Strips</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>278 09 30 13</td>
<td>04 Samples</td>
<td>Grout</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>279 09 30 13</td>
<td>07 Certificates</td>
<td>Tile</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280 09 30 13</td>
<td>07 Certificates</td>
<td>Mortar, Grout, and Adhesive</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281 09 30 13</td>
<td>08 Manufacturer’s Instructions</td>
<td>Maintenance Instructions</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>282 09 30 13</td>
<td>10 Operation and Maintenance Data</td>
<td>Installation</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283 09 30 13</td>
<td>11 Closeout Submittals</td>
<td>Tile</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>284 09 51 00</td>
<td>02 Shop Drawings</td>
<td>Approved Detail Drawings</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285 09 51 00</td>
<td>04 Samples</td>
<td>Acoustical Units</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286 09 51 00</td>
<td>06 Test Reports</td>
<td>Ceiling Attenuation Class and Test</td>
<td>1.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>287 09 51 00</td>
<td>07 Certificates</td>
<td>Acoustic Ceiling Tiles</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288 09 65 00</td>
<td>02 Shop Drawings</td>
<td>Resilient Flooring and Accessories</td>
<td>2.8</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289 09 65 00</td>
<td>03 Product Data</td>
<td>Resilient Flooring and Accessories</td>
<td>2.8</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290 09 65 00</td>
<td>03 Product Data</td>
<td>Adhesives</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>291 09 65 00</td>
<td>04 Samples</td>
<td>Vinyl Composition Tile</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>292 09 65 00</td>
<td>04 Samples</td>
<td>Wall Base</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>293 09 65 00</td>
<td>04 Samples</td>
<td>Resilient Flooring and Accessories</td>
<td>2.8</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
<td>(l)</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>------------------------</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>297</td>
<td>09 65 00</td>
<td>04 Samples</td>
<td>Moisture, Alkalinity and Bond Tests</td>
<td>3.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>298</td>
<td>09 65 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Surface Preparation</td>
<td>3.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>299</td>
<td>09 65 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Installation</td>
<td>3.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>09 67 23.13</td>
<td>02 Shop Drawings</td>
<td>Installation Drawings</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>09 67 23.13</td>
<td>03 Product Data</td>
<td>Manufacturer’s Catalog Data</td>
<td>1.2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>09 67 23.13</td>
<td>04 Samples</td>
<td>Hardboard Mounted Epoxy Flooring</td>
<td>1.5.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>303</td>
<td>09 67 23.13</td>
<td>04 Samples</td>
<td>Floor Topping</td>
<td>3.1.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>09 67 23.13</td>
<td>05 Design Data</td>
<td>Design Mix Data</td>
<td>1.2.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>09 67 23.13</td>
<td>11 Closeout Submittals</td>
<td>Warranty</td>
<td>1.6</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>09 68 00</td>
<td>03 Product Data</td>
<td>Carpet</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>09 68 00</td>
<td>03 Product Data</td>
<td>Physical Characteristics</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>09 68 00</td>
<td>04 Samples</td>
<td>Carpet</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>309</td>
<td>09 68 00</td>
<td>06 Test Reports</td>
<td>Moisture and Alkalinity Tests</td>
<td>3.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>09 68 00</td>
<td>07 Certificates</td>
<td>Carpet</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>09 68 00</td>
<td>07 Certificates</td>
<td>Regulatory Requirements</td>
<td>1.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>312</td>
<td>09 68 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Surface Preparation</td>
<td>3.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>09 68 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Installation</td>
<td>3.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>314</td>
<td>09 68 00</td>
<td>10 Operation and Maintenance Data</td>
<td>Carpet</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>09 68 00</td>
<td>10 Operation and Maintenance Data</td>
<td>Cleaning and Protection</td>
<td>3.5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>316</td>
<td>09 77 20</td>
<td>04 Samples</td>
<td>Samples for Verification</td>
<td>2.5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>317</td>
<td>09 77 20</td>
<td>08 Manufacturer’s Instructions</td>
<td>Manufacturers Material Safety Data Sheets (MSDS)</td>
<td>2.6</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>318</td>
<td>09 90 00</td>
<td>03 Product Data</td>
<td>Certification</td>
<td>1.4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>319</td>
<td>09 90 00</td>
<td>03 Product Data</td>
<td>Materials</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>09 90 00</td>
<td>03 Product Data</td>
<td>Coating</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>321</td>
<td>09 90 00</td>
<td>04 Samples</td>
<td>Color</td>
<td>1.10</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>322</td>
<td>09 90 00</td>
<td>07 Certificates</td>
<td>Applicator’s qualifications</td>
<td>1.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>323</td>
<td>09 90 00</td>
<td>07 Certificates</td>
<td>Qualification Testing</td>
<td>1.4.1.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>324</td>
<td>09 90 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Application instructions</td>
<td>3.2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>09 90 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Mixing</td>
<td>3.5.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>326</td>
<td>09 90 00</td>
<td>08 Manufacturer’s Instructions</td>
<td>Manufacturer’s Material Safety Data Sheets</td>
<td>1.7.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>327</td>
<td>09 90 00</td>
<td>10 Operation and Maintenance Data</td>
<td>Coatings</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>328</td>
<td>10 14 00.20</td>
<td>03 Product Data</td>
<td>Installation</td>
<td>3.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>329</td>
<td>10 14 00.20</td>
<td>03 Product Data</td>
<td>Warranty</td>
<td>1.6</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>10 14 00.20</td>
<td>04 Samples</td>
<td>Interior Signage</td>
<td>1.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>331</td>
<td>10 14 00.20</td>
<td>04 Samples</td>
<td>Software</td>
<td>1.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>332</td>
<td>10 14 00.20</td>
<td>10 Operation and Maintenance Data</td>
<td>Approved Manufacturer’s Instructions</td>
<td>3.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
<td>(l)</td>
<td>(m)</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------------------</td>
<td>------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>334</td>
<td>10 14 00.20</td>
<td>Operation and Maintenance Data</td>
<td>Protection and Cleaning 3.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>335</td>
<td>10 26 13</td>
<td>Product Data</td>
<td>Corner Guards</td>
<td>2.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>336</td>
<td>10 26 13</td>
<td>Samples</td>
<td>Finish</td>
<td>2.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>337</td>
<td>10 26 13</td>
<td>Test Reports</td>
<td>Corner Guards</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>338</td>
<td>10 26 13</td>
<td>Certificates</td>
<td>Corner Guards</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>339</td>
<td>12 24 13</td>
<td>Shop Drawings</td>
<td>Installation</td>
<td>3.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>12 24 13</td>
<td>Product Data</td>
<td>Window Shades</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>341</td>
<td>12 24 13</td>
<td>Samples</td>
<td>Window Shades</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>342</td>
<td>12 24 13</td>
<td>Test Reports</td>
<td>Window Shades</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>343</td>
<td>12 24 13</td>
<td>Manufacturer’s Instructions</td>
<td>Window Shades</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>344</td>
<td>12 24 13</td>
<td>Operation and Maintenance Data</td>
<td>Window Shades</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>345</td>
<td>12 24 13</td>
<td>Closeout Submittals</td>
<td>Warranty</td>
<td>1.6 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>346</td>
<td>21 13 00.10</td>
<td>Shop Drawings</td>
<td>Shop Drawings</td>
<td>1.4.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>347</td>
<td>21 13 00.10</td>
<td>Shop Drawings</td>
<td>As-Built Drawings</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>348</td>
<td>21 13 00.10</td>
<td>Product Data</td>
<td>Fire Protection Related Submittals</td>
<td>1.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>349</td>
<td>21 13 00.10</td>
<td>Product Data</td>
<td>Materials and Equipment</td>
<td>2.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>21 13 00.10</td>
<td>Product Data</td>
<td>Spare Parts</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>21 13 00.10</td>
<td>Product Data</td>
<td>Preliminary Tests</td>
<td>3.7</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>21 13 00.10</td>
<td>Product Data</td>
<td>Final Acceptance Test</td>
<td>3.8</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>353</td>
<td>21 13 00.10</td>
<td>Product Data</td>
<td>Fire Protection Specialist</td>
<td>1.4.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>354</td>
<td>21 13 00.10</td>
<td>Product Data</td>
<td>Sprinkler System Installer</td>
<td>1.4.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>21 13 00.10</td>
<td>Design Data</td>
<td>Sway Bracing</td>
<td>1.4.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356</td>
<td>21 13 00.10</td>
<td>Design Data</td>
<td>Hydraulic Calculations</td>
<td>1.2.1.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>357</td>
<td>21 13 00.10</td>
<td>Test Reports</td>
<td>Preliminary Test Report</td>
<td>3.7</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>358</td>
<td>21 13 00.10</td>
<td>Test Reports</td>
<td>Final Acceptance Test Report</td>
<td>3.8</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>359</td>
<td>21 13 00.10</td>
<td>Certificates</td>
<td>Inspection by Fire Protection Specialist</td>
<td>3.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>22 00 00</td>
<td>Shop Drawings</td>
<td>Plumbing System</td>
<td>3.6.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>361</td>
<td>22 00 00</td>
<td>Product Data</td>
<td>Fixtures</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>362</td>
<td>22 00 00</td>
<td>Product Data</td>
<td>Water Heaters</td>
<td>2.9</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>363</td>
<td>22 00 00</td>
<td>Product Data</td>
<td>Backflow Prevention Assemblies</td>
<td>3.6.1.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>364</td>
<td>22 00 00</td>
<td>Test Reports</td>
<td>Tests, Flushing and Disinfection</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>365</td>
<td>22 00 00</td>
<td>Test Reports</td>
<td>Test of Backflow Prevention Assemblies</td>
<td>3.6.1.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>366</td>
<td>22 00 00</td>
<td>Operation and Maintenance Data</td>
<td>Plumbing System</td>
<td>3.6.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>367</td>
<td>23 00 00</td>
<td>Shop Drawings</td>
<td>Detail Drawings</td>
<td>1.4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>368</td>
<td>23 00 00</td>
<td>Product Data</td>
<td>Insulated Nonmetallic Flexible Duct Runouts</td>
<td>2.9.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>369</td>
<td>23 00 00</td>
<td>Product Data</td>
<td>Duct Connectors</td>
<td>2.9.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>23 00 00</td>
<td>Product Data</td>
<td>Duct Access Doors</td>
<td>2.9.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
<td>(l)</td>
<td>(m)</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>371</td>
<td>23 00 00</td>
<td>03</td>
<td>Product Data</td>
<td>Fire Dampers</td>
<td>2.9.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>372</td>
<td>23 00 00</td>
<td>03</td>
<td>Product Data</td>
<td>Manual Balancing Dampers</td>
<td>2.9.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>373</td>
<td>23 00 00</td>
<td>03</td>
<td>Product Data</td>
<td>Diffusers</td>
<td>2.9.7.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>374</td>
<td>23 00 00</td>
<td>03</td>
<td>Product Data</td>
<td>Registers and Grilles</td>
<td>2.9.7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>375</td>
<td>23 00 00</td>
<td>03</td>
<td>Product Data</td>
<td>Louvers</td>
<td>2.9.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>376</td>
<td>23 00 00</td>
<td>03</td>
<td>Product Data</td>
<td>Air Vents, Penthouses, and Goosenecks</td>
<td>2.9.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>377</td>
<td>23 00 00</td>
<td>03</td>
<td>Product Data</td>
<td>In-Line Centrifugal Fans</td>
<td>2.10.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>378</td>
<td>23 00 00</td>
<td>03</td>
<td>Product Data</td>
<td>Ceiling Exhaust Fans</td>
<td>2.10.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>379</td>
<td>23 00 00</td>
<td>03</td>
<td>Product Data</td>
<td>Variable Volume, Single Duct Terminal Units</td>
<td>2.11.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>23 00 00</td>
<td>03</td>
<td>Product Data</td>
<td>Diagrams</td>
<td>1.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>381</td>
<td>23 00 00</td>
<td>03</td>
<td>Product Data</td>
<td>Operation and Maintenance Training</td>
<td>3.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>382</td>
<td>23 00 00</td>
<td>06</td>
<td>Test Reports</td>
<td>Performance Tests</td>
<td>3.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>383</td>
<td>23 00 00</td>
<td>06</td>
<td>Test Reports</td>
<td>Performance Tests</td>
<td>3.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>384</td>
<td>23 00 00</td>
<td>06</td>
<td>Test Reports</td>
<td>Damper Acceptance Test</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>385</td>
<td>23 00 00</td>
<td>08</td>
<td>Manufacturer’s Instructions</td>
<td>Manufacturer’s Installation Instructions</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>386</td>
<td>23 00 00</td>
<td>08</td>
<td>Manufacturer’s Instructions</td>
<td>Operation and Maintenance Training</td>
<td>3.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>387</td>
<td>23 00 00</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Operation and Maintenance Manuals</td>
<td>3.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>388</td>
<td>23 00 00</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Fire Dampers</td>
<td>2.9.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>389</td>
<td>23 00 00</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Manual Balancing Dampers</td>
<td>2.9.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>23 00 00</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>In-Line Centrifugal Fans</td>
<td>2.10.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>391</td>
<td>23 00 00</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Ceiling Exhaust Fans</td>
<td>2.10.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>392</td>
<td>23 00 00</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Variable Volume, Single Duct Terminal Units</td>
<td>2.11.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>393</td>
<td>23 05 93</td>
<td>01</td>
<td>Preconstruction Submittals</td>
<td>TAB Firm</td>
<td>1.5.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>394</td>
<td>23 05 93</td>
<td>01</td>
<td>Preconstruction Submittals</td>
<td>TAB team assistants</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395</td>
<td>23 05 93</td>
<td>01</td>
<td>Preconstruction Submittals</td>
<td>TAB team engineer</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>396</td>
<td>23 05 93</td>
<td>01</td>
<td>Preconstruction Submittals</td>
<td>TAB Specialist</td>
<td>1.5.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>397</td>
<td>23 05 93</td>
<td>01</td>
<td>Preconstruction Submittals</td>
<td>TAB team field leader</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>398</td>
<td>23 05 93</td>
<td>02</td>
<td>Shop Drawings</td>
<td>TAB Schematic Drawings and Report Forms</td>
<td>1.3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>399</td>
<td>23 05 93</td>
<td>03</td>
<td>Product Data</td>
<td>Equipment and Performance Data</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>23 05 93</td>
<td>03</td>
<td>Product Data</td>
<td>TAB Related HVAC Submittals</td>
<td>1.5.3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401</td>
<td>23 05 93</td>
<td>03</td>
<td>Product Data</td>
<td>TAB Procedures</td>
<td>1.5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402</td>
<td>23 05 93</td>
<td>03</td>
<td>Product Data</td>
<td>Calibration</td>
<td>1.5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>403</td>
<td>23 05 93</td>
<td>03</td>
<td>Product Data</td>
<td>Systems Readiness Check</td>
<td>1.3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>404</td>
<td>23 05 93</td>
<td>03</td>
<td>Product Data</td>
<td>TAB Execution</td>
<td>1.5.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>405</td>
<td>23 05 93</td>
<td>06</td>
<td>Test Reports</td>
<td>Design review report</td>
<td>1.3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
<td>(l)</td>
<td>(m)</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>----------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>406</td>
<td>23 05 93</td>
<td>06</td>
<td>Test Reports</td>
<td>Design review report</td>
<td>1.6.1.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>407</td>
<td>23 05 93</td>
<td>06</td>
<td>Test Reports</td>
<td>Pre-Final DALT report</td>
<td>3.2.5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>408</td>
<td>23 05 93</td>
<td>06</td>
<td>Test Reports</td>
<td>Final DALT report</td>
<td>1.6.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>409</td>
<td>23 05 93</td>
<td>06</td>
<td>Test Reports</td>
<td>Final DALT report</td>
<td>3.2.7</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>23 05 93</td>
<td>06</td>
<td>Test Reports</td>
<td>TAB report</td>
<td>1.5.5.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>411</td>
<td>23 05 93</td>
<td>07</td>
<td>Certificates</td>
<td>Advance notice of Pre-Final DALT field work</td>
<td>3.2.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>412</td>
<td>23 05 93</td>
<td>07</td>
<td>Certificates</td>
<td>TAB Firm</td>
<td>1.5.3.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>413</td>
<td>23 05 93</td>
<td>07</td>
<td>Certificates</td>
<td>Independent TAB Agency and Personnel Qualifications</td>
<td>1.5.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>414</td>
<td>23 05 93</td>
<td>07</td>
<td>Certificates</td>
<td>DALT and TAB Submittal and Work Schedule</td>
<td>1.6.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>415</td>
<td>23 05 93</td>
<td>07</td>
<td>Certificates</td>
<td>Design review report</td>
<td>1.3.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>416</td>
<td>23 05 93</td>
<td>07</td>
<td>Certificates</td>
<td>Design review report</td>
<td>1.6.1.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>417</td>
<td>23 05 93</td>
<td>07</td>
<td>Certificates</td>
<td>Pre-field TAB engineering report</td>
<td>1.6.1.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>418</td>
<td>23 05 93</td>
<td>07</td>
<td>Certificates</td>
<td>Advanced notice for TAB field work</td>
<td>1.6.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>419</td>
<td>23 05 93</td>
<td>07</td>
<td>Certificates</td>
<td>Prerequisite HVAC Work Check Out List</td>
<td>1.6.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>23 07 00</td>
<td>02</td>
<td>Shop Drawings</td>
<td>Pipe Insulation Systems</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>421</td>
<td>23 07 00</td>
<td>02</td>
<td>Shop Drawings</td>
<td>Pipe Insulation Systems</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>422</td>
<td>23 07 00</td>
<td>02</td>
<td>Shop Drawings</td>
<td>Duct Insulation Systems</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>423</td>
<td>23 07 00</td>
<td>02</td>
<td>Shop Drawings</td>
<td>Equipment Insulation Systems</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>424</td>
<td>23 07 00</td>
<td>03</td>
<td>Product Data</td>
<td>Pipe Insulation Systems</td>
<td>2.3</td>
<td>G AFCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>425</td>
<td>23 07 00</td>
<td>03</td>
<td>Product Data</td>
<td>Pipe Insulation Systems</td>
<td>3.2</td>
<td>G AFCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>426</td>
<td>23 07 00</td>
<td>03</td>
<td>Product Data</td>
<td>Duct Insulation Systems</td>
<td>3.3</td>
<td>G AFCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>427</td>
<td>23 07 00</td>
<td>03</td>
<td>Product Data</td>
<td>Equipment Insulation Systems</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>428</td>
<td>23 07 00</td>
<td>08</td>
<td>Manufacturer’s Instructions</td>
<td>Pipe Insulation Systems</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>429</td>
<td>23 07 00</td>
<td>08</td>
<td>Manufacturer’s Instructions</td>
<td>Pipe Insulation Systems</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>430</td>
<td>23 07 00</td>
<td>08</td>
<td>Manufacturer’s Instructions</td>
<td>Duct Insulation Systems</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>431</td>
<td>23 07 00</td>
<td>08</td>
<td>Manufacturer’s Instructions</td>
<td>Equipment Insulation Systems</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>432</td>
<td>23 09 23</td>
<td>01</td>
<td>Preconstruction Submittals</td>
<td>Product data</td>
<td>1.04, A,B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433</td>
<td>23 09 23</td>
<td>02</td>
<td>Shop Drawings</td>
<td>Direct Digital Systems for HVAC</td>
<td>1.04, A,B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434</td>
<td>23 09 23</td>
<td>06</td>
<td>Test Reports</td>
<td>Site Testing Procedures</td>
<td>1.04, C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>435</td>
<td>23 09 23</td>
<td>06</td>
<td>Test Reports</td>
<td>Records</td>
<td>1.04, G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>436</td>
<td>23 09 23</td>
<td>08</td>
<td>Manufacturer’s Instructions</td>
<td>Training data</td>
<td>1.04, D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>437</td>
<td>23 09 23</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Manuals</td>
<td>1.04, E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>438</td>
<td>23 09 23</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Operating Instructions</td>
<td>1.04, F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>439</td>
<td>23 64 10</td>
<td>03</td>
<td>Product Data</td>
<td>Water Chiller</td>
<td>3.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>23 64 10</td>
<td>03</td>
<td>Product Data</td>
<td>Water Chiller</td>
<td>3.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>441</td>
<td>23 64 10</td>
<td>03</td>
<td>Product Data</td>
<td>Water Chiller</td>
<td>3.4.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>442</td>
<td>23 64 10</td>
<td>03</td>
<td>Product Data</td>
<td>Water Chiller</td>
<td>3.4.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>443</td>
<td>23 64 10</td>
<td>03</td>
<td>Product Data</td>
<td>Water Chiller</td>
<td>3.4.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>444</td>
<td>23 64 10</td>
<td>03</td>
<td>Product Data</td>
<td>Water Chiller</td>
<td>3.4.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>445</td>
<td>23 64 10</td>
<td>03</td>
<td>Product Data</td>
<td>Posted Instructions</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>446</td>
<td>23 64 10</td>
<td>03</td>
<td>Product Data</td>
<td>Verification of Dimensions</td>
<td>1.5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447</td>
<td>23 64 10</td>
<td>03</td>
<td>Product Data</td>
<td>MANUFACTURER'S MULTI-YEAR COMPLETE UNIT WARRANTY</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>448</td>
<td>23 64 10</td>
<td>03</td>
<td>Product Data</td>
<td>System Performance Tests</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>449</td>
<td>23 64 10</td>
<td>03</td>
<td>Product Data</td>
<td>Demonstrations</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>23 64 10</td>
<td>06</td>
<td>Test Reports</td>
<td>Field Acceptance Testing</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>451</td>
<td>23 64 10</td>
<td>06</td>
<td>Test Reports</td>
<td>Water Chiller</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>452</td>
<td>23 64 10</td>
<td>06</td>
<td>Test Reports</td>
<td>Water Chiller</td>
<td>3.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>453</td>
<td>23 64 10</td>
<td>06</td>
<td>Test Reports</td>
<td>Water Chiller</td>
<td>3.4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>454</td>
<td>23 64 10</td>
<td>06</td>
<td>Test Reports</td>
<td>System Performance Tests</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>455</td>
<td>23 64 10</td>
<td>08</td>
<td>Manufacturer's Instructions</td>
<td>Water Chiller</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>456</td>
<td>23 64 10</td>
<td>08</td>
<td>Manufacturer's Instructions</td>
<td>Water Chiller</td>
<td>3.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>457</td>
<td>23 64 10</td>
<td>08</td>
<td>Manufacturer's Instructions</td>
<td>Water Chiller</td>
<td>3.4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>458</td>
<td>23 64 10</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Operation and Maintenance Manuals</td>
<td>3.6</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>459</td>
<td>23 64 26</td>
<td>03</td>
<td>Product Data</td>
<td>Grooved Mechanical Connections For Steel</td>
<td>2.2</td>
<td>2.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>23 64 26</td>
<td>03</td>
<td>Product Data</td>
<td>Calibrated Balancing Valves</td>
<td>2.4.8</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>461</td>
<td>23 64 26</td>
<td>03</td>
<td>Product Data</td>
<td>Pump Discharge Valve</td>
<td>2.4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>462</td>
<td>23 64 26</td>
<td>03</td>
<td>Product Data</td>
<td>Water Temperature Mixing Valve</td>
<td>2.4.10</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>463</td>
<td>23 64 26</td>
<td>03</td>
<td>Product Data</td>
<td>Water Temperature Regulating Valves</td>
<td>2.4.11</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>464</td>
<td>23 64 26</td>
<td>03</td>
<td>Product Data</td>
<td>Water Pressure Reducing Valve</td>
<td>2.4.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>465</td>
<td>23 64 26</td>
<td>03</td>
<td>Product Data</td>
<td>Pressure Relief Valve</td>
<td>2.4.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>466</td>
<td>23 64 26</td>
<td>03</td>
<td>Product Data</td>
<td>Combination Pressure and Temperature Relief Valves</td>
<td>2.4.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>467</td>
<td>23 64 26</td>
<td>03</td>
<td>Product Data</td>
<td>Expansion Joints</td>
<td>2.5.9</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>468</td>
<td>23 64 26</td>
<td>03</td>
<td>Product Data</td>
<td>Pumps</td>
<td>2.6</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>469</td>
<td>23 64 26</td>
<td>03</td>
<td>Product Data</td>
<td>Combination Strainer and Pump Suction Diffuser</td>
<td>2.5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>23 64 26</td>
<td>03</td>
<td>Product Data</td>
<td>Expansion Tanks</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>471</td>
<td>23 64 26</td>
<td>03</td>
<td>Product Data</td>
<td>Air Separator Tanks</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>472</td>
<td>23 64 26</td>
<td>06</td>
<td>Test Reports</td>
<td>Piping welds NDE report</td>
<td>3.1.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>473</td>
<td>23 64 26</td>
<td>06</td>
<td>Test Reports</td>
<td>Pressure tests reports</td>
<td>3.4.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>474</td>
<td>23 64 26</td>
<td>07</td>
<td>Certificates</td>
<td>Employer's Record Documents (For Welding)</td>
<td>3.1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>475</td>
<td>23 64 26</td>
<td>07</td>
<td>Certificates</td>
<td>Welding Procedures and Qualifications</td>
<td>3.1.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>476</td>
<td>23 64 26</td>
<td>08</td>
<td>Manufacturer's Instructions</td>
<td>Lesson plan for the Instruction Course</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>477</td>
<td>23 64 26</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Calibrated Balancing Valves</td>
<td>2.4.8</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>478</td>
<td>23 64 26</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Pump Discharge Valve</td>
<td>2.4.9</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
<td>(l)</td>
<td>(m)</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>--------------------------</td>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>479</td>
<td>23 64</td>
<td>26 10</td>
<td>Operation and Maintenance Data</td>
<td>Water Temperature Mixing Valve</td>
<td>2.4.10</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>23 64</td>
<td>26 10</td>
<td>Operation and Maintenance Data</td>
<td>Water Temperature Regulating Valves</td>
<td>2.4.11</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>481</td>
<td>23 64</td>
<td>26 10</td>
<td>Operation and Maintenance Data</td>
<td>Water Pressure Reducing Valve</td>
<td>2.4.12</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>482</td>
<td>23 64</td>
<td>26 10</td>
<td>Operation and Maintenance Data</td>
<td>Pressure Relief Valve</td>
<td>2.4.13</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>483</td>
<td>23 64</td>
<td>26 10</td>
<td>Operation and Maintenance Data</td>
<td>Combination Pressure and Temperature</td>
<td>2.4.14</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>23 64</td>
<td>26 10</td>
<td>Operation and Maintenance Data</td>
<td>Expansion Joints</td>
<td>2.5.9</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>485</td>
<td>23 64</td>
<td>26 10</td>
<td>Operation and Maintenance Data</td>
<td>Pumps</td>
<td>2.6</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>486</td>
<td>23 64</td>
<td>26 10</td>
<td>Operation and Maintenance Data</td>
<td>Combination Strainer and Pump Suction</td>
<td>2.5.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>487</td>
<td>23 64</td>
<td>26 10</td>
<td>Operation and Maintenance Data</td>
<td>Expansion Tanks</td>
<td>2.7</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>488</td>
<td>23 64</td>
<td>26 10</td>
<td>Operation and Maintenance Data</td>
<td>Air Separator Tanks</td>
<td>2.8</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>489</td>
<td>23 73</td>
<td>13.00 40</td>
<td>Shop Drawings</td>
<td>Installation Drawings</td>
<td>3.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>23 73</td>
<td>13.00 40</td>
<td>Product Data</td>
<td>Equipment and Performance Data</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>491</td>
<td>23 73</td>
<td>13.00 40</td>
<td>Product Data</td>
<td>Final Test Reports</td>
<td>3.2.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>492</td>
<td>23 73</td>
<td>13.00 40</td>
<td>Certificates</td>
<td>Listing of Product Installations</td>
<td>1.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>493</td>
<td>23 73</td>
<td>13.00 40</td>
<td>Certificates</td>
<td>Certificates of Conformance</td>
<td>1.3.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>494</td>
<td>23 73</td>
<td>13.00 40</td>
<td>Certificates</td>
<td>Unit Cabinet</td>
<td>2.2.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>23 73</td>
<td>13.00 40</td>
<td>Certificates</td>
<td>Fan</td>
<td>2.2.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>496</td>
<td>23 73</td>
<td>13.00 40</td>
<td>Certificates</td>
<td>Drain Pans</td>
<td>2.2.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>497</td>
<td>23 73</td>
<td>13.00 40</td>
<td>Certificates</td>
<td>Insulation</td>
<td>2.2.5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>498</td>
<td>23 73</td>
<td>13.00 40</td>
<td>Certificates</td>
<td>Plenums</td>
<td>2.2.6</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>499</td>
<td>23 73</td>
<td>13.00 40</td>
<td>Certificates</td>
<td>Spare Parts</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>23 73</td>
<td>13.00 40</td>
<td>Operation and Maintenance Data</td>
<td>Operation and Maintenance Manuals</td>
<td>3.3.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>23 73</td>
<td>13.00 40</td>
<td>Closeout Submittals</td>
<td>Warranty</td>
<td>1.5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>26 20</td>
<td>00</td>
<td>Shop Drawings</td>
<td>Panelboards</td>
<td>2.10</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>503</td>
<td>26 20</td>
<td>00</td>
<td>Shop Drawings</td>
<td>Marking strips</td>
<td>3.1.7.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>504</td>
<td>26 20</td>
<td>00</td>
<td>Product Data</td>
<td>Receptacles</td>
<td>2.9</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>505</td>
<td>26 20</td>
<td>00</td>
<td>Product Data</td>
<td>Circuit breakers</td>
<td>2.10.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>506</td>
<td>26 20</td>
<td>00</td>
<td>Product Data</td>
<td>Switches</td>
<td>2.8</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>507</td>
<td>26 20</td>
<td>00</td>
<td>Product Data</td>
<td>Manual motor starters</td>
<td>2.12</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>508</td>
<td>26 20</td>
<td>00</td>
<td>Product Data</td>
<td>Grounding Busbar</td>
<td>2.14.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509</td>
<td>26 20</td>
<td>00</td>
<td>Product Data</td>
<td>Surge protective devices</td>
<td>2.19</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>26 20</td>
<td>06</td>
<td>Test Reports</td>
<td>600-volt wiring test</td>
<td>3.5.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>511</td>
<td>26 20</td>
<td>06</td>
<td>Test Reports</td>
<td>Grounding system test</td>
<td>3.5.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>26 20</td>
<td>06</td>
<td>Test Reports</td>
<td>Ground-fault receptacle test</td>
<td>3.5.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>513</td>
<td>26 20</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Electrical Systems</td>
<td>1.5.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Contract No.</td>
<td>Dates</td>
<td>Title</td>
<td>Action</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>----------</td>
<td>--</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>514</td>
<td>28 31 00</td>
<td>02</td>
<td>Shop Drawings</td>
<td>System Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515</td>
<td>28 31 00</td>
<td>08</td>
<td>Manufacturer’s Instructions</td>
<td>All Components Used</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>28 31 00</td>
<td>01</td>
<td>Preconstruction Submittals</td>
<td>Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>517</td>
<td>28 31 00</td>
<td>10</td>
<td>Operation and Maintenance Data</td>
<td>Manuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>518</td>
<td>28 31 00</td>
<td>07</td>
<td>Certificates</td>
<td>Qualifications of Installer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

U.S. FEDERAL AVIATION ADMINISTRATION (FAA)

FAA AC 150/5300-13 (2012; Rev A; Change 1 2014) Airport Design

FAA AC 70/7460-1 (2007; Rev K) Obstruction Marking and Lighting

1.2 DEFINITIONS

1.2.1 Landing Areas

"Landing Areas" means:

a. The primary surfaces, comprising the surface of the runway, runway shoulders, and lateral safety zones. The length of each primary surface is the same as the runway length. The width of each primary surface is 2000 feet (1000 feet on each side of the runway centerline).

b. The "clear zone" beyond the ends of each runway is the extension of the primary surface for a distance of 3000 feet beyond each end of each runway.

c. All taxiways, plus the lateral clearance zones along each side for the length of the taxiways (the outer edge of each lateral clearance zone is laterally 250 feet from the far or opposite edge of the taxiway (example: a 75 foot wide taxiway must have a combined width and lateral clearance zone of 425 feet.)

d. All aircraft parking aprons, plus the area 125 feet in width extending beyond each edge all around the aprons.

1.2.2 Safety Precaution Areas

"Safety Precaution Areas" means those portions of approach-departure clearance zones and transitional zones where placement of objects incident to contract performance might result in vertical projections at or above the approach-departure clearance, or the transitional surface.

a. The "approach-departure clearance surface" is an extension of the primary surface and the clear zone at each end of each runway, for a distance of 50,000 feet, first along an inclined (glide angle) and then along a horizontal plane, both flaring symmetrically about the runway centerline extended.
(1) The inclined plane (glide angle) begins in the clear zone 200 feet past the end of the runway (and primary surface) at the same elevation as the end of the runway. It continues upward at a slope of 50:1 (1 foot vertically for each 50 feet horizontally) to an elevation of 500 feet above the established airfield elevation. At that point the plane becomes horizontal, continuing at that same uniform elevation to a point 50,000 feet longitudinally from the beginning of the inclined plane (glide angle) and ending there.

(2) The width of the surface at the beginning of the inclined plane (glide angle) is the same as the width of the clear zone. It then flares uniformly, reaching the maximum width of 16,000 feet at the end.

b. The “approach-departure clearance zone” is the ground area under the approach-departure clearance surface.

c. The “transitional surface” is a sideways extension of all primary surfaces, clear zones, and approach-departure clearance surfaces along inclined planes.

(1) The inclined plane in each case begins at the edge of the surface.

(2) The slope of the incline plane is 7:1 (1 foot vertically for each 7 feet horizontally). It continues to the point of intersection with the:

(a) Inner horizontal surface (which is the horizontal plane 150 feet above the established airfield elevation); or

(b) Outer horizontal surface (which is the horizontal plane 500 feet above the established airfield elevation), whichever is applicable.

d. The “transitional zone” is the ground area under the transitional surface. (It adjoins the primary surface, clear zone, and approach-departure clearance zone.)

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; :

SD-01 Preconstruction Submittals

PART 2 PRODUCTS

2.1 AIRFIELD OBSTRUCTION LIGHTS

Airfield obstruction lights must conform to FAA AC 70/7460-1 and have red or white lenses.
PART 3 EXECUTION

3.1 HAZARDS TO AIRFIELD OPERATION

In addition to "DFARS 252.236-7005, Airfield Safety Precautions," the following paragraphs apply.

3.1.1 Operations on the Airfield

a. Flightline Driving: A Hurlburt Field Flightline Driving License is required to operate a vehicle on the airfield. The license and half-day training will be provided free of charge by Hurlburt Field Base Operations. The operator cannot be red-green color blind.

b. Flightline Access: Check in and check out with the Airfield Operations Dispatcher daily.
 - During check-in, advise the dispatcher of intended work areas and type of work scheduled.
 - While on any runway, taxiway, or approach area, immediately remove any dirt, debris, or other material spilled or caused by the Contractor’s operations.
 - During check-out, brief the dispatcher on completed work and status of any airfield facilities affected by the work.

c. Airfield Communications: Maintain communications with Base Operations and the air traffic control tower at all times with a radio provided by Base Operations.
 - Furnish all work groups working within 100 feet of a runway with walkie-talkie radios tuned to the ramp net frequency, to be provided by the Government. Provide sufficient radios to allow immediate and simultaneous communication with all work groups.
 - When emergency or operational interruptions of work become necessary, respond immediately. When directed by Base Operations or the air traffic control tower, move all equipment and personnel a minimum of 100 feet from the emergency scene or worksite.

d. Flagman: Depending upon local conditions and based on the discretion of the contracting officer and operational considerations, the contractor may be required to provide, at no additional cost, a flagman and traffic control personnel as required.

e. Airfield Availability: The airfield will be in use during construction activities. Individual requirements for each task order will be coordinated through Airfield Operations. Generally, the contractor will be able to access the airfield during working hours, however construction may be interrupted as a result of flight operations.

3.1.2 FAA Form 7460-1

The contractor is required to comply with all aspects of the Federal Aviation Regulation (FAR), Part 77, Objects Affecting Navigable Airspace, for all work associated with this contract. This includes, but is not limited to, the use of any and all equipment used to construct the facility and the facility itself. The contractor is required to obtain all necessary permits including FAA form 7460-1 (latest edition) and provide all necessary notices associated with this requirement. All work within the following areas must be coordinated in writing with the Contracting Officer.
21 days in advance of commencement of the work:
 1. LATERAL CLEARANCE AREA: A line 1000 feet from and parallel to
 the centerline of the runway.
 2. TAXIWAY SETBACK: A line 200 feet from and parallel to the
 centerline of any taxiway.
 3. APRON SETBACK: A line 125 feet from and parallel to the edge of
 the aircraft-parking apron.
 4. CLEAR ZONE: A line 1500 feet from and parallel to the centerline
 of the runway beginning at the runway threshold and continuing for a
 distance of 3000 feet north and south of the ends of the runway.

Permit requirements and submittal procedures are located at the following
web site:

https://oeaaa.faa.gov/oeaaa/external/portal.jsp

3.1.3 Work in Proximity to Landing Areas

Place nothing upon the landing area or applicable portions of safety
precaution areas without authority of the Contracting Officer.

Use of landing areas for purposes other than aircraft operation, is
prohibited without permission of the Contracting Officer, and the landing
area is closed by order of the Contracting Officer and marked as indicated
herein.

Accomplish all construction work on the runways, taxiways, and parking
aprons and in the end zones of the runways and 75 feet to each side of the
runways and taxiways with extreme care regarding the operation of
aircraft. Cooperate closely, and coordinate with the Operations Officer and
the Contracting Officer. Park equipment in an area designated by the
Contracting Officer. Parking of equipment, vehicles, or any type of
storage overnight or for any extended period of time in the proximity of
the landing areas or taxiways is strictly prohibited. Leave no material in
areas where extreme care is to be taken regarding the operation of aircraft.

During periods of active performance of work on the airfield by the
Contractor, govern all operations of mobile equipment per the safety
provisions.

3.1.4 Schedule of Work/Aircraft Operating Schedules

Schedule work to conform to aircraft operating schedules. The Government
will exert every effort to schedule aircraft operations so as to permit the
maximum amount of time for the Contractor's activities; however, in the
event of emergency, intense operational demands, adverse wind conditions,
and other such unforeseen difficulties, the Contractor must cease
operations at the specified locations in the aircraft operational area for
the safety of the Contractor and military personnel and Government
property.

Where flying is controlled, additional permission must be obtained from the
control tower operator to enter a landing area unless such area is marked
as hazardous to aircraft.

3.1.5 Excavation

Open only those trenches for which material is on hand and ready for placing therein. As soon as possible after the material has been placed and work approved, backfill and compact the trenches as specified.

Maintain landing areas at all times free from hazards, holes, material piles, or projecting shoulders that might damage tires or landing gear. Paved surfaces must be kept clean at all times and free from small stones or other objects which could cause damage to propellers, craft, and personnel.

3.1.6 Contractor Safety Precautions

The Contractor is advised that aircraft operations will produce extremely high noise levels and will induce vibrations in pavements, structures, and equipment in the vicinity, and may result in high velocity flying debris in the area. The Contractor is responsible for providing all necessary protective eye and ear gear and other safety devices for his personnel, for insuring protection of his equipment, and for scheduling the work to eliminate hazards to his personnel and equipment and to prevent damage to work performed by him.

Boundary areas for hazardous work locations and restrictions are defined in FAA AC 150/5300-13. Construction activity within the limits of the boundary areas without approval of the Contracting Officer is prohibited.

Provide a minimum of 2 aviation red or high intensity white obstruction lights on temporary structures (including cranes) over 100 feet above ground level.

3.1.7 Base Civil Engineering (BCE) Work Clearance Request

Obtain an approved BCE Work Clearance Request, AF Form 103, prior to the start of excavation, digging work, or work that disrupts aircraft or vehicular traffic flow, base utility services, fire and intrusion alarm system, or routine activities of the Activity.

3.2 Use of Barge Area

The following is related to the use of barges:

a. Use of the barge off loading area is not allowed except as approved, in writing, by the Contracting Officer. Contractor must request usage of the barge site, in writing, to the Contracting Officer a minimum of 30 days prior to expected deliveries. Contractor must also submit a schedule of all deliveries. Under no circumstances should the contractor assume such requests will be approved. Contractor should plan to have materials delivered by other means.

b. If usage of the barge site is approved, the contractor must meet the following requirements:
 1. Crane boom height cannot exceed eighty (80) feet from mean water elevation.
 2. Crane boom must have a red flag and an operational blinking obstruction light.
 3. Contractor will be responsible for surrounding water quality per the State of Florida Regulations. Prior to delivery of any barge/crane or tug, contractor must install full-depth turbidity...
barriers both east and west of the site to extend beyond limits of off loading operations.

4. Off loading operations will be during daylight hours only. Operations will not start before 0700 (7:00 AM) and boom must be lowered to deck height by 1700 hours (5:00 PM) each day.

5. Contractor is required to provide the name and number of a responsible party, and contact information of the tug/crane operator at site to both of the following:
 a. The Contracting Officer.

6. Upon notification of inclement weather, off loading operations must cease and the boom lowered to deck height. Do not raise boom until cleared by the Hurlburt Tower. All barges and equipment must be secured. Upon notification of Hurcon conditions, the contractor must remove all barges, cranes, tugs, and associated equipment from the site. The government will not be responsible for any delays or costs associated to weather.

7. If notified to do so by the Contracting Officer or Hurlburt Tower, operations must cease and the boom lowered to deck height. Under no circumstances should the boom be raised until cleared by the notifying authority. The government will not be responsible for any associated delays or costs.
 c. If these requirements cannot be met, the contractor is prohibited from using the barge site. Failure to adhere to these requirements during operations will result in immediate revocation of site use at no expense to the government. Site must be maintained per specifications and contractor will be responsible for any and all clean-up after operations.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910 Occupational Safety and Health Standards

29 CFR 1910.146 Permit-required Confined Spaces

29 CFR 1915 Confined and Enclosed Spaces and Other Dangerous Atmospheres in Shipyard Employment

1.2 DEFINITIONS

1.2.1 Competent Person (CP)

The CP is a person designated in writing, who, through training, knowledge and experience, is capable of identifying, evaluating, and addressing existing and predictable hazards in the working environment or working conditions that are dangerous to personnel, and who has authorization to take prompt corrective measures with regards to such hazards.

1.2.2 High Risk Activities

High Risk Activities are activities that involve work at heights, crane and rigging, excavations and trenching, scaffolding, electrical work, and confined space entry.
1.2.3 High Visibility Accident

A High Visibility Accident is any mishap which may generate publicity or high visibility.

1.2.4 Load Handling Equipment (LHE)

LHE is a term used to describe cranes, hoists and all other hoisting equipment (hoisting equipment means equipment, including crane, derricks, hoists and power operated equipment used with rigging to raise, lower or horizontally move a load).

1.2.5 Medical Treatment

Medical Treatment is treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.

1.2.6 Near Miss

A Near Miss is a mishap resulting in no personal injury and zero property damage, but given a shift in time or position, damage or injury may have occurred (e.g., a worker falls off a scaffold and is not injured; a crane swings around to move the load and narrowly misses a parked vehicle).

1.2.7 Operating Envelope

The Operating Envelope is the area surrounding any crane or load handling equipment. Inside this "envelope" is the crane, the operator, riggers and crane walkers, other personnel involved in the operation, rigging gear between the hook, the load, the crane's supporting structure (i.e. ground or rail), the load's rigging path, the lift and rigging procedure.

1.2.8 Qualified Person (QP)

The QP is a person designated in writing, who, by possession of a recognized degree, certificate, or professional standing, or extensive knowledge, training, and experience, has successfully demonstrated their ability to solve or resolve problems related to the subject matter, the work, or the project.

1.2.9 Load Handling Equipment (LHE) Accident or Load Handling Equipment Mishap

A LHE accident occurs when any one or more of the eight elements in the operating envelope fails to perform correctly during operation, including operation during maintenance or testing resulting in personnel injury or death; material or equipment damage; dropped load; derailment; two-blocking; overload; or collision, including unplanned contact between the load, crane, or other objects. A dropped load, derailment, two-blocking, overload and collision are considered accidents, even though no material damage or injury occurs. A component failure (e.g., motor burnout, gear tooth failure, bearing failure) is not considered an accident solely due to material or equipment damage unless the component failure results in damage to other components (e.g., dropped boom, dropped load, or roll over).
1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-07 Certificates

Confined Space Entry Permit; G

Hot Work Permit

1.4 PLANS

1.4.1 Plans

Provide the following plans:

1.4.1.1 Confined Space Entry Plan

Develop a confined or enclosed space entry plan in accordance with AFI 91-203,, applicable OSHA standards 29 CFR 1910, 29 CFR 1915, and 29 CFR 1926, OSHA Directive CPL 2.100, and any other federal, state and local regulatory requirements identified in this contract. Identify the qualified person's name and qualifications, training, and experience. Delineate the qualified person's authority to direct work stoppage in the event of hazardous conditions. Include procedure for rescue by contractor personnel and the coordination with emergency responders. (If there is no confined space work, include a statement that no confined space work exists and none will be created.)

1.5 EMERGENCY MEDICAL TREATMENT

Contractors must arrange for their own emergency medical treatment. Government has no responsibility to provide emergency medical treatment.

1.6 NOTIFICATIONS and REPORTS

1.6.1 Mishap Notification

Notify the Contracting Officer as soon as practical, but no more than twenty-four hours, after any mishaps, including recordable accidents, incidents, and near misses, any report of injury, illness, or any property damage. The Contractor is responsible for obtaining appropriate medical and emergency assistance and for notifying fire, law enforcement, and regulatory agencies. Immediate reporting is required for electrical mishaps, to include Arc Flash; shock; uncontrolled release of hazardous energy (includes electrical and non-electrical); load handling equipment or rigging; fall from height (any level other than same surface); and underwater diving. These mishaps must be investigated in depth to identify all causes and to recommend hazard control measures.

Within notification include Contractor name; contract title; type of contract; name of activity, installation or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (for example, type of construction equipment used and PPE used). Preserve the conditions and evidence on the accident site until the Government investigation team arrives on-site and Government investigation
is conducted. Assist and cooperate fully with the Government's investigation(s) of any mishap.

1.6.2 Accident Reports

a. Conduct an accident investigation for recordable injuries and illnesses, property damage, and near misses to establish the root cause(s) of the accident. The Contracting Officer will provide copies of any required or special forms.

b. Near Misses: Near miss reports are considered positive and proactive Contractor safety management actions.

1.7 HOT WORK

1.7.1 Hot Work Permit

Submit and obtain a written permit prior to performing "Hot Work" (i.e. welding or cutting) or operating other flame-producing/spark producing devices, from the Fire Department. CONTRACTORS ARE REQUIRED TO MEET ALL CRITERIA BEFORE A PERMIT IS ISSUED. Provide at least two 4A:20 BC rated extinguishers for normal "Hot Work". The extinguishers must be current inspection tagged, and contain an approved safety pin and tamper resistant seal. It is also mandatory to have a designated FIRE WATCH for any "Hot Work" done at this activity. The Fire Watch must remain on-site for a minimum of one hour after completion of the task or as specified on the hot work permit.

When starting work in the facility, require personnel to familiarize themselves with the location of the nearest fire alarm boxes and place in memory the emergency Fire Department Emergency Number of 911. REPORT ANY FIRE, NO MATTER HOW SMALL, TO THE Fire Department IMMEDIATELY.

1.8 RADIATION SAFETY REQUIREMENTS

Notify the Contracting officer when using portable machine sources of ionizing radiation including moisture density and X-Ray Fluorescence (XRF)

1.8.1 Transmitter Requirements

Adhere to the base policy concerning the use of transmitters, such as radios and cell phones. Obey Emissions control (EMCON) restrictions.

1.9 CONFINED SPACE ENTRY REQUIREMENTS

Confined space entry must comply with AFI 91-203, OSHA 29 CFR 1926, OSHA 29 CFR 1910, OSHA 29 CFR 1910.146, and OSHA Directive CPL 2.100. Any potential for a hazard in the confined space requires a permit system to be used.

1.9.1 Entry Procedures

Prohibit entry into a confined space by personnel for any purpose, including hot work, until the qualified person has conducted appropriate tests to ensure the confined or enclosed space is safe for the work intended and that all potential hazards are controlled or eliminated and documented. Hazards pertaining to the space must be reviewed with each employee during review of the AHA.
1.9.2 Forced Air Ventilation

Forced air ventilation is required for all confined space entry operations and the minimum air exchange requirements must be maintained to ensure exposure to any hazardous atmosphere is kept below its action level.

1.9.3 Sewer Wet Wells

Sewer wet wells require continuous atmosphere monitoring with audible alarm for toxic gas detection.

1.9.4 Rescue Procedures and Coordination with Local Emergency Responders

Develop and implement an on-site rescue and recovery plan and procedures. The rescue plan must not rely on local emergency responders for rescue from a confined space.

1.10 SEVERE STORM PLAN

In the event of a severe storm warning, the Contractor must:

a. Secure outside equipment and materials and place materials that could be damaged in protected areas.

b. Check surrounding area, including roof, for loose material, equipment, debris, and other objects that could be blown away or against existing facilities.

c. Ensure that temporary erosion controls are adequate.

PART 2 PRODUCTS

PART 3 EXECUTION

3.1 CONSTRUCTION AND OTHER WORK

Comply with NFPA 70, NFPA 70E, NFPA 241, the APP, the AHA, Federal and State OSHA regulations, and other related submittals and activity fire and safety regulations. The most stringent standard prevails.

PPE is governed in all areas by the nature of the work the employee is performing. Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks. Safety glasses must be worn or carried/available on each person. Mandatory PPE includes:

a. Hard Hat

b. Long Pants

c. Appropriate Safety Shoes

d. Appropriate Class Reflective Vests

3.1.1 Worksite Communication

Employees working alone in a remote location or away from other workers must be provided an effective means of emergency communications (i.e., cellular phone, two-way radios, land-line telephones or other acceptable
means). The selected communication must be readily available (easily within the immediate reach) of the employee and must be tested prior to the start of work to verify that it effectively operates in the area/environment. An employee check-in/check-out communication procedure must be developed to ensure employee safety.

3.1.2 Hazardous Material Exclusions

Notwithstanding any other hazardous material used in this contract, radioactive materials or instruments capable of producing ionizing/non-ionizing radiation (with the exception of radioactive material and devices such as nuclear density meters for compaction testing and laboratory equipment with radioactive sources) as well as materials which contain asbestos, mercury or polychlorinated biphenyls, di-isocyanates, lead-based paint, and hexavalent chromium, are prohibited. The Contracting Officer, upon written request by the Contractor, may consider exceptions to the use of any of the above excluded materials. Low mercury lamps used within fluorescent lighting fixtures are allowed as an exception without further Contracting Officer approval. Notify the Radiation Safety Officer (RSO) prior to excepted items of radioactive material and devices being brought on base.

3.1.3 Unforeseen Hazardous Material

Contract documents identify materials such as PCB, lead paint, and friable and non-friable asbestos and other OSHA regulated chemicals (i.e. 29 CFR Part 1910.1000). If material(s) that may be hazardous to human health upon disturbance are encountered during construction operations, stop that portion of work and notify the Contracting Officer immediately. The Government will determine if the material is hazardous. If material is not hazardous or poses no danger, the Government will direct the Contractor to proceed without change. If material is hazardous and handling of the material is necessary to accomplish the work, the Government may issue a modification.

3.2 EXCAVATIONS

Soil classification must be performed by a competent person in accordance with 29 CFR 1926.

3.2.1 Utility Location Verification

Physically verify underground utility locations, including utility depth, by hand digging using wood or fiberglass handled tools when any adjacent construction work is expected to come within 3 feet of the underground system.

3.3 ELECTRICAL

3.3.1 Arc Flash

Conduct a hazard analysis/arc flash hazard analysis whenever work on or near energized parts greater than 50 volts is necessary, in accordance with NFPA 70E.

All personnel entering the identified arc flash protection boundary must be QPs and properly trained in NFPA 70E requirements and procedures. Unless permitted by NFPA 70E, no Unqualified Person is permitted to approach nearer than the Limited Approach Boundary of energized conductors and...
circuit parts. Training must be administered by an electrically qualified source and documented.

3.3.2 Grounding

Ground electrical circuits, equipment and enclosures in accordance with NFPA 70 and IEEE C2 to provide a permanent, continuous and effective path to ground.

Check grounding circuits to ensure that the circuit between the ground and a grounded power conductor has a resistance low enough to permit sufficient current flow to allow the fuse or circuit breaker to interrupt the current.

3.3.3 Testing

Temporary electrical distribution systems and devices must be inspected, tested and found acceptable for Ground-Fault Circuit Interrupter (GFCI) protection, polarity, ground continuity, and ground resistance before initial use, before use after modification and at least monthly. Monthly inspections and tests must be maintained for each temporary electrical distribution system, and signed by the electrical CP or QP.

-- End of Section --
SECTION 01 42 00

SOURCES FOR REFERENCE PUBLICATIONS

PART 1 GENERAL

1.1 REFERENCES

Various publications are referenced in other sections of the specifications to establish requirements for the work. These references are identified in each section by document number, date and title. The document number used in the citation is the number assigned by the standards producing organization (e.g. ASTM B564 Standard Specification for Nickel Alloy Forgings). However, when the standards producing organization has not assigned a number to a document, an identifying number has been assigned for reference purposes.

1.2 ORDERING INFORMATION

The addresses of the standards publishing organizations whose documents are referenced in other sections of these specifications are listed below, and if the source of the publications is different from the address of the sponsoring organization, that information is also provided.

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)
30 West University Drive
Arlington Heights, IL 60004-1893
Ph: 847-394-0150
Fax: 847-253-0088
E-mail: amca@amca.org
Internet: http://www.amca.org

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)
2111 Wilson Blvd, Suite 500
Arlington, VA 22201
Ph: 703-524-8800
Fax: 703-562-1942
Internet: http://www.ahrinet.org

ALUMINUM ASSOCIATION (AA)
National Headquarters
1525 Wilson Boulevard, Suite 600
Arlington, VA 22209
Ph: 703-358-2960
E-Mail: info@aluminum.org
Internet: http://www.aluminum.org

AMERICAN ARCHITECTURAL MANUFACTURERS ASSOCIATION (AAMA)
1827 Walden Office Square, Suite 550
Schaumburg, IL 60173-4268
Ph: 847-303-5664
Fax: 847-303-5774
E-mail: customerservice@aamanet.org
Internet: http://www.aamanet.org

SECTION 01 42 00 Page 1
AMERICAN ASSOCIATION OF TEXTILE CHEMISTS AND COLORISTS (AATCC)
1 Davis Drive
P.O. Box 12215
Research Triangle Park, NC 27709-2215
Ph: 919-549-8141
Fax: 919-549-8933
Internet: http://www.aatcc.org

AMERICAN BEARING MANUFACTURERS ASSOCIATION (ABMA)
2025 M Street, NW, Suite 800
Washington, DC 20036
Ph: 202-367-1155
E-mail: info@americanbearings.org
Internet: http://www.americanbearings.org

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)
38800 Country Club Drive
Farmington Hills, MI 48331-3439
Ph: 248-848-3700
Fax: 248-848-3701
E-mail: bkstore@concrete.org
Internet: http://www.concrete.org

AMERICAN CONFERENCE OF GOVERNMENTAL INDUSTRIAL HYGIENISTS (ACGIH)
1330 Kemper Meadow Drive
Cincinnati, OH 45240
Ph: 513-742-2020 or 513-742-6163
Fax: 513-742-3355
E-mail: mail@acgih.org
Internet: http://www.acgih.org

AMERICAN INDUSTRIAL HYGIENE ASSOCIATION (AIHA)
3141 Fairview Park Dr, Suite 777
Falls Church, VA 22042
Tel: 703-849-8888
Fax: 703-207-3561
E-mail: infonet@aiha.org
Internet http://www.aiha.org

AMERICAN LUMBER STANDARDS COMMITTEE (ALSC)
P.O. Box 210
Germantown, MD 20875-0210
Ph: 301-972-1700
Fax: 301-540-8004
E-mail: alscc@alsc.org
Internet: http://www.alsc.org

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)
1899 L Street, NW, 11th Floor
Washington, DC 20036
Ph: 202-293-8020
Fax: 202-293-9287
E-mail: storemanager@ansi.org
Internet: http://www.ansi.org/

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)
1801 Alexander Bell Drive
Reston, VA 20191
Ph: 703-295-6300; 800-548-2723
E-mail: member@asce.org
Internet: http://www.asce.org

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)
1791 Tullie Circle, NE
Atlanta, GA 30329
Ph: 800-527-4723 or 404-636-8400
Fax: 404-321-5478
E-mail: ashrae@ashrae.org
Internet: http://www.ashrae.org

AMERICAN SOCIETY OF SAFETY ENGINEERS (ASSE/SAFE)
1800 East Oakton Street
Des Plaines, IL 60018
Ph: 847-699-2929
Internet: http://www.asse.org

AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE)
18927 Hickory Creek Drive, Suite 220
Mokena, IL 60448
Ph: 708-995-3019
Fax: 708-479-6139
E-mail: staffengineer@asse-plumbing.org
Internet: http://www.asse-plumbing.org

AMERICAN WATER WORKS ASSOCIATION (AWWA)
6666 West Quincy Avenue
Denver, CO 80225-3098
Ph: 303-794-7711
E-mail: distribution@awwa.org
Internet: http://www.awwa.org

AMERICAN WELDING SOCIETY (AWS)
13301 NW 47 Ave
Miami, FL 33054
Ph: 888-WELDING, 305-824-1177, 305-826-6192
Fax: 305-826-6195
E-mail: customer.service@awspubs.com
Internet: http://www.aws.org

AMERICAN WOOD COUNCIL (AWC)
222 Catoctin Circle SE, Suite 201
Leesburg, VA 20175
Ph: 800-890-7732
Fax: 412-741-0609
E-mail: publications@awc.org
Internet: http://www.awc.org

AMERICAN WOOD PROTECTION ASSOCIATION (AWPA)
P.O. Box 361784
Birmingham, AL 35236-1784
Ph: 205-733-4077
Fax: 205-733-4075
Internet: http://www.awpa.com

APA - THE ENGINEERED WOOD ASSOCIATION (APA)
7011 South 19th St.
EXPANSION JOINT MANUFACTURERS ASSOCIATION (EJMA)
25 North Broadway
Tarrytown, NY 10591
Fax: 914-332-1541
E-mail: inquiries@ejma.org
Internet: http://www.ejma.org

FM GLOBAL (FM)
270 Central Avenue
P.O. Box 7500
Johnston, RI 02919-4923
Ph: 877-364-6726
Fax: 401-275-3029
E-mail: servicedesk.myrisk@fmglobal.com
Internet: http://www.fmglobal.com

FOUNDATION FOR CROSS-CONNECTION CONTROL AND HYDRAULIC RESEARCH (FCCCHR)
University of South California
Research Annex 219
3716 South Hope Street
Los Angeles, CA 90089-7700
Ph: 213-740-2032 or 866-545-6340
Fax: 213-740-8399
E-mail: fccchr@usc.edu
Internet: http://www.usc.edu/dept/fccchr

GLASS ASSOCIATION OF NORTH AMERICA (GANA)
800 SW Jackson St., Suite 1500
Topeka, KS 66612-1200
Ph: 785-271-0208
E-mail: gana@glasswebsite.com
Internet: http://www.glasswebsite.com

GYPSUM ASSOCIATION (GA)
6525 Belcrest Road, Suite 480
Hyattsville, MD 20782
Ph: 301-277-8686
Fax: 301-277-8747
E-mail: info@gypsum.org
Internet: http://www.gypsum.org

HYDRAULIC INSTITUTE (HI)
6 Campus Drive, First Floor North
Parsippany, NJ 07054-4406
Ph: 973-267-9700
Fax: 973-267-9055
Internet: http://www.pumps.org

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)
445 and 501 Hoes Lane
Piscataway, NJ 08854-4141
Ph: 732-981-0060 or 800-701-4333
Fax: 732-562-9667
E-mail: onlinesupport@ieee.org
Internet: http://www.ieee.org
INSULATING GLASS MANUFACTURERS ALLIANCE (IGMA)
27 N. Wacker Dr. Suite 365
Chicago, IL 60606-2800
Ph: 613-233-1510
Fax: 613-482-9436
E-mail: enquiries@igmaonline.org
Internet: http://www.igmaonline.org

INTERNATIONAL ASSOCIATION OF PLUMBING AND MECHANICAL OFFICIALS (IAPMO)
4755 E. Philadelphia St.
Ontario, CA 91761
Ph: 909-472-4100
Fax: 909-472-4150
E-mail: iapmo@iapmo.org
Internet: http://www.iapmo.org

INTERNATIONAL CODE COUNCIL (ICC)
500 New Jersey Avenue, NW
6th Floor, Washington, DC 20001
Ph: 800-786-4452 or 888-422-7233
E-mail: order@iccsafe.org
Internet: www.iccsafe.org

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)
1, ch. de la Voie-Creuse
Case Postale 56
CP 56 - CH-1211 Geneva 20
Switzerland
Ph: 41-22-749-01-11
Fax: 41-22-733-34-30
E-mail: central@iso.ch
Internet: http://www.iso.org

INTERNATIONAL SAFETY EQUIPMENT ASSOCIATION (ISEA)
1901 North Moore Street
Arlington, VA 22209-1762
Ph: 703-525-1695
Fax: 703-528-2148
Internet: http://www.safetyequipment.org/

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)
127 Park Street, NE
Vienna, VA 22180-4602
Ph: 703-281-6613
E-mail: info@mss-hq.com
Internet: http://mss-hq.org/Store/index.cfm

MARBLE INSTITUTE OF AMERICA (MIA)
380 E. Lorain Street
Oberlin, OH 44074
Ph: 440-250-9222
Fax: 440-774-9222
E-mail: miainfo@marble-institute.com
Internet: http://www.marble-institute.com

MASTER PAINTERS INSTITUTE (MPI)
2800 Ingleton Avenue

SECTION 01 42 00 Page 6
Burnaby, BC CANADA V5C 6G7
Ph: 1-888-674-8937
Fax: 1-888-211-8708
E-mail: info@paintinfo.com or techservices@mpi.net
Internet: http://www.mpi.net/

MIDWEST ROOFING CONTRACTORS ASSOCIATION (MRCA)
8735 W Higgins Road
Suite 300
Chicago, IL 60631
Ph: 800-497-6722
Fax: 847-375-6473
E-mail: info@mrca.org
Internet: General Information: http://www.mrca.org

NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM)
800 Roosevelt Road, Bldg C, Suite 312
Glen Ellyn, IL 60137
Ph: 630-942-6591
Fax: 630-790-3095
E-mail: wlewis7@cox.net (Wes Lewis, technical consultant)
Internet: http://www.naamm.org

NATIONAL ELECTRICAL MANUFACTurers ASSOCIATION (NEMA)
1300 North 17th Street, Suite 900
Arlington, VA 22209
Ph: 703-841-3200
Internet: http://www.nema.org/

NATIONAL ENVIRONMENTAL BALANCING BUREAU (NEBB)
8575 Grovemont Circle
Gaithersburg, MD 20877
Ph: 301-977-3698
Fax: 301-977-9589
Internet: http://www.nebb.org

NATIONAL FENESTRATION RATING COUNCIL (NFRC)
6305 Ivy Lane, Suite 140
Greenbelt, MD 20770
Ph: 301-589-1776
Fax: 301-589-3884
E-Mail: info@nfrc.org
Internet: http://www.nfrc.org

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)
1 Batterymarch Park
Quincy, MA 02169-7471
Ph: 617-770-0300
Fax: 617-770-0700
Internet: http://www.nfpa.org

NATIONAL INSTITUTE FOR CERTIFICATION IN ENGINEERING TECHNOLOGIES (NICET)
1420 King Street
Alexandria, VA 22314-2794
Ph: 888-476-4238 (1-888 IS-NICET)
E-mail: tech@nicet.org
Internet: http://www.nicet.org
NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)
10255 West Higgins Road, Suite 600
Rosemont, IL 60018-5607
Ph: 866-275-6722 (866-ASK-NRCA)
Fax: 847-299-1183
E-mail: info@nrca.net
Internet: http://www.nrca.net

NORTHEASTERN LUMBER MANUFACTURERS ASSOCIATION (NELMA)
272 Tuttle Road
Cumberland, ME 04021
Ph: 207-829-6901
Fax: 207-829-4293
E-mail: info@nelma.org
Internet: http://www.nelma.org

NSF INTERNATIONAL (NSF)
789 North Dixboro Road
P.O. Box 130140
Ann Arbor, MI 48105
Ph: 734-769-8010 or 800-NSF-MARK
Fax: 734-769-0109
E-mail: info@nsf.org
Internet: http://www.nsf.org

PLASTIC PIPE AND FITTINGS ASSOCIATION (PPFA)
800 Roosevelt Road
Building C, Suite 312
Glen Ellyn, IL 60137
Ph: 630-858-6540
Fax: 630-790-3095
Internet: http://www.ppfahome.org

PLUMBING AND DRAINAGE INSTITUTE (PDI)
800 Turnpike Street, Suite 300
North Andover, MA 01845
Ph: 978-557-0720 or 800-589-8956
E-Mail: pdi@PDIONline.org
Internet: http://www.pdionline.org

SCIENTIFIC CERTIFICATION SYSTEMS (SCS)
2000 Powell Street, Suite 600
Emeryville, CA 94608
Ph: 800-326-3228
E-mail: info@SCSglobal services.com
Internet: http://www.scsglobalservices.com/

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION
(SMACNA)
4201 Lafayette Center Drive
Chantilly, VA 20151-1219
Ph: 703-803-2980
Fax: 703-803-3732
Internet: http://www.smacna.org

SINGLE PLY ROOFING INDUSTRY (SPRI)
411 Waverley Oaks Road, Suite 331B
Waltham, MA 02452
Ph: 781-647-7026
Fax: 781-647-7222
E-mail: info@spri.org
Internet: http://www.spri.org

SOCIETY FOR PROTECTIVE COATINGS (SSPC)
40 24th Street, 6th Floor
Pittsburgh, PA 15222
Ph: 412-281-2331
Fax: 412-281-9992
E-mail: info@sspc.org
Internet: http://www.sspc.org

SOCIETY OF AUTOMOTIVE ENGINEERS INTERNATIONAL (SAE)
400 Commonwealth Drive
Warrendale, PA 15096
Ph: 724-776-4970
Fax: 877-606-7323
E-mail: customerservice@sae.org
Internet: http://www.sae.org

SOUTHERN CYPRESS MANUFACTURERS ASSOCIATION (SCMA)
665 Rodi Road, Suite 305
Pittsburgh, PA 15235
Ph: 412-244-0440
Fax: 412-244-9090
E-mail: memberservices@cypressinfo.org
Internet: http://www.cypressinfo.org

SOUTHERN PINE INSPECTION BUREAU (SPIB)
P.O. Box 10915
Pensacola, FL 32504-0915
Ph: 850-434-2611
Fax: 850-433-5594
Internet: http://www.spib.org

STEEL DOOR INSTITUTE (SDI/DOOR)
30200 Detroit Road
Westlake, OH 44145
Ph: 440-899-0010
Fax: 440-892-1404
E-mail: info@steeldoor.org
Internet: http://www.steeldoor.org

TECHNICAL ASSOCIATION OF THE PULP AND PAPER INDUSTRY (TAPPI)
15 Technology Parkway South, Suite 115
Peachtree Corners, GA 30092
Ph: 800-322-8686 or 770-446-1400
Fax: 770-446-6947
E-mail: memberconnection@tappi.org
Internet: http://www.tappi.org

TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA)
1320 N. Courthouse Rd., Suite 200
Arlington, VA 22201
Ph: 703-907-7700
Fax: 703-907-7727
Internet: http://www.tiaonline.org
THE MASONRY SOCIETY (TMS)
105 South Sunset Street, Suite Q
Longmont, CO 80501-9215
Ph: 303-939-9700
Fax: 303-541-9215
E-mail: info@masonrysociety.org
http://www.masonrysociety.org

TILE COUNCIL OF NORTH AMERICA (TCNA)
100 Clemson Research Boulevard
Anderson, SC 29625
Ph: 864-646-8453
Fax: 864-646-2821
E-mail: info@tileusa.com
Internet: http://www.tcnatile.com/

U.S. ARMY CORPS OF ENGINEERS (USACE)
CRD-C DOCUMENTS available on Internet:
http://www.wbhdg.org/ccb/browse_cat.php?c=68
Order Other Documents from:
USACE Publications Depot
Attn: CEHEC-IM-PD
2803 52nd Avenue
Hyattsville, MD 20781-1102
Ph: 301-394-0081
Fax: 301-394-0084
E-mail: pubs-army@usace.army.mil
Internet: http://www.publications.usace.army.mil/
or
http://www.hnc.usace.army.mil/Missions/Engineering/TECHINFO.aspx

U.S. DEPARTMENT OF DEFENSE (DOD)
Order DOD Documents from:
Room 3A750-The Pentagon
1400 Defense Pentagon
Washington, DC 20301-1400
Ph: 703-571-3343
Fax: 215-697-1462
E-mail: customerservice@ntis.gov
Internet: http://www.ntis.gov
Obtain Military Specifications, Standards and Related Publications from:
Acquisition Streamlining and Standardization Information System
(ASSIST)
Department of Defense Single Stock Point (DODSSP)
Document Automation and Production Service (DAPS)
Building 4/D
700 Robbins Avenue
Philadelphia, PA 19111-5094
Ph: 215-697-6396 - for account/password issues
Internet: http://assist.daps.dla.mil/online/start/; account registration required
Obtain Unified Facilities Criteria (UFC) from:
Whole Building Design Guide (WBDG)
National Institute of Building Sciences (NIBS)
1090 Vermont Avenue NW, Suite 700
Washington, CD 20005
Ph: 202-289-7800
Fax: 202-289-1092
Internet: http://www.wbdg.org/references/docs.refs.php

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)
Ariel Rios Building
1200 Pennsylvania Avenue, N.W.
Washington, DC 20004
Ph: 202-272-0167
Internet: http://www2.epa.gov/libraries
--- Some EPA documents are available only from:
National Technical Information Service (NTIS)
5301 Shawnee Road
Alexandria, VA 22312
Ph: 703-605-6050 or 1-688-584-8332
Fax: 703-605-6900
E-mail: info@ntis.gov
Internet: http://www.ntis.gov

U.S. FEDERAL AVIATION ADMINISTRATION (FAA)
Order for sale documents from:
Superintendent of Documents
U.S. Government Printing Office (GPO)
710 North Capitol Street, NW
Washington, DC 20401
Ph: 202-512-1800
Fax: 202-512-2104
E-mail: contactcenter@gpo.gov
Internet: http://www.gpoaccess.gov
Order free documents from:
Federal Aviation Administration
Department of Transportation
800 Independence Avenue, SW
Washington, DC 20591
Ph: 1-866-835-5322
Internet: http://www.faa.gov

U.S. FEDERAL HIGHWAY ADMINISTRATION (FHWA)
FHWA, Office of Safety
1200 New Jersey Ave., SE
Washington, DC 20590
Ph: 202-366-4000
Internet: http://www.fhwa.dot.gov
Order from:
Superintendent of Documents
U.S. Government Printing Office (GPO)
710 North Capitol Street, NW
Washington, DC 20401
Ph: 202-512-1800
Fax: 202-512-2104
E-mail: contactcenter@gpo.gov
Internet: http://www.gpoaccess.gov

U.S. GENERAL SERVICES ADMINISTRATION (GSA)
General Services Administration
1275 First St. NE
Washington, DC 20417
Ph: 202-501-1231
Internet: http://www.gsa-library.gsa.gov/ElibMain/home.do
Obtain documents from:
Acquisition Streamlining and Standardization Information System
(ASSIST)
Internet: https://assist.dla.mil/online/start/; account registration required

U. S. GREEN BUILDING COUNCIL (USGBC)
2101 L St NW, Suite 500
Washington, D.C. 20037
Ph: 800-795-1747
Internet: http://www.usgbc.org

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)
8601 Adelphi Road
College Park, MD 20740-6001
Ph: 866-272-6272
Fax: 301-837-0483
Internet: http://www.archives.gov
Order documents from:
Superintendent of Documents
U.S.Government Printing Office (GPO)
710 North Capitol Street, NW
Washington, DC 20401
Ph: 202-512-1800
Fax: 202-512-2104
E-mail: contactcenter@gpo.gov
Internet: http://www.gpoaccess.gov

U.S. NAVAL FACILITIES ENGINEERING COMMAND (NAVFAC)
1322 Patterson Ave. SE, Suite 1000
Washington Navy Yard, DC 20374-5065
Ph: 202-685-9387
Internet: http://www.navfac.navy.mil

UL ENVIRONMENT (ULE)
2211 Newmarket Parkway, Suite 106
Marietta, GA 30067
Ph: 770-933-0638
Fax: 770-980-0072
E-mail: environment@ul.com
Internet: http://www.ul.com/environment

UNDERWRITERS LABORATORIES (UL)
2600 N.W. Lake Road
Camas, WA 98607-8542
Ph: 877-854-3577
E-mail: CEC.us@us.ul.com
Internet: http://www.ul.com/
UL Directories available through IHS at http://www.ihs.com

WEST COAST LUMBER INSPECTION BUREAU (WCLIB)
P.O. Box 23145
Portland, OR 97281
Ph: 503-639-0651
Fax: 503-684-8928
E-mail: info@wclib.org
Internet: http://www.wclib.org

WESTERN WOOD PRODUCTS ASSOCIATION (WWPA)
1500 SW First Ave., Suite 870
Portland, OR 97201
PART 2 PRODUCTS

Not used

PART 3 EXECUTION

Not used

-- End of Section --
SECTION 01 50 00

TEMPORARY CONSTRUCTION FACILITIES AND CONTROLS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

FOUNDATION FOR CROSS-CONNECTION CONTROL AND HYDRAULIC RESEARCH (FCCCHR)

FCCCHR List (continuously updated) List of Approved Backflow Prevention Assemblies

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2014; AMD 1 2013; Errata 1 2013; AMD 2 2013; Errata 2 2013; AMD 3 2014; Errata 3-4 2014; AMD 4-6 2014) National Electrical Code

U.S. FEDERAL AVIATION ADMINISTRATION (FAA)

FAA AC 70/7460-1 (2007; Rev K) Obstruction Marking and Lighting

U.S. FEDERAL HIGHWAY ADMINISTRATION (FHWA)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. :

SD-01 Preconstruction Submittals

Construction Site Plan; G
Traffic Control Plan; G

SD-06 Test Reports

Backflow Preventer Tests; G
1.3 CONSTRUCTION SITE PLAN

Prior to the start of work, submit a site plan showing the locations and dimensions of temporary facilities (including layouts and details, equipment and material storage area (onsite and offsite), and access and haul routes, avenues of ingress/egress to the fenced area and details of the fence installation. Identify any areas which may have to be graveled to prevent the tracking of mud. Indicate if the use of a supplemental or other staging area is desired. Show locations of safety and construction fences, site trailers, construction entrances, trash dumpsters, temporary sanitary facilities, site utilities and worker parking areas.

1.4 BACKFLOW PREVENTER TESTS CERTIFICATE

Backflow prevention devices utilized by the contractor must be listed and have Full Approval from the FCCCHR List, University of Southern California, attesting that the design, size and make of each backflow preventer has satisfactorily passed the complete sequence of performance testing and evaluation for the respective level of approval.

1.4.1 Backflow Preventer Tests

The contractor must submit a certified copy of Hurlburt Field Form WS ID No. 1460782 "Backflow Prevention Device Inspection and Maintenance Form" for each approved backflow preventer device installed.

1.5 HURRICANE CONDITION OF READINESS

Unless directed otherwise, comply with:

a. Condition FIVE (Sustained winds of 50 knots or greater expected within 96 hours): Normal daily jobsite cleanup and good housekeeping practices. Maintain the construction site including storage areas, free of accumulation of debris.

b. Condition FOUR (Sustained winds of 50 knots or greater expected within 72 hours): Normal daily jobsite cleanup and good housekeeping practices. Collect and store in piles or containers scrap lumber, waste material, and rubbish for removal and disposal at the close of each work day. Maintain the construction site including storage areas, free of accumulation of debris. Stack form lumber in neat piles less than 4 feet high. Remove all debris, trash, or objects that could become missile hazards.

c. Condition THREE (Sustained winds of 50 knots or greater expected within 48 hours): Maintain "Condition FOUR" requirements and commence securing operations necessary for "Condition ONE" which cannot be completed within 18 hours. Cease all routine activities which might interfere with securing operations. Commence securing and stow all gear and portable equipment. Make preparations for securing buildings. Review requirements pertaining to "Condition TWO" and continue action as necessary to attain "Condition THREE" readiness. Contact Contracting Officer for weather and COR updates and completion of required actions.

d. Condition TWO (Sustained winds of 50 knots or greater expected within 24 hours): Curtail or cease routine activities until securing operation is complete. Reinforce or remove form work and scaffolding. Secure machinery, tools, equipment, materials, or remove from the
jobsite. Expend every effort to clear all missile hazards and loose equipment from general base areas. Contact Contracting Officer for weather and Condition of Readiness (COR) updates and completion of required actions.

e. Condition ONE. (Sustained winds of 50 knots or greater expected within 12 hours): No work allowed. Base is secured.

PART 2 PRODUCTS

2.1 TEMPORARY TRAFFIC CONTROL

2.1.1 Haul Roads

Construct access and haul roads necessary for proper prosecution of the work under this contract. Construct with suitable grades and widths; sharp curves, blind corners, and dangerous cross traffic are to be avoided. Provide necessary lighting, signs, barricades, and distinctive markings for the safe movement of traffic. The method of dust control, although optional, must be adequate to ensure safe operation at all times. Location, grade, width, and alignment of construction and hauling roads are subject to approval by the Contracting Officer. Lighting must be adequate to assure full and clear visibility for full width of haul road and work areas during any night work operations.

2.1.2 Barricades

Erect and maintain temporary barricades to limit public access to hazardous areas. Whenever safe public access to paved areas such as roads, parking areas or sidewalks is prevented by construction activities or as otherwise necessary to ensure the safety of both pedestrian and vehicular traffic barricades will be required. Securely place barricades clearly visible with adequate illumination to provide sufficient visual warning of the hazard during both day and night.

2.1.3 Fencing

Provide fencing along the construction site at all open excavations and tunnels to control access by unauthorized people.

a. The safety fencing must be a high visibility orange colored, high density polyethylene grid or approved equal, a minimum of 48 inches high and maximum mesh size of 2 inches, supported and tightly secured to steel posts located on maximum 10 foot centers, constructed at the approved location. Install fencing to be able to restrain a force of at least 250 pounds against it.

2.1.4 Temporary Wiring

Provide temporary wiring in accordance with NFPA 241 and NFPA 70. Include frequent inspection of all equipment and apparatus.

2.1.5 Backflow Preventers

Reduced pressure principle type conforming to the applicable requirements AWWA C511. Provide backflow preventers complete with, bronze mounted gate valve and strainer, stainless steel internal parts. The particular make,
model/design, and size of backflow preventers to be installed must be included in the latest edition of the List of Approved Backflow Prevention Assemblies issued by the FCCCHR List. After installation conduct Backflow Preventer Tests and provide test report utilizing the Hurliburt Field Form PWS ID No. 1460782, Backflow Prevention Device Inspection.

PART 3 EXECUTION

3.1 EMPLOYEE PARKING

Contractor employees will park privately owned vehicles in an area designated by the Contracting Officer. This area will be within reasonable walking distance of the construction site. Contractor employee parking must not interfere with existing and established parking requirements of the government installation.

3.2 TEMPORARY BULLETIN BOARD

Locate the bulletin board at the project site in a conspicuous place easily accessible to all employees, as approved by the Contracting Officer.

3.3 AVAILABILITY AND USE OF UTILITY SERVICES

3.3.1 Temporary Utilities

Provide temporary utilities required for construction. Materials may be new or used, must be adequate for the required usage, not create unsafe conditions, and not violate applicable codes and standards.

3.3.2 Sanitation

a. Provide and maintain within the construction area minimum field-type sanitary facilities approved by the Contracting Officer and periodically empty wastes into a municipal, district, or station sanitary sewage system, or remove waste to a commercial facility. Obtain approval from the system owner prior to discharge into any municipal, district, or commercial sanitary sewer system. Any penalties and / or fines associated with improper discharge will be the responsibility of the Contractor. Coordinate with the Contracting Officer and follow station regulations and procedures when discharging into the station sanitary sewer system. Maintain these conveniences at all times without nuisance. Include provisions for pest control and elimination of odors. Government toilet facilities will not be available to Contractor's personnel.

3.3.3 Telephone

Make arrangements and pay all costs for telephone facilities desired.

3.3.4 Obstruction Lighting of Cranes

Provide a minimum of 2 aviation red or high intensity white obstruction lights on temporary structures (including cranes) over 100 feet above ground level. Light construction and installation must comply with FAA AC 70/7460-1. Lights must be operational during periods of reduced visibility, darkness, and as directed by the Contracting Officer.
3.3.5 Fire Protection

Provide temporary fire protection equipment for the protection of personnel and property during construction. Remove debris and flammable materials weekly to minimize potential hazards.

3.4 TRAFFIC PROVISIONS

3.4.1 Maintenance of Traffic

a. Conduct operations in a manner that will not close any thoroughfare or interfere in any way with traffic on railways or highways except with written permission of the Contracting Officer at least 15 calendar days prior to the proposed modification date, and provide a Traffic Control Plan detailing the proposed controls to traffic movement for approval. The plan must be in accordance with State and local regulations and the MUTCD, Part VI. Contractor may move oversized and slow-moving vehicles to the worksite provided requirements of the highway authority have been met.

b. Conduct work so as to minimize obstruction of traffic, and maintain traffic on at least half of the roadway width at all times. Obtain approval from the Contracting Officer prior to starting any activity that will obstruct traffic.

c. Provide, erect, and maintain, at contractors expense, lights, barriers, signals, passageways, detours, and other items, that may be required by the Life Safety Signage, overhead protection authority having jurisdiction.

3.4.2 Protection of Traffic

Maintain and protect traffic on all affected roads during the construction period except as otherwise specifically directed by the Contracting Officer. Measures for the protection and diversion of traffic, including the provision of watchmen and flagmen, erection of barricades, placing of lights around and in front of equipment the work, and the erection and maintenance of adequate warning, danger, and direction signs, will be as required by the State and local authorities having jurisdiction. Protect the traveling public from damage to person and property. Minimize the interference with public traffic on roads selected for hauling material to and from the site. Investigate the adequacy of existing roads and their allowable load limit. Contractor is responsible for the repair of any damage to roads caused by construction operations.

3.4.3 Dust Control

Dust control methods and procedures must be approved by the Contracting Officer. Treat dust abatement on access roads with applications of calcium chloride, water sprinklers, or similar methods or treatment.

3.5 CONTRACTOR'S TEMPORARY FACILITIES

3.5.1 Safety

Protect the integrity of any installed safety systems or personnel safety devices. If entrance into systems serving safety devices is required, the
Contractor must obtain prior approval from the Contracting Officer. If it is temporarily necessary to remove or disable personnel safety devices in order to accomplish contract requirements, provide alternative means of protection prior to removing or disabling any permanently installed safety devices or equipment and obtain approval from the Contracting Officer.

3.5.2 Administrative Field Offices

Provide and maintain administrative field office facilities within the construction area at the designated site. Government office and warehouse facilities will not be available to the Contractor's personnel.

3.5.3 Storage Area

When required by contract documents, construct a temporary 6 foot high chain link fence around trailers and materials. Include plastic strip inserts, colored brown, so that visibility through the fence is obstructed. Fence posts may be driven, in lieu of concrete bases, where soil conditions permit. Do not place or store Trailers, materials, or equipment outside the fenced area unless such trailers, materials, or equipment are assigned a separate and distinct storage area by the Contracting Officer away from the vicinity of the construction site but within the installation boundaries. Trailers, equipment, or materials must not be open to public view with the exception of those items which are in support of ongoing work on any given day. Do not stockpile materials outside the fence in preparation for the next day's work. Park mobile equipment, such as tractors, wheeled lifting equipment, cranes, trucks, and like equipment within the fenced area at the end of each work day.

3.5.4 Supplemental Storage Area

Upon Contractor's request, the Contracting Officer will designate another or supplemental area for the Contractor's use and storage of trailers, equipment, and materials. This area may not be in close proximity of the construction site but will be within the installation boundaries. Fencing of materials or equipment will not be required at this site; however, the Contractor is responsible for cleanliness and orderliness of the area used and for the security of any material or equipment stored in this area. Utilities will not be provided to this area by the Government.

3.5.5 Appearance of Trailers

a. Trailers utilized by the Contractor for administrative or material storage purposes must present a clean and neat exterior appearance and be in a state of good repair. Trailers which, in the opinion of the Contracting Officer, require exterior painting or maintenance will not be allowed on installation property.

3.5.6 Maintenance of Storage Area

a. Keep fencing in a state of good repair and proper alignment. Grassed or unpaved areas, which are not established roadways, will be covered with a layer of gravel as necessary to prevent rutting and the tracking of mud onto paved or established roadways, should the Contractor elect to traverse them with construction equipment or other vehicles; gravel gradation will be at the Contractor's discretion. Mow and maintain grass located within the boundaries of the construction site for the duration of the project. Grass and vegetation along fences, buildings,
under trailers, and in areas not accessible to mowers will be edged or trimmed neatly.

3.5.7 Security Provisions

Provide adequate outside security lighting at the Contractor's temporary facilities. The Contractor will be responsible for the security of its own equipment; in addition, the Contractor will notify the appropriate law enforcement agency requesting periodic security checks of the temporary project field office.

3.5.8 Weather Protection of Temporary Facilities and Stored Materials

Take necessary precautions to ensure that roof openings and other critical openings in the building are monitored carefully. Take immediate actions required to seal off such openings when rain or other detrimental weather is imminent, and at the end of each workday. Ensure that the openings are completely sealed off to protect materials and equipment in the building from damage.

3.5.8.1 Building and Site Storm Protection

When a warning of gale force winds is issued, take precautions to minimize danger to persons, and protect the work and nearby Government property. Precautions must include, but are not limited to, closing openings; removing loose materials, tools and equipment from exposed locations; and removing or securing scaffolding and other temporary work. Close openings in the work when storms of lesser intensity pose a threat to the work or any nearby Government property.

3.6 PLANT COMMUNICATION

Whenever the Contractor has the individual elements of its plant so located that operation by normal voice between these elements is not satisfactory, the Contractor must install a satisfactory means of communication, such as telephone or other suitable devices and made available for use by Government personnel.

3.7 TEMPORARY PROJECT SAFETY FENCING

As soon as practicable, but not later than 15 days after the date established for commencement of work, furnish and erect temporary project safety fencing at the work site. Maintain the safety fencing during the life of the contract and, upon completion and acceptance of the work, will become the property of the Contractor and be removed from the work site.

3.8 CLEANUP

Remove construction debris, waste materials, packaging material and the like from the work site daily. Any dirt or mud which is tracked onto paved or surfaced roadways must be cleaned away. Store any salvageable materials resulting from demolition activities within the fenced area described above or at the supplemental storage area. Neatly stack stored materials not in trailers, whether new or salvaged.
3.9 RESTORATION OF STORAGE AREA

Upon completion of the project remove the bulletin board, signs, barricades, haul roads, and any other temporary products from the site. After removal of trailers, materials, and equipment from within the fenced area, remove the fence that will become the property of the Contractor. Restore areas used by the Contractor for the storage of equipment or material, or other use to the original or better condition. Remove gravel used to traverse grassed areas and restore the area to its original condition, including top soil and seeding as necessary.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910.120 Hazardous Waste Operations and Emergency Response

40 CFR 112 Oil Pollution Prevention

40 CFR 241 Guidelines for Disposal of Solid Waste

40 CFR 243 Guidelines for the Storage and Collection of Residential, Commercial, and Institutional Solid Waste

40 CFR 258 Subtitle D Landfill Requirements

40 CFR 260 Hazardous Waste Management System: General

40 CFR 261 Identification and Listing of Hazardous Waste

40 CFR 261.7 Residues of Hazardous Waste in Empty Containers

40 CFR 262 Standards Applicable to Generators of Hazardous Waste

40 CFR 262.34 Standards Applicable to Generators of Hazardous Waste—Accumulation Time

40 CFR 263 Standards Applicable to Transporters of Hazardous Waste

40 CFR 264 Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities

40 CFR 265 Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities

40 CFR 266 Standards for the Management of Specific Hazardous Wastes and Specific Types of Hazardous Waste Management Facilities

40 CFR 268 Land Disposal Restrictions
<table>
<thead>
<tr>
<th>CFR Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 CFR 273</td>
<td>Standards for Universal Waste Management</td>
</tr>
<tr>
<td>40 CFR 273.2</td>
<td>Standards for Universal Waste Management - Batteries</td>
</tr>
<tr>
<td>40 CFR 273.4</td>
<td>Standards for Universal Waste Management - Mercury Containing Equipment</td>
</tr>
<tr>
<td>40 CFR 273.5</td>
<td>Standards for Universal Waste Management - Lamps</td>
</tr>
<tr>
<td>40 CFR 279</td>
<td>Standards for the Management of Used Oil</td>
</tr>
<tr>
<td>40 CFR 300</td>
<td>National Oil and Hazardous Substances Pollution Contingency Plan</td>
</tr>
<tr>
<td>40 CFR 300.125</td>
<td>National Oil and Hazardous Substances Pollution Contingency Plan - Notification and Communications</td>
</tr>
<tr>
<td>40 CFR 355</td>
<td>Emergency Planning and Notification</td>
</tr>
<tr>
<td>40 CFR 403</td>
<td>General Pretreatment Regulations for Existing and New Sources of Pollution</td>
</tr>
<tr>
<td>40 CFR 50</td>
<td>National Primary and Secondary Ambient Air Quality Standards</td>
</tr>
<tr>
<td>40 CFR 60</td>
<td>Standards of Performance for New Stationary Sources</td>
</tr>
<tr>
<td>40 CFR 61</td>
<td>National Emission Standards for Hazardous Air Pollutants</td>
</tr>
<tr>
<td>40 CFR 63</td>
<td>National Emission Standards for Hazardous Air Pollutants for Source Categories</td>
</tr>
<tr>
<td>40 CFR 64</td>
<td>Compliance Assurance Monitoring</td>
</tr>
<tr>
<td>40 CFR 745</td>
<td>Lead-Based Paint Poisoning Prevention in Certain Residential Structures</td>
</tr>
<tr>
<td>40 CFR 761</td>
<td>Polychlorinated Biphenyls (PCBs) Manufacturing, Processing, Distribution in Commerce, and Use Prohibitions</td>
</tr>
<tr>
<td>49 CFR 171</td>
<td>General Information, Regulations, and Definitions</td>
</tr>
<tr>
<td>49 CFR 173</td>
<td>Shippers - General Requirements for Shipments and Packagings</td>
</tr>
<tr>
<td>49 CFR 178</td>
<td>Specifications for Packagings</td>
</tr>
</tbody>
</table>
STATE OF FLORIDA REGULATIONS

62-330 ENVIRONMENTAL RESOURCE PERMIT
62-621 GENERIC PERMIT

1.2 DEFINITIONS

1.2.1 Class I and II Ozone Depleting Substance (ODS)

Class I ODS is defined in Section 602(a) of The Clean Air Act. A list of Class I ODS can be found on the EPA website at the following weblink. http://www.epa.gov/ozone/science/ods/classone.html.

Class II ODS is defined in Section 602(s) of The Clean Air Act. A list of Class II ODS can be found on the EPA website at the following weblink. http://www.epa.gov/ozone/science/ods/classtwo.html.

1.2.2 Contractor Generated Hazardous Waste

Contractor generated hazardous waste is materials that, if abandoned or disposed of, may meet the definition of a hazardous waste. These waste streams would typically consist of material brought on site by the Contractor to execute work, but are not fully consumed during the course of construction. Examples include, but are not limited to, excess paint thinners (i.e. methyl ethyl ketone, toluene), waste thinners, excess paints, excess solvents, waste solvents, excess pesticides, and contaminated pesticide equipment rinse water.

1.2.3 Electronics Waste

Electronics waste is discarded electronic devices intended for salvage, recycling, or disposal.

1.2.4 Environmental Pollution and Damage

Environmental pollution and damage is the presence of chemical, physical, or biological elements or agents which adversely affect human health or welfare; unfavorably alter ecological balances of importance to human life; affect other species of importance to humankind; or degrade the environment aesthetically, culturally or historically.

1.2.5 Environmental Protection

Environmental protection is the prevention/control of pollution and habitat disruption that may occur to the environment during construction. The control of environmental pollution and damage requires consideration of land, water, and air; biological and cultural resources; and includes management of visual aesthetics; noise; solid, chemical, gaseous, and liquid waste; radiant energy and radioactive material as well as other pollutants.

1.2.6 Hazardous Debris

As defined in paragraph SOLID WASTE, debris that contains listed hazardous waste (either on the debris surface, or in its interstices, such as pore structure) in accordance with 40 CFR 261. Hazardous debris also includes debris that exhibits a characteristic of hazardous waste in accordance with
40 CFR 261.

1.2.7 Hazardous Materials

Hazardous materials as defined in 49 CFR 171 and listed in 49 CFR 172.

Hazardous material is any material that: Is regulated as a hazardous material in accordance with 49 CFR 173; or requires a Safety Data Sheet (SDS) in accordance with 29 CFR 1910.120; or during end use, treatment, handling, packaging, storage, transportation, or disposal meets or has components that meet or have potential to meet the definition of a hazardous waste as defined by 40 CFR 261 Subparts A, B, C, or D. Designation of a material by this definition, when separately regulated or controlled by other sections or directives, does not eliminate the need for adherence to that hazard-specific guidance which takes precedence over this section for "control" purposes. Such material includes ammunition, weapons, explosive actuated devices, propellants, pyrotechnics, chemical and biological warfare materials, medical and pharmaceutical supplies, medical waste and infectious materials, bulk fuels, radioactive materials, and other materials such as lead-based paint, asbestos, mercury, and polychlorinated biphenyls (PCBs).

1.2.8 Hazardous Waste

Hazardous Waste is any material that meets the definition of a solid waste and exhibit a hazardous characteristic (ignitability, corrosivity, reactivity, or toxicity) as specified in 40 CFR 261, Subpart C, or contains a listed hazardous waste as identified in 40 CFR 261, Subpart D.

1.2.9 Land Application

Land Application means spreading or spraying discharge water at a rate that allows the water to percolate into the soil. No sheeting action, soil erosion, discharge into storm sewers, discharge into defined drainage areas, or discharge into the "waters of the United States" must occur. Comply with federal, state, and local laws and regulations.

1.2.10 Municipal Separate Storm Sewer System (MS4) Permit

MS4 permits are those held by installations to obtain NPDES permit coverage for their stormwater discharges.

1.2.11 National Pollutant Discharge Elimination System (NPDES)

The NPDES permit program controls water pollution by regulating point sources that discharge pollutants into waters of the United States.

1.2.12 Oily Waste

Oily waste are those materials that are, or were, mixed with Petroleum, Oils, and Lubricants (POLs) and have become separated from that POLs. Oily wastes also means materials, including wastewaters, centrifuge solids, filter residues or sludges, bottom sediments, tank bottoms, and sorbents which have come into contact with and have been contaminated by, POLs and may be appropriately tested and discarded in a manner which is in compliance with other state and local requirements.

This definition includes materials such as oily rags, "kitty litter" sorbent clay and organic sorbent material. These materials may be land
filled provided that: It is not prohibited in other state regulations or local ordinances; the amount generated is "de minimus" (a small amount); it is the result of minor leaks or spills resulting from normal process operations; and free-flowing oil has been removed to the practicable extent possible. Large quantities of this material, generated as a result of a major spill or in lieu of proper maintenance of the processing equipment, are a solid waste. As a solid waste, perform a hazardous waste determination prior to disposal. As this can be an expensive process, it is recommended that this type of waste be minimized through good housekeeping practices and employee education.

1.2.13 Regulated Waste

Regulated waste are solid wastes that have specific additional federal, state, or local controls for handling, storage, or disposal.

1.2.14 Sediment

Sediment is soil and other debris that have eroded and have been transported by runoff water or wind.

1.2.15 Solid Waste

Solid waste is a solid, liquid, semi-solid or contained gaseous waste. A solid waste can be a hazardous waste, non-hazardous waste, or non-Resource Conservation and Recovery Act (RCRA) regulated waste. Types of solid waste typically generated at construction sites may include:

1.2.15.1 Debris

Debris is non-hazardous solid material generated during the construction, demolition, or renovation of a structure that exceeds 2.5-inch particle size that is: a manufactured object; plant or animal matter; or natural geologic material (for example, cobbles and boulders), broken or removed concrete, masonry, and rock asphalt paving; ceramics; roofing paper and shingles. Inert materials may be reinforced with or contain ferrous wire, rods, accessories and weldments. A mixture of debris and other material such as soil or sludge is also subject to regulation as debris if the mixture is comprised primarily of debris by volume, based on visual inspection.

1.2.15.2 Green Waste

Green waste is the vegetative matter from landscaping, land clearing and grubbing, including, but not limited to, grass, bushes, scrub, small trees and saplings, tree stumps and plant roots. Marketable trees, grasses and plants that are indicated to remain, be re-located, or be re-used are not included.

1.2.15.3 Material not regulated as solid waste

Material not regulated as solid waste is nuclear source or byproduct materials regulated under the Federal Atomic Energy Act of 1954 as amended; suspended or dissolved materials in domestic sewage effluent or irrigation return flows, or other regulated point source discharges; regulated air emissions; and fluids or wastes associated with natural gas or crude oil exploration or production.
1.2.15.4 Non-Hazardous Waste

Non-hazardous waste is waste that is excluded from, or does not meet, hazardous waste criteria in accordance with 40 CFR 263.

1.2.15.5 Recyclables

Recyclables are materials, equipment and assemblies such as doors, windows, door and window frames, plumbing fixtures, glazing and mirrors that are recovered and sold as recyclable, wiring, insulated/non-insulated copper wire cable, wire rope, and structural components. It also includes commercial-grade refrigeration equipment with Freon removed, household appliances where the basic material content is metal, clean polyethylene terephthalate bottles, cooking oil, used fuel oil, textiles, high-grade paper products and corrugated cardboard, stackable pallets in good condition, clean crating material, and clean rubber/vehicle tires. Metal meeting the definition of lead contaminated or lead based paint contaminated may be included as recyclable if sold to a scrap metal company. Paint cans that meet the definition of empty containers in accordance with 40 CFR 261.7 may be included as recyclable if sold to a scrap metal company.

1.2.15.6 Surplus Soil

Surplus soil is existing soil that is in excess of what is required for this work, including aggregates intended, but not used, for on-site mixing of concrete, mortars, and paving. Contaminated soil meeting the definition of hazardous material or hazardous waste is not included and must be managed in accordance with paragraph HAZARDOUS MATERIAL MANAGEMENT.

1.2.15.7 Scrap Metal

This includes scrap and excess ferrous and non-ferrous metals such as reinforcing steel, structural shapes, pipe, and wire that are recovered or collected and disposed of as scrap. Scrap metal meeting the definition of hazardous material or hazardous waste is not included.

1.2.15.8 Wood

Wood is dimension and non-dimension lumber, plywood, chipboard, hardboard. Treated or painted wood that meets the definition of lead contaminated or lead based contaminated paint is not included. Treated wood includes, but is not limited to, lumber, utility poles, crossties, and other wood products with chemical treatment.

1.2.16 Surface Discharge

Surface discharge means discharge of water into drainage ditches, storm sewers, creeks or "waters of the United States". Surface discharges are discrete, identifiable sources and require a permit from the governing agency. Comply with federal, state, and local laws and regulations.

1.2.17 Wastewater

Wastewater is the used water and solids from a community that flow to a treatment plant.
1.2.17.1 Stormwater
Stormwater is any precipitation in an urban or suburban area that does not evaporate or soak into the ground, but instead collects and flows into storm drains, rivers, and streams.

1.2.18 Waters of the United States
Waters of the United States means Federally jurisdictional waters, including wetlands, that are subject to regulation under Section 404 of the Clean Water Act or navigable waters, as defined under the Rivers and Harbors Act.

1.2.19 Wetlands
Wetlands are those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions.

1.2.20 Universal Waste
The universal waste regulations streamline collection requirements for certain hazardous wastes in the following categories: batteries, pesticides, mercury-containing equipment (for example, thermostats), and lamps (for example, fluorescent bulbs). The rule is designed to reduce hazardous waste in the municipal solid waste (MSW) stream by making it easier for universal waste handlers to collect these items and send them for recycling or proper disposal. These regulations can be found at 40 CFR 273.

1.3 SUBMITTALS
Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals
 Regulatory Notifications; G
 Environmental Protection Plan; G
 Stormwater Notice of Intent (for NPDES coverage under the general permit for construction activities); G
 Stormwater Pollution Prevention Plan (SWPPP); G
 Dewatering Permit; G

SD-06 Test Reports
 Solid Waste Management Report; G

SD-07 Certificates

SD-11 Closeout Submittals
 Stormwater Pollution Prevention Plan Compliance Notebook; G
1.4 ENVIRONMENTAL PROTECTION REQUIREMENTS

Provide and maintain, during the life of the contract, environmental protection as defined. Plan for and provide environmental protective measures to control pollution that develops during construction practice. Plan for and provide environmental protective measures required to correct conditions that develop during the construction of permanent or temporary environmental features associated with the project. Protect the environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire duration of this Contract. Comply with federal, state, and local regulations pertaining to the environment, including water, air, solid waste, hazardous waste and substances, oily substances, and noise pollution.

Tests and procedures assessing whether construction operations comply with Applicable Environmental Laws may be required. Analytical work must be performed by qualified laboratories; and where required by law, the laboratories must be certified.

1.4.1 Conformance with the Environmental Management System

Perform work under this contract consistent with the policy and objectives identified in the installation's Environmental Management System (EMS). Questions related to the EMS can be directed to the SOCES Installations Management Flight at (850) 884-7969. Perform work in a manner that conforms to objectives and targets of the environmental programs and operational controls identified by the EMS. Support Government personnel when environmental compliance and EMS audits are conducted by escorting auditors at the Project site, answering questions, and providing proof of records being maintained. Provide monitoring and measurement information as necessary to address environmental performance relative to environmental, energy, and transportation management goals. In the event an EMS nonconformance or environmental noncompliance associated with the contracted services, tasks, or actions occurs, take corrective and preventative actions. In addition, employees must be aware of their roles and responsibilities under the installation EMS and of how these EMS roles and responsibilities affect work performed under the contract.

Coordinate with the installation's EMS coordinator to identify training needs associated with environmental aspects and the EMS, and arrange training or take other action to meet these needs.

1.5 QUALITY ASSURANCE

1.5.1 Regulatory Notifications

Provide regulatory notification requirements in accordance with federal,
state and local regulations. In cases where the Government will also provide public notification (such as stormwater permitting), coordinate with the Contracting Officer. Submit copies of regulatory notifications to the Contracting Officer at least 10 days prior to commencement of work activities. Typically, regulatory notifications must be provided for the following (this listing is not all-inclusive): demolition, renovation, NPDES defined site work, construction, removal or use of a permitted air emissions source, dredge/fill, and remediation of controlled substances (asbestos, hazardous waste, lead paint).

1.5.2 Environmental Brief

Attend an environmental brief to be included in the preconstruction meeting. Provide the following information: types, quantities, and use of hazardous materials that will be brought onto the installation; and types and quantities of wastes/wastewater that may be generated during the Contract.

Prior to initiating any work on site, the contractor can request a meeting with the installation Environmental Office to discuss the proposed Environmental Protection Plan (EPP). Develop a mutual understanding relative to the details of environmental protection, including measures for protecting natural and cultural resources, required reports, required permits, permit requirements (such as mitigation measures), and other measures to be taken.

1.5.3 Environmental Manager

Appoint in writing an Environmental Manager for the project site. The Environmental Manager is directly responsible for coordinating contractor compliance with federal, state, local, and installation requirements. The Environmental Manager must ensure compliance with Hazardous Waste Program requirements (including hazardous waste handling, storage, manifesting, and disposal); implement the EPP; ensure environmental permits are obtained, maintained, and closed out; ensure compliance with Stormwater Program requirements; ensure compliance with Hazardous Materials (storage, handling, and reporting) requirements; and coordinate any remediation of regulated substances (lead, asbestos, PCB transformers). This can be a collateral position; however, the person in this position must be trained to adequately accomplish the following duties: ensure waste segregation and storage compatibility requirements are met; inspect and manage Satellite Accumulation areas; ensure only authorized personnel add wastes to containers; ensure Contractor personnel are trained in 40 CFR requirements in accordance with their position requirements; coordinate removal of waste containers; and maintain the Environmental Records binder and required documentation, including environmental permits compliance and close-out.

1.5.4 Employee Training Records

Train personnel to meet state requirements. Conduct environmental protection/pollution control meetings for personnel prior to commencing construction activities. Conduct additional meetings for new personnel and when site conditions change. Include in the training and meeting agenda: methods of detecting and avoiding pollution; familiarization with statutory and contractual pollution standards; installation and care of devices, vegetative covers, and instruments required for monitoring purposes to ensure adequate and continuous environmental protection/pollution control; anticipated hazardous or toxic chemicals or wastes, and other regulated contaminants; recognition and protection of archaeological sites,
artifacts, waters of the United States, and endangered species and their habitat that are known to be in the area.

1.5.5 Non-Compliance Notifications

The Contracting Officer will notify the Contractor in writing of any observed noncompliance with federal, state or local environmental laws or regulations, permits, and other elements of the Contractor's EPP. After receipt of such notice, inform the Contracting Officer of the proposed corrective action and take such action when approved by the Contracting Officer. The Contracting Officer may issue an order stopping all or part of the work until satisfactory corrective action has been taken. No time extensions will be granted or equitable adjustments allowed for any such suspensions. This is in addition to any other actions the Contracting Officer may take under the contract, or in accordance with the Federal Acquisition Regulation or Federal Law.

1.6 ENVIRONMENTAL PROTECTION PLAN

The purpose of the EPP is to present an overview of known or potential environmental issues that must be considered and addressed during construction. Incorporate construction related objectives and targets from the installation's EMS into the EPP. Include in the EPP measures for protecting natural and cultural resources, required reports, and other measures to be taken. A meeting can be requested with the Contracting Officer or Contracting Officer Representative to discuss the EPP and develop a mutual understanding relative to the details for environmental protection including measures for protecting natural resources, required reports, and other measures to be taken. Submit the EPP within 15 days after notice to proceed. Revise the EPP throughout the project to include any reporting requirements, changes in site conditions, or contract modifications that change the project scope of work in a way that could have an environmental impact. No requirement in this section will relieve the Contractor of any applicable federal, state, and local environmental protection laws and regulations. During Construction, identify, implement, and submit for approval any additional requirements to be included in the EPP. Maintain the current version onsite.

The EPP includes, but is not limited to, the following elements:

1.6.1 General Overview and Purpose

1.6.1.1 Descriptions

A brief description of each specific plan required by environmental permit or elsewhere in this Contract such as stormwater pollution prevention plan, spill control plan, solid waste management plan, wastewater management plan, air pollution control plan, contaminant prevention plan, a historical, archaeological, cultural resources, biological resources and wetlands plan, traffic control plan Hazardous, Toxic and Radioactive Waste (HTRW) Plan and Non-Hazardous Solid Waste Disposal Plan.

1.6.1.2 Duties

The duties and level of authority assigned to the person(s) on the job site who oversee environmental compliance, such as who is responsible for adherence to the EPP, who is responsible for spill cleanup and training personnel on spill response procedures, who is responsible for manifesting hazardous waste to be removed from the site (if applicable), and who is
responsible for training the Contractor's environmental protection personnel.

1.6.1.3 Procedures

A copy of any standard or project-specific operating procedures that will be used to effectively manage and protect the environment on the project site.

1.6.1.4 Communications

Communication and training procedures that will be used to convey environmental management requirements to Contractor employees and subcontractors.

1.6.1.5 Contact Information

Emergency contact information contact information (office phone number, cell phone number, and e-mail address).

1.6.2 General Site Information

1.6.2.1 Drawings

Drawings showing locations of proposed temporary excavations or embankments for haul roads, stream crossings, jurisdictional wetlands, material storage areas, structures, sanitary facilities, storm drains and conveyances, and stockpiles of excess soil.

1.6.2.2 Work Area

Work area plan showing the proposed activity in each portion of the area and identify the areas of limited use or nonuse. Include measures for marking the limits of use areas, including methods for protection of features to be preserved within authorized work areas and methods to control runoff and to contain materials on site, and a traffic control plan.

1.6.2.3 Documentation

A letter signed by an officer of the firm appointing the Environmental Manager and stating that person is responsible for managing and implementing the Environmental Program as described in this contract. Include in this letter the Environmental Manager's authority to direct the removal and replacement of non-conforming work.

1.6.3 Management of Natural Resources

a. Land resources

b. Tree protection (and replacement ratio when applicable)

c. Replacement of damaged landscape features

d. Temporary construction

e. Stream crossings

f. Fish and wildlife resources
1.6.4 Protection of Historical and Archaeological Resources

a. Objectives
b. Methods

1.6.5 Stormwater Management and Control

a. Ground cover
b. Erodible soils
c. Temporary measures
 (1) Structural Practices
 (2) Temporary and permanent stabilization
d. Effective selection, implementation and maintenance of Best Management Practices (BMPs).

1.6.6 Protection of the Environment from Waste Derived from Contractor Operations

Control and disposal of solid and sanitary waste. Control and disposal of hazardous waste.

This item consist of the management procedures for hazardous waste to be generated. The elements of those procedures will coincide with the Installation Hazardous Waste Management Plan. Information on the Installation Hazardous Waste Management Plan can be obtained from the Hazardous Waste Manager at (850) 884-7923. As a minimum, include the following:

a. List of the types of hazardous wastes expected to be generated
b. Procedures to ensure a written waste determination is made for appropriate wastes that are to be generated
c. Sampling/analysis plan, including laboratory method(s) that will be used for waste determinations and copies of relevant laboratory certifications
d. Methods and proposed locations for hazardous waste accumulation/storage (that is, in tanks or containers)
e. Management procedures for storage, labeling, transportation, and disposal of waste (treatment of waste is not allowed unless specifically noted)
f. Management procedures and regulatory documentation ensuring disposal of hazardous waste complies with Land Disposal Restrictions (40 CFR 268)
g. Management procedures for recyclable hazardous materials such as lead-acid batteries, used oil, and similar
h. Used oil management procedures in accordance with 40 CFR 279; Hazardous
waste minimization procedures

1. Plans for the disposal of hazardous waste by permitted facilities; and Procedures to be employed to ensure required employee training records are maintained.

1.6.7 Prevention of Releases to the Environment

Procedures to prevent releases to the environment

Notifications in the event of a release to the environment

1.6.8 Regulatory Notification and Permits

List what notifications and permit applications must be made. Some permits require up to 180 days to obtain. Demonstrate that those permits have been obtained or applied for by including copies of applicable environmental permits. The EPP will not be approved until the permits have been obtained.

1.6.9 Clean Air Act Compliance

1.6.9.1 Haul Route

Identify truck and material haul routes along with a plan for controlling dirt, debris, and dust on Installation roadways. As a minimum, identify in the plan the subcontractor and equipment for cleaning along the haul route and measures to reduce dirt, dust, and debris from roadways.

1.6.9.2 Pollution Generating Equipment

Identify air pollution generating equipment or processes that may require federal, state, or local permits under the Clean Air Act. Determine requirements based on any current installation permits and the impacts of the project. Provide a list of all fixed or mobile equipment, machinery or operations that could generate air emissions during the project to the Installation Environmental Office (Air Program Manager).

1.6.9.3 Stationary Internal Combustion Engines

Identify portable and stationary internal combustion engines that will be supplied, used or serviced. Comply with 40 CFR 60 Subpart IIII, 40 CFR 60 Subpart JJJJ, 40 CFR 63 Subpart ZZZZ, and local regulations as applicable. At minimum, include the make, model, serial number, manufacture date, size (engine brake horsepower), and EPA emission certification status of each engine. Maintain applicable records and log hours of operation and fuel use. Logs must include reasons for operation and delineate between emergency and non-emergency operation.

1.6.9.4 Refrigerants

Identify management practices to ensure that heating, ventilation, and air conditioning (HVAC) work involving refrigerants complies with 40 CFR 82 requirements. Technicians must be certified, maintain copies of certification on site, use certified equipment and log work that requires the addition or removal of refrigerant. Any refrigerant reclaimed is the property of the Government, coordinate with the Installation Environmental Office to determine the appropriate turn in location.
1.6.9.5 Air Pollution-engineering Processes

Identify planned air pollution-generating processes and management control measures (including, but not limited to, spray painting, abrasive blasting, demolition, material handling, fugitive dust, and fugitive emissions). Log hours of operations and track quantities of materials used.

1.6.9.6 Compliant Materials

Provide the Government a list of and SDSs for all hazardous materials proposed for use on site. Materials must be compliant with all Clean Air Act regulations for emissions including solvent and volatile organic compound contents, and applicable National Emission Standards for Hazardous Air Pollutants requirements. The Government may alter or limit use of specific materials as needed to meet installation permit requirements for emissions.

1.7 LICENSES AND PERMITS

Obtain licenses and permits required for the construction of the project. Notify the Government of all general use permitted equipment the Contractor plans to use on site.

1.8 ENVIRONMENTAL RECORDS BINDER

Maintain on-site a separate three-ring Environmental Records Binder and submit at the completion of the project. Make separate parts within the binder that correspond to each submittal listed under paragraph CLOSEOUT SUBMITTALS in this section.

1.9 SOLID WASTE MANAGEMENT

1.9.1 Solid Waste Management Report

Monthly, submit a solid waste disposal report to the Contracting Officer. For each waste, the report will state the classification (using the definitions provided in this section), amount, location, and name of the business receiving the solid waste. Include diversion numbers.

1.10 FACILITY HAZARDOUS WASTE GENERATOR STATUS

Hurlburt Field is designated as a Large Quantity Generator. Meet the regulatory requirements of this generator designation for any work conducted within the boundaries of this Installation. Comply with provisions of federal, state, and local regulatory requirements applicable to this generator status regarding training and storage, handling, and disposal of construction derived wastes.

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

3.1 PROTECTION OF NATURAL RESOURCES

Minimize interference with, disturbance to, and damage to fish, wildlife, and plants, including their habitats. Prior to the commencement of
activities, consult with the Installation Environmental Office, regarding rare species or sensitive habitats that need to be protected. The protection of rare, threatened, and endangered animal and plant species identified, including their habitats, is the Contractor's responsibility.

Preserve the natural resources within the project boundaries and outside the limits of permanent work. Restore to an equivalent or improved condition upon completion of work that is consistent with the requirements of the Installation Environmental Office or as otherwise specified. Confine construction activities to within the limits of the work indicated or specified. Provide and maintain appropriate best management practices to protect off-site impacts to natural resources and remove these protective structures at the appropriate time after project completion and stabilization of project site conditions.

3.1.1 Flow Ways

Do not alter water flows or otherwise significantly disturb the native habitat adjacent to the project and critical to the survival of fish and wildlife, except as specified and permitted.

3.1.2 Vegetation

Except in areas to be cleared, do not remove, cut, deface, injure, or destroy trees or shrubs without the Contracting Officer's permission. Do not fasten or attach ropes, cables, or guys to existing nearby trees for anchorages unless authorized by the Contracting Officer. Where such use of attached ropes, cables, or guys is authorized, the Contractor is responsible for any resultant damage.

Protect existing trees that are to remain to ensure they are not injured, bruised, defaced, or otherwise damaged by construction operations. Protection of existing trees shall extend to the area just outside the 'drip line' or area beneath outermost branch tips. Remove displaced rocks from uncleared areas. Coordinate with the Contracting Officer and Installation Environmental Office to determine appropriate action for trees and other landscape features scarred or damaged by equipment operations.

3.1.3 Streams

Stream crossings must allow movement of materials or equipment without violating water pollution control standards of the federal, state, and local governments. Construction of stream crossing structures must be in compliance with any required permits including, but not limited to, Clean Water Act Section 404, and Section 401 Water Quality.

The Contracting Officer's approval and appropriate permits are required before any equipment will be permitted to ford live streams. In areas where frequent crossings are required, install temporary culverts or bridges. Obtain Contracting Officer's approval prior to installation. Remove temporary culverts or bridges upon completion of work, and repair the area to its original condition unless otherwise required by the Contracting Officer.

3.2 STORMWATER

Do not discharge stormwater from construction sites to the sanitary sewer. If the water is noted or suspected of being contaminated, it may only be released to the storm drain system if the discharge is specifically
permitted. Obtain authorization in advance from the Installation Environmental Office for any release of contaminated water.

3.2.1 Construction General Permit

The contractor must obtain a General Permit for Stormwater Discharge from Large and Small Construction Activities as required by 62-621. Under the terms and conditions of the permit, install, inspect, maintain BMPs, prepare stormwater erosion and sediment control inspection reports, and prepare SWPPP inspection reports. Maintain construction operations and management in compliance with the terms and conditions of the permit.

3.2.1.1 Stormwater Pollution Prevention Plan (SWPPP)

The contractor must create and submit a project-specific Stormwater Pollution Prevention Plan (SWPPP) to the Contracting Officer for approval, prior to the commencement of work. The SWPPP must meet the requirements of 62-621

Include the following:

a. Comply with terms of the 62-621 permit for stormwater discharges from large and small construction activities. Prepare SWPPP in accordance with the 62-621 requirements. Use the Florida Department of Environmental Protection guide at http://www.dep.state.fl.us/water/stormwater/npdes/ to prepare the SWPPP.

b. Select applicable BMPs from EPA Fact Sheets located at http://water.epa.gov/polwaste/npdes/swbmp/Construction-Site-StormWater-Run-Off-Control.cfm or in accordance with state requirements.

c. Include a completed copy of the Notice of Intent, BMP Inspection Report Template, and Stormwater Notice of Termination, except for the effective date.

3.2.1.2 Stormwater Notice of Intent for Construction Activities

The contractor shall prepare and submit the Notice of Intent for NPDES coverage under the general permit for construction activities to the Florida Department of Environmental Protection for approval by the state agency.

Once approved, submit the approved NOI to the Contracting Officer. No land disturbing activities may commence without permit coverage. Maintain an approved copy of the SWPPP at the onsite construction office, and continually update as regulations require, reflecting current site conditions.

3.2.1.3 Inspection Reports

Submit "Inspection Reports" to the Contracting Officer in accordance with the Permit.

3.2.1.4 Stormwater Pollution Prevention Plan Compliance Notebook

Create and maintain a three ring binder of documents that demonstrate compliance with the Construction General Permit. Include a copy of the permit Notice of Intent, proof of permit fee payment, SWPPP and SWPPP update amendments, inspection reports and related corrective action records, copies of correspondence with the Florida Department of
Environmental Protection, and a copy of the permit Notice of Termination in the binder. At project completion, the notebook becomes property of the Government. Provide the compliance notebook to the Contracting Officer.

3.2.1.5 Stormwater Notice of Termination for Construction Activities

As a part of the Stormwater Pollution Prevention Plan Compliance Notebook, submit a copy of the Notice of Termination to the Contracting Officer for approval once construction is complete and final stabilization has been achieved on all portions of the site for which the permittee is responsible.

3.2.2 Erosion and Sediment Control Measures

Provide erosion and sediment control measures in accordance with state regulations. Preserve vegetation to the maximum extent practicable.

Erosion control inspection reports may be compiled as part of a stormwater pollution prevention plan inspection reports.

3.2.2.1 Erosion Control

3.2.2.2 Sediment Control Practices

Implement sediment control practices to divert flows from exposed soils, temporarily store flows, or otherwise limit runoff and the discharge of pollutants from exposed areas of the site. Implement sediment control practices prior to soil disturbance and prior to creating areas with concentrated flow, during the construction process to minimize erosion and sediment laden runoff. Location and details of installation and construction are indicated on the drawings.

3.2.3 Work Area Limits

Mark the areas that need not be disturbed under this Contract prior to commencing construction activities. Mark or fence isolated areas within the general work area that are not to be disturbed. Protect monuments and markers before construction operations commence. Where construction operations are to be conducted during darkness, any markers must be visible in the dark. Personnel must be knowledgeable of the purpose for marking and protecting particular objects.

3.2.4 Contractor Facilities and Work Areas

Place field offices, staging areas, stockpile storage, and temporary buildings in areas designated on the drawings or as directed by the Contracting Officer. Move or relocate the Contractor facilities only when approved by the Government. Provide erosion and sediment controls for onsite borrow and spoil areas to prevent sediment from entering nearby waters. Control temporary excavation and embankments for plant or work areas to protect adjacent areas.
3.2.5 Municipal Separate Storm Sewer System (MS4) Management

Comply with the Installation's MS4 permit requirements.

3.3 SURFACE AND GROUNDWATER

3.3.1 Dewatering

Construction operations for dewatering must be constantly controlled to maintain compliance with existing state water quality standards and designated uses of the surface water body. Comply with the State of Florida water quality standards and anti-degradation provisions and the Clean Water Act Section 404, and applicable Nation Wide Permits. Do not discharge excavation ground water to the sanitary sewer, storm drains, or to surface waters without prior specific authorization in writing from the Installation Environmental Office. Discharge of hazardous substances will not be permitted under any circumstances. Use sediment control BMPs to prevent construction site runoff from directly entering any storm drain or surface waters.

If the construction dewatering is noted or suspected of being contaminated, it may only be released to the storm drain system if the discharge is specifically permitted. Obtain authorization for any contaminated groundwater release in advance from the Installation Environmental Officer and the Florida Department of Environmental Protection. Discharge of hazardous substances will not be permitted under any circumstances.

3.3.2 Waters of the United States

Do not enter, disturb, destroy, or allow discharge of contaminants into waters of the State or waters of the United States. The protection of waters of the State and waters of the United States shown on the drawings in accordance with paragraph LICENSES AND PERMITS is the Contractor's responsibility. Authorization to enter specific waters of the United States identified does not relieve the Contractor from any obligation to protect other waters within, adjacent to, or in the vicinity of the construction site and associated boundaries.

3.4 PROTECTION OF CULTURAL RESOURCES

3.4.1 Archaeological Resources

Existing archaeological resources within the work area are shown on the drawings. Protect these resources and be responsible for their preservation during the life of the Contract. If, during excavation or other construction activities, any previously unidentified or unanticipated historical, archaeological, and cultural resources are discovered or found, activities that may damage or alter such resources will be suspended. Resources covered by this paragraph include, but are not limited to: any human skeletal remains or burials; artifacts; shell, midden, bone, charcoal, or other deposits; rock or coral alignments, pavings, wall, or other constructed features; and any indication of agricultural or other human activities. Upon such discovery or find, of suspected human remains, cease operations and immediately notify the Contracting Officer so that the appropriate authorities may be notified and a determination made as to their significance and what, if any, special disposition of the finds should be made. Cease all activities that may result in impact to or the destruction of these resources. Secure the area, cover remains, and prevent employees or other persons from trespassing on, removing, or
otherwise disturbing such resources. The Government retains ownership and
control over archaeological resources.

3.4.2 Historical Resources

Existing historical resources within the work area are shown on the
drawings. Protect these resources and be responsible for their
preservation during the life of the Contract.

3.5 AIR RESOURCES

Equipment operation, activities, or processes will be in accordance with
40 CFR 64 and state air emission and performance laws and standards.

3.5.1 Preconstruction Air Permits

Notify the Air Program Manager, through the Contracting Officer, at least 6
months prior to bringing equipment, assembled or unassembled, onto the
Installation, so that air permits can be secured. Necessary permitting
time must be considered in regard to construction activities. Clean Air
Act (CAA) permits must be obtained prior to bringing equipment, assembled
or unassembled, onto the Installation.

3.5.2 Oil or Dual-fuel Boilers and Furnaces

Provide product data and details for new, replacement, or relocated fuel
fired boilers, heaters, or furnaces to the Installation Environmental
Office (Air Program Manager) through the Contracting Officer. Data to be
reported include: equipment purpose (water heater, building heat, process),
manufacturer, model number, serial number, fuel type (oil type, gas type)
size (MMBTU heat input). Provide in accordance with paragraph
PRECONSTRUCTION AIR PERMITS.

3.5.3 Burning

Burning is prohibited on the Government premises.

3.5.4 Class I and II ODS Prohibition

Class I and II ODS are Government property and must be returned to the
Government for appropriate management. Coordinate with the Installation
Environmental Office to determine the appropriate location for turn in of
all reclaimed refrigerant.

3.5.5 Accidental Venting of Refrigerant

Accidental venting of a refrigerant is a release and must be reported
immediately to the Contracting Officer.

3.5.6 EPA Certification Requirements

Heating and air conditioning technicians must be certified through an
EPA-approved program. Maintain copies of certifications at the employees'
places of business; technicians must carry certification wallet cards, as
provided by environmental law.
3.5.7 Dust Control

Keep dust down at all times, including during nonworking periods. Dry power brooming will not be permitted. Instead, use vacuuming, wet mopping, wet sweeping, or wet power brooming. Air blowing will be permitted only for cleaning nonparticulate debris such as steel reinforcing bars. Only wet cutting will be permitted for cutting concrete blocks, concrete, and bituminous concrete. Do not unnecessarily shake bags of cement, concrete mortar, or plaster.

3.5.7.1 Particulates

Dust particles, aerosols and gaseous by-products from construction activities, and processing and preparation of materials (such as from asphaltic batch plants) must be controlled at all times, including weekends, holidays, and hours when work is not in progress. Maintain excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and other work areas within or outside the project boundaries free from particulates that would exceed 40 CFR 50, state, and local air pollution standards or that would cause a hazard or a nuisance. Sprinkling, chemical treatment of an approved type, baghouse, scrubbers, electrostatic precipitators, or other methods will be permitted to control particulates in the work area. Sprinkling, to be efficient, must be repeated to keep the disturbed area damp. Provide sufficient, competent equipment available to accomplish these tasks. Perform particulate control as the work proceeds and whenever a particulate nuisance or hazard occurs. Comply with state and local visibility regulations.

3.5.7.2 Abrasive Blasting

Blasting operations cannot be performed without prior approval of the Installation Air Program Manager. The use of silica sand is prohibited in sandblasting.

Provide tarpaulin drop cloths and windscreen to enclose abrasive blasting operations to confine and collect dust, abrasive agent, paint chips, and other debris.

3.5.8 Odors

Control odors from construction activities. The odors must be in compliance with state regulations and local ordinances and may not constitute a health hazard.

3.6 WASTE MINIMIZATION

Minimize the use of hazardous materials and the generation of waste. Include procedures for pollution prevention/ hazardous waste minimization in the Hazardous Waste Management Section of the EPP. Obtain a copy of the installation's Pollution Prevention/Hazardous Waste Minimization Plan for reference material when preparing this part of the EPP. If no written plan exists, obtain information by contacting the Contracting Officer. Describe the anticipated types of the hazardous materials to be used in the construction when requesting information.

3.6.1 Salvage, Reuse and Recycle

Identify anticipated materials and waste for salvage, reuse, and
recycling. Describe actions to promote material reuse, resale or recycling. To the extent practicable, all scrap metal must be sent for reuse or recycling and will not be disposed of in a landfill.

Include the name, physical address, and telephone number of the hauler, if transported by a franchised solid waste hauler. Include the destination and, unless exempted, provide a copy of the state or local permit (cover) or license for recycling.

3.6.2 Nonhazardous Solid Waste Diversion Report

Maintain an inventory of nonhazardous solid waste diversion and disposal of construction and demolition debris. Submit in the Solid Waste Monthly report, the nonhazardous solid waste generated. Include the following in the report:

Construction and Demolition (C&D) Debris Disposed	___ tons, as appropriate
C&D Debris Recycled	___ tons, as appropriate
Total C&D Debris Generated	___ tons, as appropriate
Waste Sent to Waste-To-Energy Incineration Plant (This amount should not be included in the recycled amount)	___ tons, as appropriate

3.7 WASTE MANAGEMENT AND DISPOSAL

3.7.1 Solid Waste Management

3.7.1.1 Solid Waste Management Report

As a final submittal, provide a concise report of all waste generated during the construction period. Include monthly Solid Waste Management Reports.

3.7.1.2 Control and Management of Solid Wastes

Pick up solid wastes, and place in covered containers that are regularly emptied. Do not prepare or cook food on the project site. Prevent contamination of the site or other areas when handling and disposing of wastes. At project completion, leave the areas clean. Employ segregation measures so that no hazardous or toxic waste will become co-mingled with non-hazardous solid waste. Transport solid waste off Government property and dispose of it in compliance with 40 CFR 260, state, and local requirements for solid waste disposal. A Subtitle D RCRA permitted landfill is the minimum acceptable offsite solid waste disposal option. Verify that the selected transporters and disposal facilities have the necessary permits and licenses to operate. Solid waste disposal offsite must comply with most stringent local, state, and federal requirements, including 40 CFR 241, 40 CFR 243, and 40 CFR 258.
3.7.2 Control and Management of Hazardous Waste

Do not dispose of hazardous waste on Government property. Do not discharge any waste to a sanitary sewer, storm drain, or to surface waters or conduct waste treatment or disposal on Government property without written approval of the Contracting Officer.

3.7.2.1 Hazardous Waste Management

Identify construction activities that will generate hazardous waste. Identify, label, handle, store, and dispose of hazardous waste or debris in accordance with federal, state, and local regulations, including 49 CFR 261, 49 CFR 262, 49 CFR 263, 49 CFR 264, 49 CFR 265, 49 CFR 266, and 49 CFR 268.

Manage hazardous waste in accordance with the approved Hazardous Waste Management Section of the EPP and the Hurlburt Field Hazardous Waste Management Plan. Store hazardous wastes in approved containers in accordance with 49 CFR 173 and 49 CFR 178. Hazardous waste generated within the confines of Government facilities is identified as being generated by the Government. Prior to removal of any hazardous waste from Government property, hazardous waste manifests must be signed by personnel from the Installation Environmental Office. Do not bring hazardous waste onto Government property. Provide the Contracting Officer with a copy of waste determination documentation for any solid waste streams that have any potential to be hazardous waste or contain any chemical constituents listed in 40 CFR 372-SUBPART D.

The contractor shall be considered the primary co-generator for all hazardous wastes generated throughout the duration of the contract. All hazardous waste management activities shall be coordinated and approved by the Installation Environmental Office.

The contractor's site superintendent must attend the Hurlburt Field Hazardous Waste Awareness training prior to starting work on base. For reservations, contact the Installation Environmental Office 884-7923.

The contractor is responsible for the management and disposal of all hazardous wastes he/she generates on base. All cost for labor, equipment, materials, transportation, and other services required to comply with federal, state and local laws governing hazardous/special waste management and disposal are the responsibility of the contractor.

The contractor shall characterize their waste streams using specific and technical knowledge, MSDSs and/or sampling and analysis. This responsibility also includes preparation of waste profile sheets, manifests (regulated and non-regulated) packaging, marking and labeling of wastes containers.

The contractor shall manage all hazardous waste, special waste, and universal waste IAW the HFLD Hazardous Waste Management Plan. The contractor shall ensure that all employees, including their subs, comply with the rules and procedures outlined in the Hurlburt Field Hazardous Waste Management Plan.

If transportation of Hazardous Wastes is required, the contractor shall
possess or ensure the transportation company used for transportation of hazardous waste has a valid state and federal EPA identification number and all DOT requirements are met.

The contractor shall prepare profiles and manifests for all waste transported off base for disposal. A designated representative from the Installation Environmental Office must approve and sign the hazardous waste/non-hazardous waste manifest. Contractor shall ensure the signed manifest is returned to the Installation Environmental Office within 45 days from the time it's received at the disposal facility.

The Hurlburt Field Hazardous Waste Storage Facility may accept contractor's hazardous, special and universal waste (that was generated on base) depending on type of waste, quantities generated and provisions of the contract. The Installation Environmental Office must approve acceptance of the waste before it's generated.

Accumulate hazardous waste at satellite accumulation points and in compliance with 40 CFR 262.34, applicable state or local regulations and the Hurlburt Field Waste Management Plan.

3.7.2.2 Universal Waste Management

Manage the following categories of universal waste in accordance with federal, state, and local requirements and installation instructions:

a. Batteries as described in 40 CFR 273.2

b. Lamps as described in 40 CFR 273.5

c. Mercury-containing equipment as described in 40 CFR 273.4

Mercury is prohibited in the construction of this facility, unless specified otherwise, and with the exception of mercury vapor lamps and fluorescent lamps. Dumping of mercury-containing materials and devices such as mercury vapor lamps, fluorescent lamps, and mercury switches, in rubbish containers is prohibited. Remove without breaking, pack to prevent breakage, and transport out of the activity in an unbroken condition for disposal as directed.

3.7.2.3 Electronics End-of-Life Management

Recycle electronics waste, including, but not limited to, used electronic devices such as computers, monitors, hard-copy devices, televisions, mobile devices, in accordance with 40 CFR 260-262, state, and local requirements, and installation instructions. Coordinate recycling of electronics with the Installation Environmental Office.

3.7.3 Releases/Spills of Oil and Hazardous Substances

3.7.3.1 Response and Notifications

Exercise due diligence to prevent, contain, and respond to spills of hazardous material, hazardous substances, hazardous waste, sewage, regulated gas, petroleum, lubrication oil, and other substances regulated in accordance with 40 CFR 300. Maintain spill cleanup equipment and materials at the work site. In the event of a spill, take prompt, effective action to stop, contain, curtail, or otherwise limit the amount,
duration, and severity of the spill/release. In the event of any releases of oil and hazardous substances, chemicals, or gases; immediately (within 15 minutes) notify the Installation Fire Department (dial 911), the Installation Environmental Office, and the Contracting Officer.

Submit verbal and written notifications as required by the federal (40 CFR 300.125 and 40 CFR 355), state regulations and the Installation Environmental Office. Provide a copy of the written spill report to the Installation Environmental Office within 24 hours of spill occurrence. Spill response must be in accordance with 40 CFR 300 and applicable state and local regulations. Contain and clean up these spills without cost to the Government.

3.7.3.2 Clean Up

Clean up hazardous and non-hazardous waste spills. Reimburse the Government for costs incurred including sample analysis materials, clothing, equipment, and labor if the Government will initiate its own spill cleanup procedures, for Contractor- responsible spills, when: Spill cleanup procedures have not begun within one hour of spill discovery/occurrence; or, in the Government's judgment, spill cleanup is inadequate and the spill remains a threat to human health or the environment.

3.7.4 Mercury Materials

Immediately report to the Environmental Office and the Contracting Officer instances of breakage or mercury spillage. Clean mercury spill area to the satisfaction of the Contracting Officer.

Do not recycle a mercury spill cleanup; manage it as a hazardous waste for disposal.

3.7.5 Wastewater

3.7.5.1 Disposal of wastewater must be as specified below.

3.7.5.1.1 Treatment

Do not allow wastewater from construction activities, such as onsite material processing, concrete curing, foundation and concrete clean-up, water used in concrete trucks, and forms to enter water ways or to be discharged prior to being treated to remove pollutants. Dispose of the construction- related waste water off-Government property in accordance with 40 CFR 403 and state regulations.

3.7.5.1.2 Surface Discharge

For discharge of ground water, obtain a state 62-621 dewatering permit specific for pumping and discharging ground water prior to surface discharging.

3.7.5.1.3 Land Application

Water generated from the flushing of lines after disinfection or disinfection in conjunction with hydrostatic testing should not be discharged without prior approval from the Environmental Office and the Contracting Officer.
3.8 HAZARDOUS MATERIAL MANAGEMENT

Include hazardous material control procedures in the Safety Plan, in accordance with Section 01 35 26 GOVERNMENTAL SAFETY REQUIREMENTS. Address procedures and proper handling of hazardous materials, including the appropriate transportation requirements. Do not bring hazardous material onto Government property that does not directly relate to requirements for the performance of this contract. Use hazardous materials in a manner that minimizes the amount of hazardous waste generated. Containers of hazardous materials must have National Fire Protection Association labels or their equivalent. Certify that hazardous materials removed from the site are hazardous materials and do not meet the definition of hazardous waste, in accordance with 40 CFR 261.

3.9 PREVIOUSLY USED EQUIPMENT

Clean previously used construction equipment prior to bringing it onto the project site. Equipment must be free from soil residuals, egg deposits from plant pests, noxious weeds, and plant seeds. Consult with the U.S. Department of Agriculture jurisdictional office for additional cleaning requirements.

3.10 CONTROL AND MANAGEMENT OF ASBESTOS-CONTAINING MATERIAL (ACM)

Manage and dispose of asbestos-containing waste in accordance with 40 CFR 61.

3.11 CONTROL AND MANAGEMENT OF LEAD-BASED PAINT (LBP)

Manage and dispose of lead-contaminated waste in accordance with 40 CFR 745. Manifest any lead-contaminated waste and provide the manifest to the Contracting Officer.

3.12 CONTROL AND MANAGEMENT OF POLYCHLORINATED BIPHENYLS (PCBS)

Manage and dispose of PCB-contaminated waste in accordance with 40 CFR 761.

3.13 CONTROL AND MANAGEMENT OF LIGHTING BALLAST AND LAMPS CONTAINING PCBS

Manage and dispose of contaminated waste in accordance with 40 CFR 761.

3.14 MILITARY MUNITIONS

In the event military munitions, as defined in 40 CFR 260, are discovered or uncovered, immediately stop work in that area and immediately inform the Contracting Officer.

3.15 PETROLEUM, OIL, LUBRICANT (POL) STORAGE AND FUELING

POL products include flammable or combustible liquids, such as gasoline, diesel, lubricating oil, used engine oil, hydraulic oil, mineral oil, and cooking oil. Store POL products and fuel equipment and motor vehicles in a manner that affords the maximum protection against spills into the environment. Manage and store POL products in accordance with EPA 40 CFR 112, and other federal, state, regional, and local laws and regulations. Use secondary containments, dikes, curbs, and other barriers, to prevent POL products from spilling and entering the ground, storm or sewer drains, stormwater ditches or canals, or navigable waters of the
United States. Describe in the EPP (see paragraph ENVIRONMENTAL PROTECTION PLAN) how POL tanks and containers must be stored, managed, and inspected and what protections must be provided. Storage of fuel on the project site must be in accordance with EPA, state, and local laws and regulations and paragraph OIL STORAGE INCLUDING FUEL TANKS.

3.15.1 Used Oil Management

Manage used oil generated on site in accordance with 40 CFR 279. Determine if any used oil generated while onsite exhibits a characteristic of hazardous waste. Used oil containing 1,000 parts per million of solvents is considered a hazardous waste and disposed of at the Contractor's expense. Used oil mixed with a hazardous waste is also considered a hazardous waste. Dispose in accordance with paragraph HAZARDOUS WASTE DISPOSAL.

3.15.2 Oil Storage Including Fuel Tanks

The installation or removal of an above ground fuel storage tank must be coordinated with the Hurlburt Field Storage Tank Program Manager. Temporary on-site fuel tank(s) fur refueling equipment (i.e. generators, vehicles, excavators, tractors, etc.) may be used during the project but must be first coordinated with the Hurlburt Field Storage Tank Program Manager. Tanks must be installed and used in accordance with Florida and EPA guidance. Tanks must be addressed in the appropriate EPP section. Provide secondary containment and overfill protection for oil storage tanks. A berm used to provide secondary containment must be of sufficient size and strength to contain the contents of the tanks plus 5 inches freeboard for precipitation. Construct the berm to be impervious to oil for 72 hours that no discharge will permeate, drain, infiltrate, or otherwise escape before cleanup occurs. Use drip pans during oil transfer operations; adequate absorbent material must be onsite to clean up any spills and prevent releases to the environment. Cover tanks and drip pans during inclement weather. Provide procedures and equipment to prevent overfilling of tanks. If tanks and containers with an aggregate aboveground capacity greater than 1320 gallons will be used onsite (only containers with a capacity of 55 gallons or greater are counted), provide and implement a SPCC plan meeting the requirements of 40 CFR 112. Do not bring underground storage tanks to the installation for Contractor use during a project. Submit the SPCC plan to the Contracting Officer for approval.

Monitor and remove any rainwater that accumulates in open containment dikes or berms. Inspect the accumulated rainwater prior to draining from a containment dike to the environment, to determine there is no oil sheen present.

3.16 INADVERTENT DISCOVERY OF PETROLEUM-CONTAMINATED SOIL OR HAZARDOUS WASTES

If petroleum-contaminated soil, or suspected hazardous waste is found during construction that was not identified in the Contract documents, immediately notify the Contracting Officer. Do not disturb this material until authorized by the Contracting Officer.

3.17 CHLORDANE

Evaluate excess soils and concrete foundation debris generated during the demolition of housing units or other wooden structures for the presence of
chlordane or other pesticides prior to reuse or final disposal.

3.18 SOUND INTRUSION

Make the maximum use of low-noise emission products, as certified by the EPA. Blasting or use of explosives are not permitted without written permission from the Contracting Officer, and then only during the designated times.

Keep construction activities under surveillance and control to minimize environment damage by noise. Comply with the provisions of the State of Florida rules.

3.19 POST CONSTRUCTION CLEANUP

Clean up areas used for construction in accordance with Contract Clause: "Cleaning Up". Unless otherwise instructed in writing by the Contracting Officer, remove traces of temporary construction facilities such as haul roads, work area, structures, foundations of temporary structures, stockpiles of excess or waste materials, and other vestiges of construction prior to final acceptance of the work. Grade parking area and similar temporarily used areas to conform with surrounding contours.

3.20 Certification of No Asbestos/Lead-based Paint/PCB Letter

The contractor must certify that no new asbestos, lead-based paint or PCB containing material was used in the construction of the project. The letter must be signed by someone having authority over the project and contain the following information:

SUBJECT: Certification for No Asbestos/Lead-Based Paint/PCB Bearing Materials Used in Construction

1. IAW base construction specifications, the use of materials, products or equipment containing toxic substances, to include asbestos, lead based paint (LBP), and polychlorinated biphenyls (PCBs) will not be allowed in the construction of this project.

2. As representative of ________________________________ (insert name of contractor/company), I am authorized to certify, and hereby do so certify, that the construction material to be used in the execution of the following project:

__

(Describe project, list address, and installation) has been inspected and is free of all components/ingredients/contamination, including, but not limited to: asbestos, LBP, and PCBs.

CERTIFICATION:
Signed: __
Date: __
Printed Name, Company, and Duty Title:

3. Original of this form must be provided to the Contracting Officer; copy of this form must be provided to 1 SOCES/CEIE, Toxic Substance Program Manager.
-- End of Section --
PART 1 GENERAL

1.1 DEFINITIONS

1.1.1 As-Built Drawings

As-built drawings are developed and maintained by the Contractor and depict actual conditions, including deviations from the Contract Documents. These deviations and additions may result from coordination required by, but not limited to: contract modifications; official responses to Contractor submitted Requests for Information; direction from the Contracting Officer; designs which are the responsibility of the Contractor, and differing site conditions. Maintain the as-builts throughout construction as red-lined hard copies on site. These files serve as the basis for the creation of the record drawings.

1.1.2 Record Drawings

The record drawings are the final compilation of actual conditions reflected in the as-built drawings.

1.2 SOURCE DRAWING FILES

Request the full set of electronic drawings, in the source format, for Record Drawing preparation, after award and at least 30 days prior to required use.

1.2.1 Terms and Conditions

Data contained on these electronic files must not be used for any purpose other than as a convenience in the preparation of construction data for the referenced project. Any other use or reuse shall be at the sole risk of the Contractor and without liability or legal exposure to the Government. The Contractor must make no claim and waives to the fullest extent permitted by law, any claim or cause of action of any nature against the Government, its agents or sub consultants that may arise out of or in connection with the use of these electronic files. The Contractor must, to the fullest extent permitted by law, indemnify and hold the Government harmless against all damages, liabilities or costs, including reasonable attorney's fees and defense costs, arising out of or resulting from the use of these electronic files.

These electronic CAD drawing files are not construction documents. Differences may exist between the CAD files and the corresponding construction documents. The Government makes no representation regarding the accuracy or completeness of the electronic CAD files, nor does it make representation to the compatibility of these files with the Contractor hardware or software. In the event that a conflict arises between the signed and sealed construction documents prepared by the Government and the furnished Source drawing files, the signed and sealed construction documents govern. The Contractor is responsible for determining if any conflict exists. Use of these Source Drawing files does not relieve the
Contractor of duty to fully comply with the contract documents, including and without limitation, the need to check, confirm and coordinate the work of all contractors for the project. If the Contractor uses, duplicates or modifies these electronic source drawing files for use in producing construction data related to this contract, remove all previous indicia of ownership (seals, logos, signatures, initials and dates).

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

 Warranty Management Plan; G

SD-08 Manufacturer's Instructions

 Posted Instructions

SD-10 Operation and Maintenance Data

 Operation and Maintenance Manuals

SD-11 Closeout Submittals

 As-Built Drawings; G

 Record Drawings; G

1.4 WARRANTY MANAGEMENT

1.4.1 Warranty Management Plan

Develop a warranty management plan which contains information relevant to FAR 52.246-21 Warranty of Construction. At least 30 days before the planned Final Inspection, submit one set of the warranty management plan. Include within the warranty management plan all required actions and documents to assure that the Government receives all warranties to which it is entitled. The plan must be in narrative form and contain sufficient detail to render it suitable for use by future maintenance and repair personnel, whether tradesmen, or of engineering background, not necessarily familiar with this contract. The construction warranty period will begin on the date of project acceptance and continue for the full product warranty period. A joint 9 month warranty inspection will be conducted, measured from time of acceptance, by the Contractor, Contracting Officer and the Customer Representative. Include within the warranty management plan, but not limited to, the following:

a. Roles and responsibilities of all personnel associated with the warranty process, including points of contact and telephone numbers within the organizations of the Contractors, subcontractors, manufacturers or suppliers involved.

b. Furnish with each warranty the name, address, and telephone number of each of the guarantor's representatives nearest to the project location.
c. Listing of all Certificates of Warranty for extended warranty items, to include roofs, HVAC balancing, water cooler compressors, boiler heat exchangers, HVAC compressors and heat exchangers, chiller, pumps, motors, transformers, and for all commissioned systems such as fire protection and alarm systems, sprinkler systems, lightning protection systems, etc.

d. A list for each warranted equipment, item, feature of construction or system indicating:

(1) Name of item.
(2) Model and serial numbers.
(3) Location where installed.
(4) Name and phone numbers of manufacturers or suppliers.
(5) Names, addresses and telephone numbers of sources of spare parts.
(6) Warranties and terms of warranty. Include one-year overall warranty of construction, including the starting date of warranty of construction. Items which have extended warranties must be indicated with separate warranty expiration dates.
(7) Cross-reference to warranty certificates as applicable.
(8) Starting point and duration of warranty period.
(9) Summary of maintenance procedures required to continue the warranty in force.
(10) Organization, names and phone numbers of persons to call for warranty service.

1.4.2 Performance Bond

The Performance Bond must remain effective throughout the construction period.

a. In the event the Contractor fails to commence and diligently pursue any construction warranty work required, the Contracting Officer will have the work performed by others, and after completion of the work, will charge the remaining construction warranty funds of expenses incurred by the Government while performing the work, including, but not limited to administrative expenses.

b. In the event sufficient funds are not available to cover the construction warranty work performed by the Government at the Contractor's expense, the Contracting Officer will have the right to recoup expenses from the bonding company.

c. Following oral or written notification of required construction warranty repair work, respond in a timely manner. Written verification will follow oral instructions. Failure to respond will be cause for the Contracting Officer to proceed against the Contractor.
PART 2 PRODUCTS

2.1 NOT USED

PART 3 EXECUTION

3.1 AS-BUILT DRAWINGS

3.1.1 Submittal Requirements

The contractor shall provide the original marked up as-built drawings along with the draft record drawings prior to the final inspection.

3.1.2 Markup Guidelines

Make comments and markup the drawings complete without reference to letters, memos, or materials that are not part of the As-Built drawing. Show what was changed, how it was changed, where items(s) were relocated and change related details. These working as-built markup prints must be neat, legible and accurate as follows:

a. Add and denote any additional equipment or material facilities, service lines, incorporated under As-Built Revisions if not already shown in legend.

b. Use frequent written explanations on markup drawings to describe changes. Do not totally rely on graphic means to convey the revision.

c. Use legible lettering and precise and clear digital values when marking prints. Clarify ambiguities concerning the nature and application of change involved.

d. Wherever a revision is made, also make changes to related section views, details, legend, profiles, plans and elevation views, schedules, notes and call out designations, and mark accordingly to avoid conflicting data on all other sheets.

e. For deletions, cross out all features, data and captions that relate to that revision.

f. For changes on small-scale drawings and in restricted areas, provide large-scale inserts, with leaders to the applicable location.

g. Indicate one of the following when attaching a print or sketch to a markup print:

1) Add an entire drawing to contract drawings

2) Change the contract drawing to show

3) Provided for reference only to further detail the initial design.

h. Incorporate all shop and fabrication drawings into the markup drawings.

3.1.3 As-Built Drawings Content

Show on the as-built drawings, but not limited to, the following information:
a. The actual location, kinds and sizes of all sub-surface utility lines,
to include secondary electric for exterior lighting. In order that the
location of these lines and appurtenances may be determined in the
event the surface openings or indicators become covered over or
obsured, show by offset dimensions to two permanently fixed surface
features the end of each run including each change in direction on the
record drawings. Locate valves, splice boxes and similar appurtenances
by dimensioning along the utility run from a reference point. Also
record the average depth below the surface of each run.

b. The location and dimensions of any changes within the building
structure.

c. Layout and schematic drawings of electrical circuits and piping.
Panel schedules updated to reflect final panel configuration.

d. Correct grade, elevations, cross section, or alignment of roads,
earthwork, structures or utilities if any changes were made from
contract plans.

e. Changes in details of design or additional information obtained from
working drawings specified to be prepared and/or furnished by the
Contractor; including but not limited to shop drawings, fabrication,
errection, installation plans and placing details, pipe sizes,
insulation material, dimensions of equipment foundations, etc.

f. The topography, invert elevations and grades of drainage installed or
affected as part of the project construction.

g. Changes or Revisions which result from the final inspection.

h. Where contract drawings or specifications present options, show only
the option selected for construction on the working as-built markup
drawings.

i. If borrow material for this project is from sources on Government
property, or if Government property is used as a spoil area, furnish a
contour map of the final borrow pit/spoil area elevations.

j. Systems designed or enhanced by the Contractor, such as HVAC controls,
fire alarm, fire sprinkler, and irrigation systems.

k. Changes in location of equipment and architectural features.

l. Modifications (include within change order price the cost to change
working as-built markup drawings to reflect modifications).

m. Actual location of anchors, construction and control joints, etc., in
concrete.

n. The contractor shall employ a Florida Registered Land Surveyor to
perform the following Horizontal Control by use of Global Positioning
Satellite (GPS) to sub-meter accuracy, and Vertical Control using the
(1). Location of building corners.
(2). Buried irrigation lines, water mains, sanitary and/or storm sewers including all valves, cleanouts, horizontal turns, etc.
(3). Elevations at top of manhole(s), lift stations, storm water structures or similar above ground structures.
(4). Invert elevations of all manholes and stub-outs intended for future connections to the system.
(5). Buried electric lines and equipment including duct banks, direct buried cables, manholes, electric boxes, etc.

3.2 RECORD DRAWINGS

3.2.1 Submittal

The contractor shall submit a first draft of Record Drawings 14 calendar days prior to the Final Inspection incorporating all as-built conditions. The submittal shall include one set of full size drawings and one CD with .pdf and .dwg files. AutoCAD files must be version 2016 or earlier. Add the words "RECORD DRAWINGS" and the date the drawings were changed to every sheet. Record Drawings shall include all as-built shop drawings from fire alarm, fire suppression, structural/metal building, and lightning protection.

3.3 OPERATION AND MAINTENANCE MANUALS

Provide project operation and maintenance manuals as specified in Section 01 78 23 OPERATION AND MAINTENANCE MANUALS DATA. Provide Two CD electronic copies of the Operation and Maintenance Manual files. Submit to the Contracting Officer 14 calendar days prior to the Final Inspection.

3.4 CLEANUP

Leave premises "broom clean." Clean interior and exterior glass surfaces exposed to view; remove temporary labels, stains and foreign substances; polish transparent and glossy surfaces; vacuum/remove stains from carpeted and soft surfaces. Clean equipment and fixtures to a sanitary condition. Replace filters of operating equipment. Clean debris from roofs, gutters, downspouts and drainage systems. Sweep paved areas and rake clean landscaped areas. Remove waste and surplus materials, rubbish and construction facilities from the site.

-- End of Section --
PART 1 GENERAL

1.1 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-10 Operation and Maintenance Data

O&M Database ; G

Training Content ; G

1.2 OPERATION AND MAINTENANCE DATA

Submit Operation and Maintenance (O&M) Data for the provided equipment, product, or system, defining the importance of system interactions, troubleshooting, and long-term preventive operation and maintenance. Compile, prepare, and aggregate O&M data to include clarifying and updating the original sequences of operation to as-built conditions. Organize and present information in sufficient detail to clearly explain O&M requirements at the system, equipment, component, and subassembly level. Include an index preceding each submittal. Submit in accordance with this section and Section 01 33 00 SUBMITTAL PROCEDURES.

1.2.1 Package Quality

Documents must be fully legible. Operation and Maintenance data must be consistent with the manufacturer's standard brochures, schematics, printed instructions, general operating procedures, and safety precautions.

1.2.2 Package Content

Provide data package content in accordance with paragraph SCHEDULE OF OPERATION AND MAINTENANCE DATA PACKAGES. Comply with the data package requirements specified in the individual technical sections, including the content of the packages and addressing each product, component, and system designated for data package submission, except as follows. Use Data Package [3][4][5] for commissioned items without a specified data package requirement in the individual technical sections. Provide a Data Package [3][4][5] instead of Data Package 1 or 2, as specified in the individual technical section, for items that are commissioned.

1.2.3 Changes to Submittals

Provide manufacturer-originated changes or revisions to submitted data if a component of an item is so affected subsequent to acceptance of the O&M Data. Submit changes, additions, or revisions required by the Contracting Officer for final acceptance of submitted data within 30 calendar days of the notification of this change requirement.
1.2.4 Commissioning Authority Review and Approval

Submit the commissioned systems and equipment submittals to the Commissioning Authority (CxA) to review for completeness and applicability. Obtain validation from the CxA that the systems and equipment provided meet the requirements of the Contract documents and design intent, particularly as they relate to functionality, energy performance, water performance, maintainability, sustainability, system cost, indoor environmental quality, and local environmental impacts. The CxA communicates deficiencies to the Contracting Officer. Submit the O&M manuals to the Contracting Officer upon a successful review of the corrections, and with the CxA recommendation for approval and acceptance of these O&M manuals. This work is in addition to the normal review procedures for O&M data.

[1.3 O&M DATABASE]

Develop an editable, electronic spreadsheet based on the equipment in the Operation and Maintenance Manuals that contains the information required to start a preventive maintenance program. As a minimum, provide list of system equipment, location installed, warranty expiration date, manufacturer, model, and serial number.

1.4 OPERATION AND MAINTENANCE MANUAL FILE FORMAT

Assemble data packages into electronic Operation and Maintenance Manuals. Assemble each manual into a composite electronically indexed file using the most current version of Adobe Acrobat or similar software capable of producing PDF file format. Provide compact disks (CD) or data digital versatile disk (DVD) as appropriate, so that each one contains operation, maintenance and record files, project record documents, and training videos. Include a complete electronically linked operation and maintenance directory.

1.4.1 Organization

Bookmark Product and Drawing Information documents using the current version of CSI Masterformat numbering system, and arrange submittals using the specification sections as a structure. Use CSI Masterformat and UFGS numbers along with descriptive bookmarked titles that explain the content of the information that is being bookmarked.

1.4.2 CD or DVD Label and Disk Holder or Case

Provide the following information on the disk label and disk holder or case:

a. Building Number
b. Project Title
c. Prepared By: (Name, title, phone number and email address)
d. Include the disk content on the disk label
e. Date

1.5 TYPES OF INFORMATION REQUIRED IN O&M DATA PACKAGES

The following are a detailed description of the data package items listed
1.5.1 Operating Instructions

Provide specific instructions, procedures, and illustrations for the following phases of operation for the installed model and features of each system:

1.5.1.1 Safety Precautions and Hazards

List personnel hazards and equipment or product safety precautions for operating conditions.

1.5.1.2 Operator Prestart

Provide procedures required to install, set up, and prepare each system for use.

1.5.1.3 Startup, Shutdown, and Post-Shutdown Procedures

Provide narrative description for Startup, Shutdown and Post-shutdown operating procedures including the control sequence for each procedure.

1.5.1.4 Normal Operations

Provide Control Diagrams with data to explain operation and control of systems and specific equipment. Provide narrative description of Normal Operating Procedures.

1.5.1.5 Emergency Operations

Provide Emergency Procedures for equipment malfunctions to permit a short period of continued operation or to shut down the equipment to prevent further damage to systems and equipment. Provide Emergency Shutdown Instructions for fire, explosion, spills, or other foreseeable contingencies. Provide guidance and procedures for emergency operation of utility systems including required valve positions, valve locations and zones or portions of systems controlled.

1.5.1.6 Operator Service Requirements

Provide instructions for services to be performed by the operator such as lubrication, adjustment, inspection, and recording gauge readings.

1.5.1.7 Environmental Conditions

Provide a list of Environmental Conditions (temperature, humidity, and other relevant data) that are best suited for the operation of each product, component or system. Describe conditions under which the item equipment should not be allowed to run.

1.5.1.8 Additional Requirements for HVAC Control Systems

Provide Data Package 5 and the following for control systems:

a. Narrative description on how to perform and apply functions, features, modes, and other operations, including unoccupied operation, seasonal changeover, manual operation, and alarms. Include detailed technical manual for programming and customizing control loops and algorithms.

b. Full as-built sequence of operations.
c. Copies of checkout tests and calibrations performed by the Contractor (not Cx tests).

d. Full points list. Provide a listing of rooms with the following information for each room:
 (1) Floor
 (2) Room number
 (3) Room name
 (4) Air handler unit ID
 (5) Reference drawing number
 (6) Air terminal unit tag ID
 (7) Heating or cooling valve tag ID
 (8) Minimum cfm
 (9) Maximum cfm

e. Full print out of all schedules and set points after testing and acceptance of the system.

f. Full as-built print out of software program.

g. Marking of system sensors and thermostats on the as-built floor plan and mechanical drawings with their control system designations.

1.5.2 Preventive Maintenance

Provide the following information for preventive and scheduled maintenance to minimize repairs for the installed model and features of each system. Include potential environmental and indoor air quality impacts of recommended maintenance procedures and materials.

1.5.2.1 Lubrication Data

Include the following preventive maintenance lubrication data, in addition to instructions for lubrication required under paragraph OPERATOR SERVICE REQUIREMENTS:

 a. A table showing recommended lubricants for specific temperature ranges and applications.

 b. Charts with a schematic diagram of the equipment showing lubrication points, recommended types and grades of lubricants, and capacities.

 c. A Lubrication Schedule showing service interval frequency.

1.5.2.2 Preventive Maintenance Plan, Schedule, and Procedures

Provide manufacturer's schedule for routine preventive maintenance, inspections, condition monitoring (predictive tests) and adjustments required to ensure proper and economical operation and to minimize
repairs. Provide instructions stating when the systems should be retested. Provide manufacturer's projection of preventive maintenance work-hours on a daily, weekly, monthly, and annual basis including craft requirements by type of craft. For periodic calibrations, provide manufacturer's specified frequency and procedures for each separate operation.

1.5.3 Repair

Provide manufacturer's recommended procedures and instructions for correcting problems and making repairs.

1.5.3.1 Troubleshooting Guides and Diagnostic Techniques

Provide step-by-step procedures to promptly isolate the cause of typical malfunctions. Describe clearly why the checkout is performed and what conditions are to be sought. Identify tests or inspections and test equipment required to determine whether parts and equipment may be reused or require replacement.

1.5.3.2 Wiring Diagrams and Control Diagrams

Provide point-to-point drawings of wiring and control circuits including factory-field interfaces. Provide a complete and accurate depiction of the actual job specific wiring and control work. On diagrams, number electrical and electronic wiring and pneumatic control tubing and the terminals for each type, identically to actual installation configuration and numbering.

1.5.3.3 Repair Procedures

Provide instructions and a list of tools required to repair or restore the product or equipment to proper condition or operating standards.

1.5.3.4 Removal and Replacement Instructions

Provide step-by-step procedures and a list of required tools and supplies for removal, replacement, disassembly, and assembly of components, assemblies, subassemblies, accessories, and attachments. Provide tolerances, dimensions, settings and adjustments required. Use a combination of text and illustrations.

1.5.4 Appendices

Provide information required below and information not specified in the preceding paragraphs but pertinent to the maintenance or operation of the product or equipment. Include the following:

1.5.4.1 Product Submittal Data

Provide a copy of SD-03 Product Data submittals documented with the required approval.

1.5.4.2 Manufacturer's Instructions

Provide a copy of SD-08 Manufacturer's Instructions submittals documented with the required approval.
1.5.4.3 O&M Submittal Data

Provide a copy of SD-10 Operation and Maintenance Data submittals documented with the required approval.

1.5.4.4 Parts Identification

Provide identification and coverage for the parts of each component, assembly, subassembly, and accessory of the end items subject to replacement. Include special hardware requirements, such as requirement to use high-strength bolts and nuts. Identify parts by make, model, serial number, and source of supply to allow reordering without further identification. Provide clear and legible illustrations, drawings, and exploded views to enable easy identification of the items. When illustrations omit the part numbers and description, both the illustrations and separate listing must show the index, reference, or key number that will cross-reference the illustrated part to the listed part. Group the parts shown in the listings by components, assemblies, and subassemblies in accordance with the manufacturer's standard practice. Parts data may cover more than one model or series of equipment, components, assemblies, subassemblies, attachments, or accessories, such as typically shown in a master parts catalog.

1.5.4.5 Warranty Information

List and explain the various warranties and clearly identify the servicing and technical precautions prescribed by the manufacturers or contract documents in order to keep warranties in force. Include warranty information for primary components of the system. Provide copies of warranties required by Section 01 78 00 CLOSEOUT SUBMITTALS.

1.5.4.6 Extended Warranty Information

List all warranties for products, equipment, components, and sub-components whose duration exceeds one year. For each warranty listed, indicate the applicable specification section, duration, start date, end date, and the point of contact for warranty fulfillment. Also, list or reference the specific operation and maintenance procedures that must be performed to keep the warranty valid. Provide copies of warranties required by Section 01 78 00 CLOSEOUT SUBMITTALS.

1.5.4.7 Personnel Training Requirements

Provide information available from the manufacturers that is needed for use in training designated personnel to properly operate and maintain the equipment and systems.

1.5.4.8 Testing Equipment and Special Tool Information

Include information on test equipment required to perform specified tests and on special tools needed for the operation, maintenance, and repair of components. Provide final set points.

1.5.4.9 Testing and Performance Data

Include completed prefunctional checklists, functional performance test forms, and monitoring reports. Include recommended schedule for retesting and blank test forms. Provide final set points.
1.5.4.10 Field Test Reports

Provide a copy of Field Test Reports (SD-06) submittals documented with the required approval.

1.5.4.11 Contractor Information

Provide a list that includes the name, address, and telephone number of the General Contractor and each Subcontractor who installed the product or equipment, or system. For each item, also provide the name address and telephone number of the manufacturer's representative and service organization that can provide replacements most convenient to the project site. Provide the name, address, and telephone number of the product, equipment, and system manufacturers.

1.6 SCHEDULE OF OPERATION AND MAINTENANCE DATA PACKAGES

Provide the O&M data packages specified in individual technical sections. The information required in each type of data package follows:

1.6.1 Data Package 1

a. Safety precautions and hazards
b. Cleaning recommendations
c. Maintenance and repair procedures
d. Warranty information
e. Extended warranty information
f. Contractor information
g. Spare parts and supply list

1.6.2 Data Package 2

a. Safety precautions and hazards
b. Normal operations
c. Environmental conditions
d. Lubrication data
e. Preventive maintenance plan, schedule, and procedures
f. Cleaning recommendations
g. Maintenance and repair procedures
h. Removal and replacement instructions
i. Spare parts and supply list
j. Parts identification
k. Warranty information
l. Extended warranty information
m. Contractor information

1.6.3 Data Package 3

a. Safety precautions and hazards
b. Operator prestart
c. Startup, shutdown, and post-shutdown procedures
d. Normal operations
e. Emergency operations
f. Environmental conditions
g. Operating log
h. Lubrication data
i. Preventive maintenance plan, schedule, and procedures
j. Cleaning recommendations
k. Troubleshooting guides and diagnostic techniques
l. Wiring diagrams and control diagrams
m. Maintenance and repair procedures
n. Removal and replacement instructions
o. Spare parts and supply list
p. Product submittal data
q. O&M submittal data
r. Parts identification
s. Warranty information
t. Extended warranty information
u. Testing equipment and special tool information
v. Testing and performance data
w. Contractor information
x. Field test reports

1.6.4 Data Package 4

a. Safety precautions and hazards
b. Operator prestart

c. Startup, shutdown, and post-shutdown procedures

d. Normal operations

e. Emergency operations

f. Operator service requirements

g. Environmental conditions

h. Operating log

i. Lubrication data

j. Preventive maintenance plan, schedule, and procedures

k. Cleaning recommendations

l. Troubleshooting guides and diagnostic techniques

m. Wiring diagrams and control diagrams

n. Repair procedures

o. Removal and replacement instructions

p. Spare parts and supply list

q. Repair work-hours

r. Product submittal data

s. O&M submittal data

t. Parts identification

u. Warranty information

v. Extended warranty information

w. Personnel training requirements

x. Testing equipment and special tool information

y. Testing and performance data

z. Contractor information

aa. Field test reports

1.6.5 Data Package 5

a. Safety precautions and hazards

b. Operator prestart

c. Start-up, shutdown, and post-shutdown procedures
d. Normal operations
e. Environmental conditions
f. Preventive maintenance plan, schedule, and procedures
g. Troubleshooting guides and diagnostic techniques
h. Wiring and control diagrams
i. Maintenance and repair procedures
j. Removal and replacement instructions
k. Spare parts and supply list
l. Product submittal data
m. Manufacturer's instructions
n. O&M submittal data
o. Parts identification
p. Testing equipment and special tool information
q. Warranty information
r. Extended warranty information
s. Testing and performance data
t. Contractor information
u. Field test reports
[v. Additional requirements for HVAC control systems

]PART 2 PRODUCTS
Not Used

PART 3 EXECUTION

3.1 TRAINING

Prior to acceptance of the facility by the Contracting Officer for Beneficial Occupancy, provide comprehensive training for the systems and equipment specified in the technical specifications. The training must be targeted for the building maintenance personnel, and applicable building occupants. Instructors must be well-versed in the particular systems that they are presenting. Address aspects of the Operation and Maintenance Manual submitted in accordance with Section 01 78 00 CLOSEOUT SUBMITTALS. Training must include classroom or field lectures based on the system operating requirements. The location of classroom training requires approval by the Contracting Officer.
3.1.1 Training Content

The core of this training must be based on manufacturer's recommendations and the operation and maintenance information. Spend 95 percent of the instruction time during the presentation on the OPERATION AND MAINTENANCE DATA. Include the following for each system training presentation:

a. Start-up, normal operation, shutdown, unoccupied operation, seasonal changeover, manual operation, controls set-up and programming, troubleshooting, and alarms.

b. Relevant health and safety issues.

c. Discussion of how the feature or system is environmentally responsive. Advise adjustments and optimizing methods for energy conservation.

d. Design intent.

e. Use of O&M Manual Files.

f. Review of control drawings and schematics.

g. Interactions with other systems.

h. Special maintenance and replacement sources.

i. Tenant interaction issues.

-- End of Section --
SECTION 02 41 00

DESTRUCTION

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF SAFETY ENGINEERS (ASSE/SAFE)

ASSE/SAFE A10.6 (2006) Safety Requirements for Demolition Operations

U.S. ARMY CORPS OF ENGINEERS (USACE)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

40 CFR 61 National Emission Standards for Hazardous Air Pollutants

1.2 PROJECT DESCRIPTION

1.2.1 Demolition/Deconstruction Plan

Prepare a Demolition Plan and submit proposed demolition, and removal procedures for approval before work is started. Include in the plan procedures for careful removal and disposition of materials specified to be salvaged, coordination with other work in progress, a detailed description of methods and equipment to be used for each operation and of the sequence of operations. Identify components and materials to be salvaged for reuse or recycling with reference to paragraph Existing Facilities to be Removed. Append tracking forms for all removed materials indicating type, quantities, condition, destination, and end use. Coordinate with Waste Management Plan. Provide procedures for safe conduct of the work in accordance with EM 385-1-1. Plan shall be approved by Contracting Officer prior to work beginning.

1.2.2 General Requirements

Do not begin demolition or deconstruction until authorization is received from the Contracting Officer. The work of this section is to be performed in a manner that maximizes the value derived from the salvage and recycling of materials. Remove rubbish and debris from the project site; do not allow accumulations inside or outside the building. The work includes demolition, of identified items and materials, and removal of resulting rubbish and debris. Remove rubbish and debris from Government property daily, unless otherwise directed. Store materials that cannot be removed daily in areas specified by the Contracting Officer. In the interest of occupational safety and health, perform the work in accordance with
1.3 ITEMS TO REMAIN IN PLACE

Take necessary precautions to avoid damage to existing items to remain in place, to be reused, or to remain the property of the Government. Repair or replace damaged items as approved by the Contracting Officer. Coordinate the work of this section with all other work indicated. Construct and maintain shoring, bracing, and supports as required. Ensure that structural elements are not overloaded. Increase structural supports or add new supports as may be required as a result of any cutting, removal, deconstruction, or demolition work performed under this contract. Do not overload structural elements or pavements to remain. Provide new supports and reinforcement for existing construction weakened by demolition, deconstruction, or removal work. Repairs, reinforcement, or structural replacement require approval by the Contracting Officer prior to performing such work.

1.3.1 Existing Construction Limits and Protection

Do not disturb existing construction beyond the extent indicated or necessary for installation of new construction. Provide temporary shoring and bracing for support of building components to prevent settlement or other movement. Provide protective measures to control accumulation and migration of dust and dirt in all work areas. Remove dust, dirt, and debris from work areas daily.

1.3.2 Weather Protection

For portions of the building to remain, protect building interior and materials and equipment from the weather at all times. Where removal of existing roofing is necessary to accomplish work, have materials and workmen ready to provide adequate and temporary covering of exposed areas.

1.3.3 Utility Service

Maintain existing utilities indicated to stay in service and protect against damage during demolition and deconstruction operations.

1.3.4 Facilities

Protect electrical and mechanical services and utilities. Where removal of existing utilities and pavement is specified or indicated, provide approved barricades, temporary covering of exposed areas, and temporary services or connections for electrical and mechanical utilities. Floors, roofs, walls, columns, pilasters, and other structural components that are designed and constructed to stand without lateral support or shoring, and are determined to be in stable condition, must remain standing without additional bracing, shoring, or lateral support until demolished or deconstructed, unless directed otherwise by the Contracting Officer. Ensure that no elements determined to be unstable are left unsupported and place and secure bracing, shoring, or lateral supports as may be required as a result of any cutting, removal, deconstruction, or demolition work performed under this contract.

1.4 BURNING

The use of burning at the project site for the disposal of refuse and debris will not be permitted.
1.5 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals
- Demolition Plan; G
- Existing Conditions

SD-07 Certificates
- Notification; G

SD-11 Closeout Submittals

1.6 QUALITY ASSURANCE

Submit timely notification of demolition renovation projects to Federal, State, regional, and local authorities in accordance with 40 CFR 61, Subpart M. Notify the Contracting Officer in writing 10 working days prior to the commencement of work in accordance with 40 CFR 61, Subpart M. Comply with federal, state, and local hauling and disposal regulations. In addition to the requirements of the "Contract Clauses," conform to the safety requirements contained in ASSE/SAFE A10.6. Comply with the Environmental Protection Agency requirements specified. Use of explosives will not be permitted.

1.6.1 Dust and Debris Control

Prevent the spread of dust and debris to occupied portions of the building and avoid the creation of a nuisance or hazard in the surrounding area. Do not use water if it results in hazardous or objectionable conditions such as, but not limited to, ice, flooding, or pollution. Vacuum and dust the work area daily.

1.7 PROTECTION

1.7.1 Traffic Control Signs

a. Where pedestrian and driver safety is endangered in the area of removal work, use traffic barricades with flashing lights. Notify the Contracting Officer prior to beginning such work.

1.7.2 Protection of Personnel

Before, during and after the demolition work continuously evaluate the condition of the structure being demolished and take immediate action to protect all personnel working in and around the project site. No area, section, or component of floors, roofs, walls, columns, pilasters, or other structural element will be allowed to be left standing without sufficient bracing, shoring, or lateral support to prevent collapse or failure while workmen remove debris or perform other work in the immediate area.

1.8 RELOCATIONS

Perform the removal and reinstallation of relocated items as indicated with
workmen skilled in the trades involved. Repair or replace items to be relocated which are damaged by the Contractor with new undamaged items as approved by the Contracting Officer.

1.9 EXISTING CONDITIONS

Before beginning any demolition or deconstruction work, survey the site and examine the drawings and specifications to determine the extent of the work. Record existing conditions in the presence of the Contracting Officer showing the condition of structures and other facilities adjacent to areas of alteration or removal. Photographs sized 4 inch will be acceptable as a record of existing conditions. Include in the record the elevation of the top of foundation walls, finish floor elevations, possible conflicting electrical conduits, plumbing lines, alarms systems, the location and extent of existing cracks and other damage and description of surface conditions that exist prior to before starting work. It is the Contractor's responsibility to verify and document all required outages which will be required during the course of work, and to note these outages on the record document. Submit survey results.

PART 2 PRODUCTS

PART 3 EXECUTION

3.1 EXISTING FACILITIES TO BE REMOVED

Inspect and evaluate existing structures onsite for reuse. Existing construction scheduled to be removed for reuse shall be disassembled. Dismantled and removed materials are to be separated, set aside, and prepared as specified, and stored or delivered to a collection point for reuse, remanufacture, recycling, or other disposal, as specified. Materials shall be designated for reuse onsite whenever possible.

3.1.1 Structures

a. Selectively remove assemblies indicated.

3.1.2 Utilities and Related Equipment

3.1.2.1 General Requirements

Do not interrupt existing utilities serving occupied or used facilities, except when authorized in writing by the Contracting Officer. Do not interrupt existing utilities serving facilities occupied and used by the Government except when approved in writing and then only after temporary utility services have been approved and provided. Do not begin demolition or deconstruction work until all utility disconnections have been made. Shut off and cap utilities for future use, as indicated.

3.1.2.2 Disconnecting Existing Utilities

Remove existing utilities, as indicated and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Contracting Officer. When utility lines are encountered but are not indicated on the drawings, notify the Contracting Officer prior to further work in that area. Remove meters and related equipment and deliver to a location on the station in accordance with instructions of the Contracting Officer.
3.1.3 Paving and Slabs

Remove concrete and asphaltic concrete paving and slabs as indicated. Provide neat sawcuts at limits of pavement removal as indicated. Pavement and slabs designated to be recycled and utilized in this project shall be moved, ground and stored as directed by the Contracting Officer. Pavement and slabs not to be used in this project shall be removed from the Installation at Contractor's expense.

3.1.4 Masonry

Sawcut and remove masonry so as to prevent damage to surfaces to remain and to facilitate the installation of new work. Where new masonry adjoins existing, the new work shall abut or tie into the existing construction as indicated. Provide square, straight edges and corners where existing masonry adjoins new work and other locations.

3.1.5 Concrete

Saw concrete along straight lines to a depth of a minimum 2 inch. Make each cut in walls perpendicular to the face and in alignment with the cut in the opposite face. Break out the remainder of the concrete provided that the broken area is concealed in the finished work, and the remaining concrete is sound. At locations where the broken face cannot be concealed, grind smooth or saw cut entirely through the concrete.

3.1.6 Patching

Where removals leave holes and damaged surfaces exposed in the finished work, patch and repair these holes and damaged surfaces to match adjacent finished surfaces, using on-site materials when available. Where new work is to be applied to existing surfaces, perform removals and patching in a manner to produce surfaces suitable for receiving new work. Finished surfaces of patched area shall be flush with the adjacent existing surface and shall match the existing adjacent surface as closely as possible as to texture and finish. Patching shall be as specified and indicated, and shall include:

a. Concrete and Masonry: Completely fill holes and depressions, caused by previous physical damage or left as a result of removals in existing masonry walls to remain, with an approved masonry patching material, applied in accordance with the manufacturer's printed instructions.

3.1.7 Electrical Equipment and Fixtures

Salvage motors, motor controllers, and operating and control equipment that are attached to the driven equipment. Salvage wiring systems and components. Box loose items and tag for identification. Disconnect primary, secondary, control, communication, and signal circuits at the point of attachment to their distribution system.

3.1.7.1 Fixtures

Remove and salvage electrical fixtures. Salvage unprotected glassware from the fixture and salvage separately. Salvage incandescent, mercury-vapor, and fluorescent lamps and fluorescent ballasts manufactured prior to 1978, boxed and tagged for identification, and protected from breakage.
3.1.7.2 Electrical Devices

Remove and salvage switches, switchgear, transformers, conductors including wire and nonmetallic sheathed and flexible armored cable, regulators, meters, instruments, plates, circuit breakers, panelboards, outlet boxes, and similar items. Box and tag these items for identification according to type and size.

3.1.7.3 Wiring Ducts or Troughs

Remove and salvage wiring ducts or troughs. Dismantle plug-in ducts and wiring troughs into unit lengths. Remove plug-in or disconnecting devices from the busway and store separately.

3.1.7.4 Conduit and Miscellaneous Items

Salvage conduit except where embedded in concrete or masonry. Consider corroded, bent, or damaged conduit as scrap metal. Sort straight and undamaged lengths of conduit according to size and type. Classify supports, knobs, tubes, cleats, and straps as debris to be removed and disposed.

3.1.8 Elevators and Hoists

Remove elevators, hoists, and similar conveying equipment and salvage as whole units, to the most practical extent. Remove and prepare items for salvage without damage to any of the various parts. Salvage and store rails for structural steel with the equipment as an integral part of the unit.

3.1.9 Items With Unique/Regulated Disposal Requirements

Remove and dispose of items with unique or regulated disposal requirements in the manner dictated by law or in the most environmentally responsible manner.

3.2 CONCURRENT EARTH-MOVING OPERATIONS

Do not begin excavation, filling, and other earth-moving operations that are sequential to demolition or deconstruction work in areas occupied by structures to be demolished or deconstructed until all demolition and deconstruction in the area has been completed and debris removed. Fill holes, open basements and other hazardous openings.

3.3 DISPOSITION OF MATERIAL

3.3.1 Title to Materials

Except for salvaged items specified in related Sections, and for materials or equipment scheduled for salvage, all materials and equipment removed and not reused or salvaged, shall become the property of the Contractor and shall be removed from Government property. Title to materials resulting from demolition and deconstruction, and materials and equipment to be removed, is vested in the Contractor upon approval by the Contracting Officer of the Contractor's demolition, deconstruction, and removal procedures, and authorization by the Contracting Officer to begin demolition and deconstruction. The Government will not be responsible for the condition or loss of, or damage to, such property after contract award. Showing for sale or selling materials and equipment on site is
3.3.2 Unsalvageable and Non-Recyclable Material

Dispose of unsalvageable and non-recyclable combustible material off the site.

3.4 CLEANUP

Remove and transport the debris in a manner that prevents spillage on streets or adjacent areas. Apply local regulations regarding hauling and disposal.

3.5 DISPOSAL OF REMOVED MATERIALS

3.5.1 Regulation of Removed Materials

Dispose of debris, rubbish, scrap, and other nonsalvageable materials resulting from removal operations with all applicable federal, state and local regulations as contractually specified. Storage of removed materials on the project site is prohibited.

3.5.2 Burning on Government Property

Burning of materials removed from demolished and deconstructed structures will not be permitted on Government property.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN INDUSTRIAL HYGIENE ASSOCIATION (AIHA)

AIHA Z88.6 (2006) Respiratory Protection – Respirator Use-Physical Qualifications for Personnel

AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE)

ASTM INTERNATIONAL (ASTM)

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1926.103 Respiratory Protection
29 CFR 1926.1101 Asbestos
29 CFR 1926.200 Accident Prevention Signs and Tags
29 CFR 1926.51 Sanitation
29 CFR 1926.59 Hazard Communication
40 CFR 61-SUBPART M National Emission Standard for Asbestos
40 CFR 763 Asbestos

U.S. NAVAL FACILITIES ENGINEERING COMMAND (NAVFAC)

ND OPNAVINST 5100.23 (2005; Rev G) Navy Occupational Safety and Health (NAVOSH) Program Manual
1.2 DEFINITIONS

1.2.1 ACM

Asbestos Containing Materials.

1.2.2 Amended Water

Water containing a wetting agent or surfactant with a maximum surface tension of 0.00042 psi.

1.2.3 Area Sampling

Sampling of asbestos fiber concentrations which approximates the concentrations of asbestos in the theoretical breathing zone but is not actually collected in the breathing zone of an employee.

1.2.4 Asbestos

The term asbestos includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, and actinolite asbestos and any of these minerals that has been chemically treated or altered. Materials are considered to contain asbestos if the asbestos content of the material is determined to be at least one percent.

1.2.5 Asbestos Control Area

That area where asbestos removal operations are performed which is isolated by physical boundaries which assist in the prevention of the uncontrolled release of asbestos dust, fibers, or debris.

1.2.6 Asbestos Fibers

Those fibers having an aspect ratio of at least 3:1 and longer than 5 micrometers as determined by National Institute for Occupational Safety and Health (NIOSH) Method 7400.

1.2.7 Asbestos Permissible Exposure Limit

0.1 fibers per cubic centimeter of air as an 8-hour time weighted average measured in the breathing zone as defined by 29 CFR 1926.1101 or other Federal legislation having legal jurisdiction for the protection of workers health.

1.2.8 Background

The ambient airborne asbestos concentration in an uncontaminated area as measured prior to any asbestos hazard abatement efforts. Background concentrations for other (contaminated) areas are measured in similar but asbestos free locations.
1.2.9 Contractor

The Contractor is that individual, or entity under contract to the Navy to perform the herein listed work.

1.2.10 Competent Person

A person meeting the requirements for competent person as specified in 29 CFR 1926.1101 including a person capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, and is specifically trained in a training course which meet the criteria of EPA's Model Accreditation Plan (40 CFR 763) for project designer or supervisor, or its equivalent. The competent person shall have a current State of Florida asbestos contractors or supervisors license.

1.2.11 Encapsulation

The abatement of an asbestos hazard through the appropriate use of chemical encapsulants.

1.2.12 Encapsulants

Specific materials in various forms used to chemically or physically entrap asbestos fibers in various configurations to prevent these fibers from becoming airborne. There are four types of encapsulants as follows which must comply with performance requirements as specified herein.

a. Removal Encapsulant (can be used as a wetting agent)

b. Bridging Encapsulant (used to provide a tough, durable surface coating to asbestos containing material)

c. Penetrating Encapsulant (used to penetrate the asbestos containing material encapsulating all asbestos fibers and preventing fiber release due to routine mechanical damage)

d. Lock-Down Encapsulant (used to seal off or "lock-down" minute asbestos fibers left on surfaces from which asbestos containing material has been removed).

1.2.13 Friable Asbestos Material

One percent asbestos containing material that can be crumbled, pulverized, or reduced to powder by hand pressure when dry.

1.2.14 Glovebag Technique

Those asbestos removal and control techniques put forth in 29 CFR 1926.1101 Appendix G.

1.2.15 HEPA Filter Equipment

High efficiency particulate air (HEPA) filtered vacuum and/or exhaust ventilation equipment with a filter system capable of collecting and retaining asbestos fibers. Filters shall retain 99.97 percent of particles 0.3 microns or larger as indicated in UL 586.
1.2.16 Negative Pressure Enclosure (NPE)

That engineering control technique described as a negative pressure enclosure in 29 CFR 1926.1101.

1.2.17 Non friable Asbestos Material

Material that contains asbestos in which the fibers have been immobilized by a bonding agent, coating, binder, or other material so that the asbestos is well bound and will not normally release asbestos fibers during any appropriate use, handling, storage or transportation. It is understood that asbestos fibers may be released under other conditions such as demolition, removal, or mishap.

1.2.18 Personal Sampling

Air sampling which is performed to determine asbestos fiber concentrations within the breathing zone of a specific employee, as performed in accordance with 29 CFR 1926.1101.

1.2.19 Private Qualified Person (PQP)

That qualified person hired by the Contractor to perform the herein listed tasks.

1.2.20 Qualified Person (QP)

A Registered Architect, Professional Engineer, Certified Industrial Hygienist, consultant or other qualified person who has successfully completed training and is therefore accredited under a legitimate State Model Accreditation Plan as described in 40 CFR 763 as a Building Inspector, Contractor/Supervisor Abatement Worker, and Asbestos Project Designer; and has successfully completed the National Institute of Occupational Safety and Health (NIOSH) 582 course "Sampling and Evaluating Airborne Asbestos Dust" or equivalent. The QP must be qualified to perform visual inspections as indicated in ASTM E1368. The QP shall be appropriately licensed in the State of Florida.

1.2.21 TEM

Refers to Transmission Electron Microscopy.

1.2.22 Time Weighted Average (TWA)

The TWA is an 8-hour time weighted average airborne concentration of asbestos fibers.

1.2.23 Wetting Agent

A chemical added to water to reduce the water's surface tension thereby increasing the water's ability to soak into the material to which it is applied. An equivalent wetting agent must have a surface tension of at most 0.00042 psi.

1.3 REQUIREMENTS

1.3.1 Description of Work

The work covered by this section includes the handling and control of
asbestos containing materials and describes some of the resultant procedures and equipment required to protect workers, the environment and occupants of the building or area, or both, from contact with airborne asbestos fibers. The work also includes the disposal of any asbestos containing materials generated by the work. More specific operational procedures shall be outlined in the Asbestos Hazard Abatement Plan called for elsewhere in this specification. The asbestos work includes the demolition and removal of asbestos bearing materials located as shown on the drawings. Provide negative pressure enclosure techniques as outlined in this specification. The Government will evacuate the building during the asbestos abatement work. All asbestos removal work shall be supervised by a competent person as specified herein.

1.3.2 Medical Requirements

Provide medical requirements including but not limited to medical surveillance and medical record keeping as listed in 29 CFR 1926.1101.

1.3.2.1 Medical Examinations

Before exposure to airborne asbestos fibers, provide workers with a comprehensive medical examination as required by 29 CFR 1926.1101 or other pertinent State or local directives. This requirement must have been satisfied within the 12 months prior to the start of work on this contract. The same medical examination shall be given on an annual basis to employees engaged in an occupation involving asbestos and within 30 calendar days before or after the termination of employment in such occupation. Specifically identify x-ray films of asbestos workers to the consulting radiologist and mark medical record jackets with the word "ASBESTOS."

1.3.2.2 Medical Records

Maintain complete and accurate records of employees' medical examinations, medical records, and exposure data for a period of 50 years after termination of employment and make records of the required medical examinations and exposure data available for inspection and copying to: The Assistant Secretary of Labor for Occupational Safety and Health (OSHA), or authorized representatives of them, and an employee's physician upon the request of the employee or former employee.

1.3.3 Employee Training

Submit certificates, prior to the start of work but after the main abatement submittal, signed by each employee indicating that the employee has received training in the proper handling of materials and wastes that contain asbestos in accordance with 40 CFR 763; understands the health implications and risks involved, including the illnesses possible from exposure to airborne asbestos fibers; understands the use and limits of the respiratory equipment to be used; and understands the results of monitoring of airborne quantities of asbestos as related to health and respiratory equipment as indicated in 29 CFR 1926.1101 on an initial and annual basis. Certificates shall be organized by individual worker, not grouped by type of certification. Post appropriate evidence of compliance with the training requirements of 40 CFR 763. Train all personnel involved in the asbestos control work in accordance with United States Environmental Protection Agency (USEPA) Asbestos Hazard Emergency Response Act (AHERA) training criteria or State training criteria whichever is more stringent. The Contractor shall document the training by providing: dates of
training, training entity, course outline, names of instructors, and qualifications of instructors upon request by the Contracting Officer. Furnish each employee with respirator training and fit testing administered by the PQP as required by 29 CFR 1926.1101. Fully cover engineering and other hazard control techniques and procedures. All asbestos workers shall have a current State of Florida asbestos worker's license.

1.3.4 Permits, Licenses, and Notifications

Obtain necessary permits and licenses in conjunction with asbestos removal, encapsulation, hauling, and disposition, and furnish notification of such actions required by Federal, State, regional, and local authorities prior to the start of work. Notify the Regional Office of the United States Environmental Protection Agency (USEPA) and the Contracting Officer in writing 20 working days prior to commencement of work in accordance with 40 CFR 61-SUBPART M. Notify the Contracting Officer and other appropriate Government agencies in writing 20 working days prior to the start of asbestos work as indicated in applicable laws, ordinances, criteria, rules, and regulations. Submit copies of all Notifications to the Contracting Officer.

1.3.5 Environment, Safety and Health Compliance

In addition to detailed requirements of this specification, comply with those applicable laws, ordinances, criteria, rules, and regulations of Federal, State, regional, and local authorities regarding handling, storing, transporting, and disposing of asbestos waste materials. Comply with the applicable requirements of the current issue of 29 CFR 1926.1101, 40 CFR 61-SUBPART A, 40 CFR 61-SUBPART M, and ND OPNAVINST 5100.23. Submit matters of interpretation of standards to the appropriate administrative agency for resolution before starting the work. Where the requirements of this specification, applicable laws, rules, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirement as defined by the Government shall apply.

1.3.6 Respiratory Protection Program

Establish and implement a respirator program as required by AIHA Z88.6, 29 CFR 1926.1101, and 29 CFR 1926.103. Submit a written description of the program to the Contracting Officer. Submit a written program manual or operating procedure including methods of compliance with regulatory statutes.

1.3.6.1 Respirator Program Records

Submit records of the respirator program as required by AIHA Z88.6, 29 CFR 1926.103, and 29 CFR 1926.1101.

1.3.7 Asbestos Hazard Control Supervisor

The Contractor shall be represented on site by a supervisor, trained using the model Contractor accreditation plan as indicated in the Federal statutes for all portions of the herein listed work.

1.3.8 Hazard Communication

Adhere to all parts of 29 CFR 1926.59 and provide the Contracting Officer with a copy of the Material Safety Data Sheets (MSDS) for all materials brought to the site.
1.3.9 Asbestos Hazard Abatement Plan

Submit a detailed plan of the safety precautions such as lockout, tagout, tryout, fall protection, and confined space entry procedures and equipment and work procedures to be used in the removal and demolition of materials containing asbestos. The plan, not to be combined with other hazard abatement plans, shall be prepared, signed, and sealed by the PQP. Provide a Table of Contents for each abatement submittal, which shall follow the sequence of requirements in the contract. Such plan shall include but not be limited to the precise personal protective equipment to be used including, but not limited to, respiratory protection, type of whole-body protection, the location of asbestos control areas including clean and dirty areas, buffer zones, showers, storage areas, change rooms, removal method, interface of trades involved in the construction, sequencing of asbestos related work, disposal plan, type of wetting agent and asbestos sealer to be used, locations of local exhaust equipment, planned air monitoring strategies, and a detailed description of the method to be employed in order to control environmental pollution. The plan shall also include (both fire and medical emergency) response plans. The Asbestos Hazard Abatement Plan must be approved in writing prior to starting any asbestos work. The Contractor, Asbestos Hazard Control Supervisor, and PQP shall meet with the Contracting Officer prior to beginning work, to discuss in detail the Asbestos Hazard Abatement Plan, including work procedures and safety precautions. Once approved by the Contracting Officer, the plan will be enforced as if an addition to the specification. Any changes required in the specification as a result of the plan shall be identified specifically in the plan to allow for free discussion and approval by the Contracting Officer prior to starting work.

1.3.10 Testing Laboratory

Submit the name, address, and telephone number of each testing laboratory selected for the sampling, analysis, and reporting of airborne concentrations of asbestos fibers along with evidence that each laboratory selected holds the appropriate State license and/or permits and certification that each laboratory is American Industrial Hygiene Association (AIHA) accredited and that persons counting the samples have been judged proficient by current inclusion on the AIHA Asbestos Analysis Registry (AAR) and successful participation of the laboratory in the Proficiency Analytical Testing (PAT) Program. Where analysis to determine asbestos content in bulk materials or transmission electron microscopy is required, submit evidence that the laboratory is accredited by the National Institute of Science and Technology (NIST) under National Voluntary Laboratory Accreditation Program (NVLAP) for asbestos analysis. The testing laboratory firm shall be independent of the asbestos contractor and shall have no employee or employer relationship which could constitute a conflict of interest.

1.3.11 Landfill Approval

Submit written evidence that the landfill is for asbestos disposal by the U.S. Environmental Protection Agency, Region 3, Air Enforcement Section (3BW12), and local regulatory agencies. Within 3 working days after delivery, submit detailed delivery tickets, prepared, signed, and dated by an agent of the landfill, certifying the amount of asbestos materials delivered to the landfill. Submit a copy of the waste shipment records within 1 day of the shipment leaving the project site.
1.3.12 Medical Certification

Provide a written certification for each worker and supervisor, signed by a licensed physician indicating that the worker and supervisor has met or exceeded all of the medical prerequisites listed herein and in 29 CFR 1926.1101 and 29 CFR 1926.103 as prescribed by law. Submit certificates prior to the start of work but after the main abatement submittal.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Local Exhaust Equipment; G
Vacuums; G
Respirators; G
Pressure Differential Automatic Recording Instrument; G
Amended Water; G
Glovebags; G
Material Safety Data Sheets (Msds) for all materials proposed for transport to the project site; G

SD-06 Test Reports

Air Sampling Results; G
Pressure Differential Recordings For Local Exhaust System; G
Asbestos Disposal Quantity Report; G
Clearance Sampling; G

SD-07 Certificates

Asbestos Hazard Abatement Plan; G
Testing Laboratory; G
Private Qualified Person Documentation; G
Contractor's License; G
Competent Person documentation; G
Worker's License; G
Landfill Approval; G
Employee Training; G
Medical Certification requirements; G
Waste Shipment Records and if applicable exemption report; G,
Respiratory Protection Program; G
Delivery Tickets; G
Vacuums; G
Water Filtration Equipment; G
Ventilation Systems; G
Other Equipment Used To Contain Airborne Asbestos Fibers; G

Notifications
Show compliance with ASSE 29.2 by providing manufacturers' certifications.

SD-11 Closeout Submittals
Notifications; G
Rental Equipment; G
Respirator Program Records; G
Permits and Licenses; G

1.5 QUALITY ASSURANCE

1.5.1 Private Qualified Person Documentation
Submit the name, address, and telephone number of the Private Qualified Person (PQP) selected to prepare the Asbestos Hazard Abatement Plan, direct monitoring and training, and documented evidence that the PQP has successfully completed training in and is accredited and where required is certified as, a Building Inspector, Contractor/Supervisor Abatement Worker, and Asbestos Project Designer as described by 40 CFR 763 and has successfully completed the National Institute of Occupational Safety and Health (NIOSH) 582 course "Sampling and Evaluating Airborne Asbestos Dust" or equivalent. The PQP shall be appropriately licensed in the State of Florida. The PQP and the asbestos contractor shall not have an employee/employer relationship or financial relationship which could constitute a conflict of interest. The PQP shall be a first tier subcontractor.

1.5.2 Competent Person Documentation
Submit training certification and a current State of Florida Asbestos Contractor's and Supervisor's License.

1.5.3 Worker's License
Submit documentation that requires all workers have a current State of
3.1.1 Respirators

Select respirators from those approved by the National Institute for Occupational Safety and Health (NIOSH), Department of Health and Human Services.
3.1.1.1 Respirators for Handling Asbestos

Provide personnel engaged in pre-cleaning, cleanup, handling, removal and demolition of asbestos materials with respiratory protection as indicated in 29 CFR 1926.1101 and 29 CFR 1926.103.

3.1.2 Exterior Whole Body Protection

3.1.2.1 Outer Protective Clothing

Provide personnel exposed to asbestos with disposable "non-breathable," whole body outer protective clothing, head coverings, gloves, and foot coverings. Provide disposable plastic or rubber gloves to protect hands. Cloth gloves may be worn inside the plastic or rubber gloves for comfort, but shall not be used alone. Make sleeves secure at the wrists, make foot coverings secure at the ankles, and make clothing secure at the neck by the use of tape.

3.1.2.2 Work Clothing

Provide cloth work clothes for wear under the outer protective clothing and foot coverings and either dispose of or properly decontaminate them as recommended by the NC PQP after each use.

3.1.2.3 Personal Decontamination Unit

Provide a temporary, negative pressure unit with a separate decontamination locker room and clean locker room with a shower that complies with 29 CFR 1926.51(f)(4)(ii) through (V) in between for personnel required to wear whole body protective clothing. Provide two separate lockers for each asbestos worker, one in each locker room. Keep street clothing and street shoes in the clean locker. HEPA vacuum and remove asbestos contaminated disposable protective clothing while still wearing respirators at the boundary of the asbestos work area and seal in impermeable bags or containers for disposal. Do not wear work clothing between home and work. Locate showers between the decontamination locker room and the clean locker room and require that all employees shower before changing into street clothes. Collect used shower water and filter with approved water filtration equipment to remove asbestos contamination. Dispose of filters and residue as asbestos waste. Discharge clean water to the sanitary system. Dispose of asbestos contaminated work clothing as asbestos contaminated waste or properly decontaminate as specified in the Contractor's Asbestos Hazard Abatement Plan. Decontamination units shall be physically attached to the asbestos control area. Build both a personnel decontamination unit and an equipment decontamination unit onto and integral with each asbestos control area.

3.1.2.4 Eye Protection

Provide goggles to personnel engaged in asbestos abatement operations when the use of a full face respirator is not required.

3.1.3 Warning Signs and Labels

Provide bilingual warning signs printed in English and Spanish at all approaches to asbestos control areas. Locate signs at such a distance that personnel may read the sign and take the necessary protective steps required before entering the area. Provide labels and affix to all
asbestos materials, scrap, waste, debris, and other products contaminated with asbestos.

3.1.3.1 Warning Sign

Provide vertical format conforming to 29 CFR 1926.200, and 29 CFR 1926.1101 minimum 20 by 14 inches displaying the following legend in the lower panel:

<table>
<thead>
<tr>
<th>Legend</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger</td>
<td>25 mm one inch Sans Serif Gothic or Block</td>
</tr>
<tr>
<td>Asbestos</td>
<td>25 mm one inch Sans Serif Gothic or Block</td>
</tr>
<tr>
<td>Cancer and Lung Disease Hazard</td>
<td>6 mm 1/4 inch Sans Serif Gothic or Block</td>
</tr>
<tr>
<td>Authorized Personnel Only</td>
<td>6 mm 1/4 inch Sans Serif Gothic or Block</td>
</tr>
<tr>
<td>Respirators and Protective Clothing are</td>
<td>6 mm 1/4 inch Sans Serif Gothic or Block</td>
</tr>
<tr>
<td>Required in this Area</td>
<td></td>
</tr>
</tbody>
</table>

Spacing between lines shall be at least equal to the height of the upper of any two lines.

3.1.3.2 Warning Labels

Provide labels conforming to 29 CFR 1926.1101 of sufficient size to be clearly legible, displaying the following legend:

```
DANGER
CONTAINS ASBESTOS FIBERS
AVOID CREATING DUST
CANCER AND LUNG DISEASE HAZARD
BREATHING ASBESTOS DUST MAY CAUSE SERIOUS BODILY HARM
```

3.1.4 Local Exhaust System

Provide a local exhaust system in the asbestos control area in accordance with ASSE 29.2 and 29 CFR 1926.1101 that will provide at least four air changes per hour inside of the negative pressure enclosure. Local exhaust equipment shall be operated 24 hours per day, until the asbestos control area is removed and shall be leak proof to the filter and equipped with HEPA filters. Maintain a minimum pressure differential in the control area of minus 0.02 inch of water column relative to adjacent, unsealed areas. Provide continuous 24-hour per day monitoring of the pressure differential.
with a pressure differential automatic recording instrument. In no case shall the building ventilation system be used as the local exhaust system for the asbestos control area. Filters on exhaust equipment shall conform to ASSE Z9.2 and UL 586. The local exhaust system shall terminate out of doors and remote from any public access or ventilation system intakes.

3.1.5 Tools

Vacuums shall be leak proof to the filter and equipped with HEPA filters. Filters on vacuums shall conform to ASSE Z9.2 and UL 586. Do not use power tools to remove asbestos containing materials unless the tool is equipped with effective, integral HEPA filtered exhaust ventilation systems. Remove all residual asbestos from reusable tools prior to storage or reuse.

3.1.6 Rental Equipment

If rental equipment is to be used, furnish written notification to the rental agency concerning the intended use of the equipment and the possibility of asbestos contamination of the equipment.

3.2 WORK PROCEDURE

Perform asbestos related work in accordance with 29 CFR 1926.1101, 40 CFR 61-SUBPART M, and as specified herein. Use wet removal procedures and negative pressure enclosure techniques. Personnel shall wear and utilize protective clothing and equipment as specified herein. Eating, smoking, drinking, chewing gum, tobacco, or applying cosmetics shall not be permitted in the asbestos work or control areas. Personnel of other trades not engaged in the removal and demolition of asbestos containing material shall not be exposed at any time to airborne concentrations of asbestos unless all the personnel protection and training provisions of this specification are complied with by the trade personnel. Seal all roof top penetrations, except plumbing vents, prior to asbestos roofing work. Shut down the building heating, ventilating, and air conditioning system, cap the openings to the system, and provide temporary heating, and ventilation, and air conditioning prior to the commencement of asbestos work. Disconnect electrical service when wet removal is performed and provide temporary electrical service with verifiable ground fault circuit interrupter (GFCI) protection prior to the use of any water. If an asbestos fiber release or spill occurs outside of the asbestos control area, stop work immediately, correct the condition to the satisfaction of the Contracting Officer including clearance sampling, prior to resumption of work.

3.2.1 Protection of Existing Work to Remain

Perform work without damage or contamination of adjacent work. Where such work is damaged or contaminated as verified by the Contracting Officer using visual inspection or sample analysis, it shall be restored to its original condition or decontaminated by the Contractor at no expense to the Government as deemed appropriate by the Contracting Officer. This includes inadvertent spill of dirt, dust, or debris in which it is reasonable to conclude that asbestos may exist. When these spills occur, stop work immediately. Then clean up the spill. When satisfactory visual inspection and air sampling results are obtained from the PQP NC work may proceed at the discretion of the Contracting Officer.
3.2.2 Furnishings

Furniture and equipment will remain in the building. Cover and seal furnishings with 6-mil plastic sheet or remove from the work area and store in a location on site approved by the Contracting Officer.

3.2.3 Asbestos Control Area Requirements

3.2.3.1 Negative Pressure Enclosure

Block and seal openings in areas where the release of airborne asbestos fibers can be expected. Establish an asbestos negative pressure enclosure with the use of curtains, portable partitions, or other enclosures in order to prevent the escape of asbestos fibers from the contaminated asbestos work area. Negative pressure enclosure development shall include protective covering of uncontaminated walls, and ceilings with a continuous membrane of two layers of minimum 6-mil plastic sheet sealed with tape to prevent water or other damage. Provide two layers of 6-mil plastic sheet over floors and extend a minimum of 12 inches up walls. Seal all joints with tape. Provide local exhaust system in the asbestos control area. Openings will be allowed in enclosures of asbestos control areas for personnel and equipment entry and exit, the supply and exhaust of air for the local exhaust system and the removal of properly containerized asbestos containing materials. Replace local exhaust system filters as required to maintain the efficiency of the system.

3.2.4 Removal Procedures

Wet asbestos material with a fine spray of amended water during removal, cutting, or other handling so as to reduce the emission of airborne fibers. Remove material and immediately place in 6 mil plastic disposal bags. Remove asbestos containing material in a gradual manner, with continuous application of the amended water or wetting agent in such a manner that no asbestos material is disturbed prior to being adequately wetted. Where unusual circumstances prohibit the use of 6 mil plastic bags, submit an alternate proposal for containment of asbestos fibers to the Contracting Officer for approval. For example, in the case where both piping and insulation are to be removed, the Contractor may elect to wet the insulation, wrap the pipes and insulation in plastic and remove the pipe by sections. Asbestos containing material shall be containerized while wet. At no time shall asbestos material be allowed to accumulate or become dry. Lower and otherwise handle asbestos containing material as indicated in 40 CFR 61-SUBPART M.

3.2.4.1 Sealing Contaminated Items Designated for Disposal

Remove contaminated architectural, mechanical, and electrical appurtenances such as venetian blinds, full-height partitions, carpeting, duct work, pipes and fittings, radiators, light fixtures, conduit, panels, and other contaminated items designated for removal by completely coating the items with an asbestos lock-down encapsulant at the demolition site before removing the items from the asbestos control area. These items need not be vacuumed. The asbestos lock-down encapsulant shall be tinted a contrasting color. It shall be spray-applied by airless method. Thoroughness of sealing operation shall be visually gauged by the extent of colored coating on exposed surfaces. Lock-down encapsulants shall comply with the performance requirements specified herein.
3.2.4.2 Exposed Pipe Insulation Edges

Contain edges of asbestos insulation to remain that are exposed by a removal operation. Wet and cut the rough ends true and square with sharp tools and then encapsulate the edges with a 1/4 inch thick layer of non-asbestos containing insulating cement troweled to a smooth hard finish. When cement is dry, lag the end with a layer of non-asbestos lagging cloth, overlapping the existing ends by at least 4 inches. When insulating cement and cloth is an impractical method of sealing a raw edge of asbestos, take appropriate steps to seal the raw edges as approved by the Contracting Officer.

3.2.5 Air Sampling

Sampling of airborne concentrations of asbestos fibers shall be performed in accordance with 29 CFR 1926.1101 and as specified herein. Sampling performed in accordance with 29 CFR 1926.1101 shall be performed by the PQP. Unless otherwise specified, use NIOSH Method 7400 for sampling and analysis. Monitoring may be duplicated by the Government at the discretion of the Contracting Officer. If the air sampling results obtained by the Government differ from those results obtained by the Contractor, the Government will determine which results predominate.

3.2.5.1 Sampling Prior to Asbestos Work

Provide area air sampling and establish the baseline one day prior to the masking and sealing operations for each demolition removal site. Establish the background by performing area sampling in similar but uncontaminated sites in the building.

3.2.5.2 Sampling After Final Clean-Up (Clearance Sampling)

Provide area sampling of asbestos fibers using aggressive air sampling techniques as defined in the EPA 560/5-85-024 and establish an airborne asbestos concentration of less than 0.01 fibers per cubic centimeter after final clean-up but before removal of the enclosure or the asbestos work control area. After final cleanup and the asbestos control area is dry but prior to clearance sampling, the PQP and NC shall perform a visual inspection in accordance with ASTM E1368 to ensure that the asbestos control and work area is free of any accumulations of dirt, dust, or debris. Prepare a written report signed and dated by the PQP documenting that the asbestos control area is free of dust, dirt, and debris and all waste has been removed. The asbestos fiber counts from these samples shall be less than 0.01 fibers per cubic centimeter or be not greater than the background, whichever is greater. Should any of the final samples indicate a higher value, the Contractor shall take appropriate actions to re-clean the area and shall repeat the sampling and analysis at the Contractor's expense.

3.2.6 Lock-Down

Prior to removal of plastic barriers and after pre-clearance clean up of gross contamination, the PQP NC shall conduct a visual inspection of all areas affected by the removal in accordance with ASTM E1368. Inspect for any visible fibers.

3.2.7 Site Inspection

While performing asbestos engineering control work, the Contractor shall be
subject to on-site inspection by the Contracting Officer who may be assisted by or represented by safety or industrial hygiene personnel. If the work is found to be in violation of this specification, the Contracting Officer or his representative will issue a stop work order to be in effect immediately and until the violation is resolved. All related costs including standby time required to resolve the violation shall be at the Contractor's expense.

3.3 CLEAN-UP AND DISPOSAL

3.3.1 Housekeeping

Essential parts of asbestos dust control are housekeeping and clean-up procedures. Maintain surfaces of the asbestos control area free of accumulations of asbestos fibers. Give meticulous attention to restricting the spread of dust and debris; keep waste from being distributed over the general area. Use HEPA filtered vacuum cleaners. DO NOT BLOW DOWN THE SPACE WITH COMPRESSED AIR. When asbestos removal is complete, all asbestos waste is removed from the work-site, and final clean-up is completed, the Contracting Officer will attest that the area is safe before the signs can be removed. After final clean-up and acceptable airborne concentrations are attained but before the HEPA unit is turned off and the enclosure removed, remove all pre-filters on the building HVAC system and provide new pre-filters. Dispose of filters as asbestos contaminated materials. Reestablish HVAC mechanical, and electrical systems in proper working order. The Contracting Officer will visually inspect all surfaces within the enclosure for residual material or accumulated dust or debris. The Contractor shall re-clean all areas showing dust or residual materials. If re-cleaning is required, air sample and establish an acceptable asbestos airborne concentration after re-cleaning. The Contracting Officer must agree that the area is safe in writing before unrestricted entry will be permitted. The Government shall have the option to perform monitoring to determine if the areas are safe before entry is permitted.

3.3.2 Title to Materials

All waste materials, except as specified otherwise, shall become the property of the Contractor and shall be disposed of as specified in applicable local, State, and Federal regulations and herein.

3.3.3 Disposal of Asbestos

3.3.3.1 Procedure for Disposal

Collect asbestos waste, asbestos contaminated water, scrap, debris, bags, containers, equipment, and asbestos contaminated clothing which may produce airborne concentrations of asbestos fibers and place in sealed fiber-proof, waterproof, non-returnable containers (e.g. double plastic bags 6 mils thick, cartons, drums or cans). Wastes within the containers must be adequately wet in accordance with 40 CFR 61-SUBPART M. Affix a warning and Department of Transportation (DOT) label to each container including the bags or use at least 6 mils thick bags with the approved warnings and DOT labeling preprinted on the bag. The name of the waste generator and the location at which the waste was generated shall be clearly indicated on the outside of each container. Prevent contamination of the transport vehicle (especially if the transport vehicle is a rented truck likely to be used in the future for non-asbestos purposes). These precautions include lining the vehicle cargo area with plastic sheeting (similar to work area enclosure) and thorough cleaning of the cargo area after transport and
unloading of asbestos debris is complete. Dispose of waste asbestos material at an Environmental Protection Agency (EPA) or State-approved asbestos landfill off Government property. For temporary storage, store sealed impermeable bags in asbestos waste drums or skids. An area for interim storage of asbestos waste-containing drums or skids will be assigned by the Contracting Officer or his authorized representative. Procedure for hauling and disposal shall comply with 40 CFR 61-SUBPART M, State, regional, and local standards. Sealed plastic bags may be dumped from drums into the burial site unless the bags have been broken or damaged. Damaged bags shall remain in the drum and the entire contaminated drum shall be buried. Uncontaminated drums may be recycled. Workers unloading the sealed drums shall wear appropriate respirators and personal protective equipment when handling asbestos materials at the disposal site.

3.3.3.2 Asbestos Disposal Quantity Report

Direct the PQP to record and report, to the Contracting Officer, the amount of asbestos containing material removed and released for disposal. Deliver the report for the previous day at the beginning of each day shift with amounts of material removed during the previous day reported in linear feet or square feet as described initially in this specification and in cubic feet for the amount of asbestos containing material released for disposal.

Allow the NC to inspect, record and report the amount of asbestos containing material removed and released for disposal on a daily basis.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ACI 318 (2014; Errata 1-2 2014; Errata 3-5 2015; Errata 6 2016; Errata 7-9 2017) Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

ASTM INTERNATIONAL (ASTM)

ASTM A615/A615M (2016) Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

CONCRETE REINFORCING STEEL INSTITUTE (CRSI)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals
SD-02 Shop Drawings
Reinforcement; G
SD-07 Certificates
Reinforcing Steel

1.3 DELIVERY, STORAGE, AND HANDLING

Store reinforcement and accessories off the ground on platforms, skids, or other supports.
PART 2 PRODUCTS

2.1 FABRICATED BAR MATS

Fabricated bar mats conforming to ASTM A184/A184M.

2.2 REINFORCING STEEL

Reinforcing steel of deformed bars conforming to ASTM A615/A615M, grades and sizes as indicated.

2.3 WIRE TIES

Use wire ties that are 16 gauge or heavier black annealed steel wire.

2.4 SUPPORTS

Design bar supports for formed surfaces in accordance with CRSI 10MSP and fabricate of steel or precast concrete blocks. Provide precast concrete blocks with wire ties and not less than 4 inches square when supporting reinforcement on ground. Precast concrete block must have compressive strength equal to that of the surrounding concrete. Coat steel supports for coated or galvanized bars with electrically compatible material for a distance of at least 2 inches beyond the point of contact with the bar. Where concrete formed surfaces will be exposed to weather or where surfaces are to be painted, use galvanized, plastic protected or stainless steelsteel supports within 1/2 inch of concrete surface. Concrete supports used in concrete exposed to view must have the same color and texture as the finish surface. For slabs on grade and topping slabs on steel deck, supports use precast concrete blocks, plastic coated steel fabricated with bearing plates, or specifically designed wire-fabric supports fabricated of plastic.

PART 3 EXECUTION

3.1 REINFORCEMENT

Fabricate and place reinforcement steel and accessories as specified, as indicated, and as shown on approved shop drawings. Fabrication and placement details of steel and accessories not specified or shown must be in accordance with ACI SP-66 and ACI 318. Cold bend reinforcement unless otherwise authorized. Bending may be accomplished in the field or at the mill. Do not bend bars after embedment in concrete. Place safety caps on all exposed ends of vertical concrete reinforcement bars that pose a danger to life safety. Face wire tie ends away from the forms. Submit detail drawings showing reinforcing steel placement, schedules, sizes, grades, and splicing and bending details. Show support details including types, sizes and spacing.

3.1.1 Placement

Reinforcement must be free from loose rust and scale, dirt, oil, or other deleterious coating that could reduce bond with the concrete. Place reinforcement in accordance with ACI 318 at locations indicated plus or minus one bar diameter. Do not continue reinforcement through expansion joints and place as indicated through construction or contraction joints. Cover with concrete coverage as indicated or as required by ACI 318. If bars are moved more than one bar diameter to avoid interference with other reinforcement, conduits or embedded items, the resulting arrangement of
bars, including additional bars required to meet structural requirements, requires approval before concrete is placed.

-- End of Section --
SECTION 03 30 53

MISCELLANEOUS CAST-IN-PLACE CONCRETE

PART 1 GENERAL

1.1 SUMMARY

Perform all work in accordance with ACI 318.

1.2 UNIT PRICES

1.2.1 Concrete Payment

Payment will cover all costs associated with manufacturing, furnishing, delivering, placing, finishing, and curing of concrete for the various items of the schedule, including the cost of all formwork. Payment for concrete, for which payment is made as a lump sum, is to be included in this unit price payment item. Payment for grout, preformed expansion joints, field-molded sealants, waterstops, reinforcing steel bars or wire reinforcement is to be included in this unit price payment item.

1.2.2 Measurement

Concrete will be measured for payment on the basis of the actual volume of concrete within the pay lines of the structures as indicated. Measurement of concrete placed against the sides of any excavation without the use of intervening forms will be made only within the pay lines of the structure. No deductions will be made for rounded or beveled edge, for space occupied by metal work, for electrical conduits or timber, or for voids or embedded items that are either less than 5 cubic feet in volume or 1 square foot in cross section.

1.2.3 Unit of Measure

Unit of measure: cubic yard.

1.3 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ACI 117 (2010; Errata 2011) Specifications for Tolerances for Concrete Construction and Materials and Commentary

ACI 301 (2016) Specifications for Structural Concrete

ACI 318 (2014; Errata 1-2 2014; Errata 3-5 2015; Errata 6 2016; Errata 7-9 2017) Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

ASTM INTERNATIONAL (ASTM)

ASTM A615/A615M (2016) Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

ASTM C231/C231M (2017a) Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method

ASTM C31/C31M (2017) Standard Practice for Making and Curing Concrete Test Specimens in the Field

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Installation Drawings; G

SD-03 Product Data
 Air-Entraining Admixture
 Water-Reducing or Retarding Admixture
 Curing Materials
 Expansion Joint Filler Strips, Premolded
 Batching and Mixing Equipment
 Conveying and Placing Concrete
 Mix Design Data; G
 Ready-Mix Concrete
 Curing Compound
 Mechanical Reinforcing Bar Connectors
SD-06 Test Reports

Aggregates
Concrete Mixture Proportions; G
Compressive Strength Testing; G
Slump; G
Air Content
Water

SD-07 Certificates

Cementitious Materials
Aggregates
Delivery Tickets

SD-08 Manufacturer's Instructions

Chemical Floor Hardener
Curing Compound

1.5 QUALITY ASSURANCE

Indicate specific locations of Concrete Placement on installation drawings and include, but not be limited to, square feet of concrete placements, thicknesses and widths, plan dimensions, and arrangement of cast-in-place concrete section.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

The Government retains the option to sample and test aggregates and concrete to determine compliance with the specifications. Provide facilities and labor as may be necessary to assist the Government in procurement of representative test samples. Obtain samples of aggregates at the point of batching in accordance with ASTM D75/D75M. Sample concrete in accordance with ASTM C172/C172M. Determine slump and air content in accordance with ASTM C143/C143M and ASTM C231/C231M, respectively, when cylinders are molded. Prepare, cure, and transport compression test specimens in accordance with ASTM C31/C31M. Test compression test specimens in accordance with ASTM C39/C39M. Take samples for strength tests not less than once each shift in which concrete is produced. Provide a minimum of five specimens from each sample; two to be tested at 28 days (90 days if pozzolan is used) for acceptance, two will be tested at 7 days for information and one held in reserve.

2.1.1 Strength

Acceptance test results are the average strengths of two specimens tested at 28 days (90 days if pozzolan is used). The strength of the concrete is considered satisfactory so long as the average of three consecutive acceptance test results equal or exceed the specified compressive strength, f'c, but not more than 20 percent, and no individual acceptance test result falls below f'c by more than 500 psi.

2.1.2 Construction Tolerances

Apply a Class "C" finish to all surfaces except those specified to receive
a Class "D" finish. Apply a Class "D" finish to all post-construction surfaces which will be permanently concealed. Surface requirements for the classes of finish required are as specified in ACI 117.

2.1.3 Concrete Mixture Proportions

Concrete mixture proportions are the responsibility of the Contractor. Mixture proportions must include the dry weights of cementitious material(s); the nominal maximum size of the coarse aggregate; the specific gravities, absorptions, and saturated surface-dry weights of fine and coarse aggregates; the quantities, types, and names of admixtures; and quantity of water per yard of concrete. Provide materials included in the mixture proportions of the same type and from the same source as will be used on the project. The specified compressive strength f';c is 3,000 psi at 28 days (90 days if pozzolan is used). The maximum nominal size coarse aggregate is 3/4 inch, in accordance with ACI 304R. The air content must be between 4.5 and 7.5 percent with a slump between 2 and 5 inches. The maximum water-cementitious material ratio is 0.50. Submit the applicable test reports and mixture proportions that will produce concrete of the quality required, ten days prior to placement of concrete.

2.2 MATERIALS

Submit manufacturer's literature from suppliers which demonstrates compliance with applicable specifications for the specified materials.

2.2.1 Cementitious Materials

Submit Manufacturer's certificates of compliance, accompanied by mill test reports, attesting that the concrete materials meet the requirements of the specifications in accordance with the Special Clause "CERTIFICATES OF COMPLIANCE". Also, certificates for all material conforming to EPA's Comprehensive Procurement Guidelines (CPG), in accordance with 40 CFR 247. Provide cementitious materials that conform to the appropriate specifications listed:

2.2.1.1 Portland Cement

ASTM C150/C150M, Type III, low alkali with tri-calcium aluminates (C3A) content less than 10 percent and a maximum cement-alkali content of 0.80 percent Na2Oe (sodium oxide) equivalent.

2.2.1.2 Pozzolan

Provide pozzolan that conforms to ASTM C618, Class F, including requirements of Tables 1A and 2A.

2.2.2 Aggregates

For fine and coarse aggregates meet the quality and grading requirements of ASTM C33/C33M. Submit certificates of compliance and test reports for aggregates showing the material(s) meets the quality and grading requirements of the specifications under which it is furnished.

2.2.3 Admixtures

Provide admixtures, when required or approved, in compliance with the appropriate specification listed. Retest chemical admixtures that have been in storage at the project site, for longer than 6 months or that have
been subjected to freezing, at the expense of the Contractor at the request of the Contracting Officer and will be rejected if test results are not satisfactory.

2.2.3.1 Air-Entraining Admixture

Provide air-entraining admixture that meets the requirements of ASTM C260/C260M.

2.2.3.2 Water-Reducing or Retarding Admixture

Provide water-reducing or retarding admixture meeting the requirements of ASTM C494/C494M, Type A, B, or D.

2.2.4 Water

Mixing and curing water in compliance with the requirements of ASTM C1602/C1602M; potable, and free of injurious amounts of oil, acid, salt, or alkali. Submit test report showing water complies with ASTM C1602/C1602M.

2.2.5 Reinforcing Steel

Provide reinforcing bars conforming to the requirements of ASTM A615/A615M, Grade 60, deformed. Provide welded steel wire reinforcement conforming to the requirements of ASTM A1064/A1064M. Detail reinforcement not indicated in accordance with ACI 301 and ACI SP-66. Provide mechanical reinforcing bar connectors in accordance with ACI 301 and provide 125 percent minimum yield strength of the reinforcement bar.

2.2.6 Expansion Joint Filler Strips, Premolded

Expansion joint filler strips, premolded of sponge rubber conforming to ASTM D1752, Type I.

2.2.7 Vapor Retarder

ASTM E1745 Class C A B polyethylene sheeting, minimum 15 mil thickness or other equivalent material with a maximum permeance rating of 0.04 perms per ASTM E96/E96M.

Consider plastic vapor retarders and adhesives with a high recycled content, low toxicity low VOC (Volatile Organic Compounds) levels.

2.2.8 Curing Materials

Provide curing materials in accordance with ACI 301, Section 5.

2.3 READY-MIX CONCRETE

Provide ready-mix concrete with mix design data conforming to ACI 301 Part 2. Submit delivery tickets in accordance with ASTM C94/C94M for each ready-mix concrete delivery, include the following additional information: .

a. Type and brand cement

b. Cement content in 94-pound bags per cubic yard of concrete

c. Maximum size of aggregate
d. Amount and brand name of admixture

e. Total water content expressed by water cementitious material ratio

2.4 ACCESSORIES

2.4.1 Chemical Floor Hardener

Provide hardener which is a colorless aqueous solution containing a blend of inorganic silicate or silicate material and proprietary components combined with a wetting agent; that penetrates, hardens, and densifies concrete surfaces. Submit manufactures instructions for placement of liquid chemical floor hardener.

2.4.2 Curing Compound

Provide curing compound conforming to ASTM C309. Submit manufactures instructions for placing curing compound.

PART 3 EXECUTION

3.1 PREPARATION

Prepare construction joints to expose coarse aggregate. The surface must be clean, damp, and free of laittance. Construct ramps and walkways, as necessary, to allow safe and expeditious access for concrete and workmen. Remove snow, ice, standing or flowing water, loose particles, debris, and foreign matter. Satisfactorily compact earth foundations. Make spare vibrators available. Placement cannot begin until the entire preparation has been accepted by the Government.

3.1.1 Embedded Items

Secure reinforcement in place after joints, anchors, and other embedded items have been positioned. Arrange internal ties so that when the forms are removed the metal part of the tie is not less than 2 inches from concrete surfaces permanently exposed to view or exposed to water on the finished structures. Prepare embedded items so they are be free of oil and other foreign matters such as loose coatings or rust, paint, and scale. The embedding of wood in concrete is permitted only when specifically authorized or directed. Provide all equipment needed to place, consolidate, protect, and cure the concrete at the placement site and in good operating condition.

3.1.2 Formwork Installation

Forms must be properly aligned, adequately supported, and mortar-tight. Provide smooth form surfaces, free from irregularities, dents, sags, or holes when used for permanently exposed faces. Chamfer all exposed joints and edges, unless otherwise indicated.

3.1.3 Production of Concrete

3.1.3.1 Ready-Mixed Concrete

Provide ready-mixed concrete conforming to ASTM C94/C94M except as otherwise specified.
3.1.3.2 Concrete Made by Volumetric Batching and Continuous Mixing

Conform to ASTM C685/C685M.

3.1.3.3 Batching and Mixing Equipment

The option of using an on-site batching and mixing facility is available. The facility must provide sufficient batching and mixing equipment capacity to prevent cold joints. Submit the method of measuring materials, batching operation, and mixer for review, and manufacturer's data for batching and mixing equipment demonstrating compliance with the applicable specifications.

3.2 CONVEYING AND PLACING CONCRETE

Convey and place concrete in accordance with ACI 301, Section 5.

3.2.1 Cold-Weather Requirements

Place concrete in cold weather in accordance with ACI 306R

3.2.2 Hot-Weather Requirements

Place concrete in hot weather in accordance with ACI 305R

3.3 FINISHING

3.3.1 Temperature Requirement

Do not finish or repair concrete when either the concrete or the ambient temperature is below 50 degrees F.

3.3.2 Finishing Formed Surfaces

Remove all fins and loose materials, and surface defects including filling of tie holes. Repair all honeycomb areas and other defects. Remove all unsound concrete from areas to be repaired. Ream or chip surface defects greater than 1/2 inch in diameter and holes left by removal of tie rods in all surfaces not to receive additional concrete and fill with dry-pack mortar. Brush-coat the prepared area with an approved epoxy resin or latex bonding compound or with neat cement grout after dampening and filling with mortar or concrete. Use a blend of portland cement and white cement in mortar or concrete for repairs to all surfaces permanently exposed to view shall be so that the final color when cured is the same as adjacent concrete.

3.3.3 Finishing Unformed Surfaces

Finish unformed surfaces in accordance with ACI 301, Section 5.

<table>
<thead>
<tr>
<th>FINISH</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broom or Belt</td>
<td>Stairs and Ramp</td>
</tr>
</tbody>
</table>

3.4 CURING AND PROTECTION

Cure and protect in accordance with ACI 301, Section 5.
3.5 FORM WORK

Provide form work in accordance with ACI 301, Section 2 and Section 5.

3.5.1 Removal of Forms

Remove forms in accordance with ACI 301, Section 2.

3.6 STEEL REINFORCING

Reinforcement must be free from loose, flaky rust and scale, and free from oil, grease, or other coating which might destroy or reduce the reinforcement's bond with the concrete.

3.6.1 Fabrication

Shop fabricate steel reinforcement in accordance with ACI 318 and ACI SP-66. Provide shop details and bending in accordance with ACI 318 and ACI SP-66.

3.6.2 Splicing

Perform splices in accordance with ACI 318 and ACI SP-66.

3.6.3 Supports

Secure reinforcement in place by the use of metal or concrete supports, spacers, or ties.

3.7 EMBEDDED ITEMS

Before placing concrete, take care to determine that all embedded items are firmly and securely fastened in place. Provide embedded items free of oil and other foreign matter, such as loose coatings of rust, paint and scale. Embedding of wood in concrete is permitted only when specifically authorized or directed.

3.8 CHEMICAL FLOOR HARDENER

Apply Chemical Floor Hardener where indicated, after curing and drying concrete surface. Dilute liquid hardener with water and apply in three coats. First coat is one-third strength, second coat one-half strength, and third coat two-thirds strength. Apply each coat evenly and allow it to dry 24 hours before applying next coat. Apply proprietary chemical hardeners in accordance with manufacturer's printed directions.

3.9 TESTING AND INSPECTING

Report the results of all tests and inspections conducted at the project site informally at the end of each shift. Submit written reports weekly. Deliver within three days after the end of each weekly reporting period. See Section 01 45 00.00 10 QUALITY CONTROL.

3.9.1 Field Testing Technicians

The individuals who sample and test concrete must have demonstrated a knowledge and ability to perform the necessary test procedures equivalent to the ACI minimum guidelines for certification of Concrete Field Testing Technicians, Grade I.
3.9.2 Preparations for Placing

Inspect foundation or construction joints, forms, and embedded items in sufficient time prior to each concrete placement to certify that it is ready to receive concrete.

3.9.3 Sampling and Testing

a. Obtain samples and test concrete for quality control during placement. Sample fresh concrete for testing in accordance with ASTM C172/C172M. Make six test cylinders.

b. Test concrete for compressive strength at 7 and 28 days for each design mix and for every 100 cubic yards of concrete. Test two cylinders at 7 days; two cylinders at 28 days; and hold two cylinders in reserve. Conform test specimens to ASTM C31/C31M. Perform compressive strength testing conforming to ASTM C39/C39M.

c. Test slump at the site of discharge for each design mix in accordance with ASTM C143/C143M. Check slump once during each shift that concrete is produced for each strength of concrete required.

d. Test air content for air-entrained concrete in accordance with ASTM C231/C231M. Test concrete using lightweight or extremely porous aggregates in accordance with ASTM C173/C173M. Check air content at least once during each shift that concrete is placed for each strength of concrete required.

e. Determine temperature of concrete at time of placement in accordance with ASTM C1064/C1064M. Check concrete temperature at least once during each shift that concrete is placed for each strength of concrete required.

3.9.4 Action Required

3.9.4.1 Placing

Do not begin placement until the availability of an adequate number of acceptable vibrators, which are in working order and have competent operators, has been verified. Discontinue placing if any lift is inadequately consolidated.

3.9.4.2 Air Content

Whenever an air content test result is outside the specification limits, adjust the dosage of the air-entrainment admixture prior to delivery of concrete to forms.

3.9.4.3 Slump

Whenever a slump test result is outside the specification limits, adjust the batch weights of water and fine aggregate prior to delivery of concrete to the forms. Make the adjustments so that the water-cementitious material ratio does not exceed that specified in the submitted concrete mixture proportion and the required concrete strength is still met.

-- End of Section --
SECTION 04 20 00

UNIT MASONRY

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ASTM INTERNATIONAL (ASTM)

ASTM A615/A615M (2016) Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

ASTM A996/A996M (2016) Standard Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Cut CMU Drawings; G
Reinforcement Detail Drawings; G
Precast Concrete Lintels

SD-03 Product DataCement;

SD-04 Samples

Concrete Masonry Units (CMU)
Precast Concrete Lintels; G
Anchors, Ties, and Bar PositionersJoint Reinforcement; G

SD-05 Design Data

Masonry Compressive Strength; G
Bracing Calculations

SD-06 Test Reports

Field Testing of Mortar
Field Testing of Grout
Cementitious MaterialsAdmixtures for Masonry MortarAdmixtures for
Grout Joint Reinforcement

1.3 DELIVERY, STORAGE, AND HANDLING

Deliver, store, handle, and protect material to avoid chipping, breakage, and contact with soil or contaminating material. Store and prepare materials in already disturbed areas to minimize project site disturbance and size of project site.

1.3.1 Masonry Units

Cover and protect masonry units from precipitation. Conform to handling and storage requirements of TMS MSJC.

a. Mark prefabricated lintels on top sides to show either the lintel schedule number or the number and size of top and bottom bars.

1.3.2 Reinforcement, Anchors, and Ties

Store steel reinforcing bars, coated anchors, ties, and joint reinforcement above the ground. Maintain steel reinforcing bars and uncoated ties free of loose mill scale and loose rust.

1.3.3 Cementitious Materials, Sand and Aggregates

Deliver cementitious and other packaged materials in unopened containers, plainly marked and labeled with manufacturers' names and brands. Store cementitious material in dry, weathertight enclosures or completely cover. Handle cementitious materials in a manner that will prevent the inclusion of foreign materials and damage by water or dampness. Store sand and aggregates in a manner to prevent contamination and segregation.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

2.1.1 Design - Specified Compressive Strength of Masonry

The specified compressive strength of masonry, f'm, is as indicated for each type of masonry. See Structural Documents.

2.1.2 Performance - Verify Masonry Compressive Strength

Verify specified compressive strength of masonry using the "Unit Strength Method" of TMS MSJC. Submit calculations and certifications of unit and mortar strength.

Verify specified compressive strength of masonry using the "Prism Test Method" of TMS MSJC when the "Unit Strength Method" cannot be used. Submit test results.

2.2 MANUFACTURED UNITS

2.2.1 General Requirements

Do not change the source of materials, which will affect the appearance of the finished work, after the work has started except with Contracting Officer's approval. Submit test reports from an approved independent laboratory. Certify test reports on a previously tested material as the
same materials as that proposed for use in this project. Submit
certificates of compliance stating that the materials meet the specified
requirements.

2.2.2 Concrete Units

2.2.2.1 Concrete Masonry Units (CMU)

2.2.2.1.1 Cement

Use only cement that has a low alkali content and is of one brand.

2.2.2.1.2 Unit Typesb. Hollow Non-Load-Bearing Units: ASTM C129,
lightweight or medium weight.

2.2.2.1.3 Jamb Units

Provide jamb units of the shapes and sizes to conform with wall units.

2.3 EQUIPMENT

2.3.1 Vibrators

Maintain at least one spare vibrator on site at all times.

2.3.2 Grout Pumps

Pumping through aluminum tubes is not permitted.

2.4 MATERIALS

2.4.1 Mortar Materials

2.4.1.1 Cementitious Materials

Provide cementitious materials that conform to those permitted by ASTM C270.

2.4.1.2 Hydrated Lime and Alternates

Provide lime that conforms to one of the materials permitted by ASTM C207
for use in combination with portland cement, hydraulic cement, and blended
hydraulic cement. Do not use lime in combination with masonry cement or
mortar cement.

2.4.1.3 Admixtures for Masonry Mortar

In cold weather, use a non-chloride based accelerating admixture that
conforms to ASTM C1384, unless Type III portland cement is used in the
mortar.

2.4.1.4 Aggregate and Water

Provide aggregate (sand) and water that conform to materials permitted by
ASTM C270.

2.4.2 Grout and Ready-Mix Grout Materials

2.4.2.1 Cementitious Materials for Grout

Provide cementitious materials that conform to those permitted by ASTM C476.
2.4.2.2 Admixtures for Grout

Water-reducing admixtures that conform to ASTM C494/C494M Type F or G and viscosity-modifying admixtures that conform to ASTM C494/C494M Type S are permitted for use in grout. Other admixtures require approval by the Contracting Officer.

2.4.2.3 Aggregate and Water

Provide fine and coarse aggregates and water that conform to materials permitted by ASTM C476.

2.5 MORTAR AND GROUT MIXES

2.5.1 Mortar Mix

a. Provide mortar Type S unless specified otherwise herein. Do not use masonry cement in the mortar.

b. Use ASTM C270 Type S cement-lime mortar or mortar cement mortar for seismic-force-resisting elements indicated.

2.5.2 Grout and Ready Mix Grout Mix

Use grout that conforms to ASTM C476, fine. Use conventional grout with a slump between 8 and 11 inches. Use self-consolidating grout with slump flow of 24 to 30 inches and a visual stability index (VSI) not greater than 1. Provide minimum grout strength of 3000 psi in 28 days, as tested in accordance with ASTM C1019. Do not change proportions and do not use materials with different physical or chemical characteristics in grout for the work unless additional evidence is furnished that grout meets the specified requirements. Use ready-mixed grout that conforms to ASTM C476.

2.6 ACCESSORIES

2.6.1 Grout Barriers

Grout barriers for vertical cores that consist of fine mesh wire, fiberglass, or expanded metal.

2.6.2 Anchors, Ties, and Bar Positioners

2.6.2.1 General

a. Fabricate anchors and ties without drips or crimps. Size anchors and ties to provide a minimum of 5/8 inch mortar cover from each face of masonry.

b. Fabricate steel wire anchors and ties shall from wire conforming to ASTM A1064/A1064M and hot-dip galvanize in accordance with ASTM A153/A153M.

c. Fabricate joint reinforcement in conformance with ASTM A951/A951M. Hot dip galvanize joint reinforcement in exterior walls and in interior walls exposed to moist environment in conformance with ASTM A153/A153M. Galvanize joint reinforcement in other interior walls in conformance with ASTM A641/A641M; coordinate with paragraph JOINT REINFORCEMENT below.
d. Submit two anchors, ties and bar positioners of each type used, as samples.

2.6.2.2 Bar Positioners

Factory-fabricate bar positioners, used to prevent displacement of reinforcing bars during the course of construction, from 9 gauge steel wire or equivalent, and hot-dip galvanized.

2.6.3 Joint Reinforcement

Factory fabricate joint reinforcement in conformance with ASTM A951/A951M, welded construction. Provide ladder type joint reinforcement, having one longitudinal wire in the mortar bed of each face shell for hollow units and one wire for solid units and with all wires a minimum of 9 gauge. Size joint reinforcement to provide a minimum of 5/8 inch cover from each face. Space crosswires not more than 16 inches. Provide joint reinforcement for straight runs in flat sections not less than 10 feet long. Provide joint reinforcement with factory formed corners and intersections. If approved for use, joint reinforcement may be furnished with adjustable wall tie features. Submit one piece of each type used, including corner and wall intersection pieces, showing at least two cross wires.

2.6.4 Reinforcing Steel Bars

Reinforcing steel bars and rods shall conform to ASTM A615/A615M or ASTM A996/A996M, Grade 60.

2.6.5 Concrete Masonry Control Joint Keys

Provide control joint keys of a factory fabricated solid section of natural or synthetic rubber (or combination thereof) conforming to ASTM D2000 M2AA-805 with a minimum durometer hardness of 80 or polyvinyl chloride conforming to ASTM D2287 Type PVC 654-4 with a minimum durometer hardness of 85. Form the control joint key with a solid shear section not less than 5/8 inch thick and 3/8 inch thick flanges, with a tolerance of plus or minus 1/16 inch, to fit neatly, but without forcing, in masonry unit jamb sash grooves.

PART 3 EXECUTION

3.1 EXAMINATION

Prior to start of work, verify the applicable conditions as set forth in TMS MSJC, inspection.

3.2 PREPARATION

3.2.1 Stains

Protect exposed surfaces from mortar and other stains. When mortar joints are tooled, remove mortar from exposed surfaces with fiber brushes and wooden paddles. Protect base of walls from splash stains by covering adjacent ground with sand, sawdust, or polyethylene.

3.2.2 Loads

Do not apply uniform loads for at least 12 hours or concentrated loads for
at least 72 hours after masonry is constructed. Provide temporary bracing as required.

3.2.3 Concrete Surfaces

Where masonry is to be placed, clean concrete of laitance, dust, dirt, oil, organic matter, or other foreign materials and slightly roughen to provide a surface texture with a depth of at least 1/8 inch. Sandblast, if necessary, to remove laitance from pores and to expose the aggregate.

3.2.4 Bracing

Provide bracing and scaffolding necessary for masonry work. Design bracing to resist wind pressure as required by OSHA and local codes and submit bracing calculations, sealed by a registered professional engineer. Do not remove bracing in less than 10 days.

3.3 ERECTION

3.3.1 General

a. Coordinate masonry work with the work of other trades to accommodate built-in items and to avoid cutting and patching. Lay masonry units in running bond pattern. Lay facing courses level with back-up courses, unless the use of adjustable ties has been approved in which case the tolerances is plus or minus 1/2 inch. Adjust each unit to its final position while mortar is still soft and has plastic consistency.

b. Remove and clean units that have been disturbed after the mortar has stiffened, and relay with fresh mortar. Keep air spaces, cavities, chases, expansion joints, and spaces to be grouted free from mortar and other debris. Select units to be used in exposed masonry surfaces from those having the least amount of chipped edges or other imperfections detracting from the appearance of the finished work.

c. When necessary to temporarily discontinue the work, step (rack) back the masonry for joining when work resumes. Toothing may be used only when specifically approved by the Contracting Officer. Before resuming work, remove loose mortar and thoroughly clean the exposed joint. Cover the top of walls subjected to rain or snow with nonstaining waterproof covering or membrane when work is not in process. Extend the covering a minimum of 610 mm 2 feet down on each side of the wall and hold securely in place.

d. Ensure that units being laid and surfaces to receive units are free of water film and frost. Lay solid units in a nonfurrowed full bed of mortar. Bevel mortar for veneer wythes and slope down toward the cavity side. Shove units into place so that the vertical joints are tight. Completely fill vertical joints between solid units with mortar, except where indicated at control, expansion, and isolation joints. Place hollow units so that mortar extends to the depth of the face shell at heads and beds, unless otherwise indicated. Mortar will be permitted to protrude up to 1/2 inch into the space or cells to be grouted. Provide means to prevent mortar from dropping into the space below or clean grout spaces prior to grouting.

3.3.1.1 Jointing

Tool mortar joints when the mortar is thumbprint hard. Tool horizontal
joints after tooling vertical joints. Brush mortar joints to remove loose and excess mortar.

3.3.1.1 Tooled Joints

Tool mortar joints in exposed exterior and interior masonry surfaces concave, using a jointer that is slightly larger than the joint width so that complete contact is made along the edges of the unit. Perform tooling so that the mortar is compressed and the joint surface is sealed. Use a jointer of sufficient length to obtain a straight and true mortar joint.

3.3.1.2 Door and Window Frame Joints

On the exposed interior side of exterior frames, joints between frames and abutting masonry walls shall be raked to a depth of 3/8 inch. On the exterior side of exterior frames, joints between frames and abutting masonry walls shall be raked to a depth of 3/8 inch.

3.3.1.3 Joint Widths

a. Construct brick masonry with mortar joint widths equal to the difference between the specified and nominal dimensions of the unit, within tolerances permitted by TMS MSJC.

b. Provide 3/8 inch wide mortar joints in concrete masonry, except for prefaced concrete masonry units.

c. Provide 3/8 inch wide mortar joints on unfaced side of prefaced concrete masonry units and not less than 3/16 inch nor more than 1/4 inch wide on prefaced side.

d. Maintain mortar joint widths within tolerances permitted by TMS MSJC

3.3.1.2 Cutting and Fitting

Use full units of the proper size wherever possible, in lieu of cut units. Locate cut units where they would have the least impact on the architectural aesthetic goals of the facility. Perform cutting and fitting, including that required to accommodate the work of others, by masonry mechanics using power masonry saws. Concrete masonry units may be wet or dry cut. Before being placed in the work, dry wet-cut units to the same surface-dry appearance as uncut units being laid in the wall. Provide cut edges that are clean, true and sharp.

a. Carefully make openings in the masonry so that wall plates, cover plates or escutcheons required by the installation will completely conceal the openings and will have bottoms parallel with the masonry bed joints. Provide reinforced masonry lintels above openings over 12 inches wide for pipes, ducts, cable trays, and other wall penetrations, unless steel sleeves are used.

b. Do not reduce masonry units in size by more than one-third in height and one-half in length. Do not locate cut products at ends of walls, corners, and other openings.

3.3.1.3 Unfinished Work

Rack back unfinished work for joining with new work. Toothing may be resorted to only when specifically approved by the Contracting Officer.
Remove loose mortar and thoroughly clean the exposed joints before laying new work.

3.3.1.4 Control Joints

Provide control joints in concrete masonry as indicated. Construct by raking out mortar within the head joint in accordance with the details shown on the Drawings. Form a continuous vertical joint at control joint locations, including through bond beams, by utilizing half blocks in alternating courses on each side of the joint. Interrupt the control joint key in courses containing continuous bond beam reinforcement. Do not interrupt the horizontal reinforcement and grout at the control joint.

Where mortar was placed in the joint, rake both faces of the control joints to a depth of 3/4 inch. Install backer rod and sealant on both faces in accordance with Section 07 92 00 JOINT SEALANTS.

3.3.2 Reinforced, Single Wythe Concrete Masonry Units Walls

3.3.2.1 Concrete Masonry Unit Placement

a. Fully bed units used to form piers, pilasters, columns, starting courses on footings, solid foundation walls, lintels, and beams, and where cells are to be filled with grout in mortar under both face shells and webs. Provide mortar beds under both face shells for other units. Mortar head joints for a distance in from the face of the unit not less than the thickness of the face shell.

b. Submit drawings showing elevations of walls exposed to view and indicating the location of all cut CMU products.

3.3.2.2 Preparation for Reinforcement

Lay units in such a manner as to preserve the unobstructed vertical continuity of cores to be grouted. Remove mortar protrusions extending 1/2 inch or more into cells before placing grout. Position reinforcing bars accurately as indicated before placing grout. Where vertical reinforcement occurs, fill cores solid with grout in accordance with paragraph PLACING GROUT in this Section.

3.3.3 ANCHORAGE

3.3.3.1 Anchorage at Intersecting Walls

Provide wire mesh anchors at maximum 16 inches spacing at intersections of interior non-bearing masonry walls.

3.3.4 Lintels

3.3.4.1 Masonry Lintels

Construct masonry lintels with lintel units filled solid with grout in all courses and reinforced with a minimum of two No. 4 bars in the bottom course unless otherwise indicated. Extend lintel reinforcement beyond each side of masonry opening 40 bar diameters or 24 inches, whichever is greater. Support reinforcing bars in place prior to grouting and locate 1/2 inch above the bottom inside surface of the lintel unit.
3.3.4.2 Precast Concrete Lintels

Provide precast concrete and steel lintels as shown on the Drawings. Set lintels in a full bed of mortar with faces plumb and true. Provide steel and precast lintels with a minimum bearing length of 8 inches unless otherwise indicated. In partially grouted masonry, provide fully grouted units under the full lintel bearing length, unless otherwise indicated.

3.4 INSTALLATION

3.4.1 Bar Reinforcement Installation

3.4.1.1 Preparation

Submit detail drawings showing bar splice locations. Identify bent bars on a bending diagram and reference and locate such bars on the drawings. Show wall dimensions, bar clearances, and wall openings. Utilize bending details that conform to the requirements of ACI SP-66. No approval will be given to the shop drawings until the Contractor certifies that all openings, including those for mechanical and electrical service, are shown. If, during construction, additional masonry openings are required, resubmit the approved shop drawings with the additional openings shown along with the proposed changes. Clearly highlight location of these additional openings. Provide wall elevation drawings with minimum scale of 1/4 inch per foot. Submit drawings including plans, elevations, and details of wall reinforcement; details of reinforcing bars at corners and wall intersections; offsets; tops, bottoms, and ends of walls; control and expansion joints; lintels; and wall openings.

Clean reinforcement of loose, flaky rust, scale, grease, mortar, grout, and other coatings that might destroy or reduce its bond prior to placing grout. Do not use bars with kinks or bends not shown on the approved shop drawings. Place reinforcement prior to grouting. Unless otherwise indicated, extend vertical wall reinforcement to within 2 inches of tops of walls.

3.4.1.2 Positioning Bars

a. Accurately place vertical bars within the cells at the positions indicated on the drawings. A minimum clearance of 1/2 inch shall be maintained between the bars and masonry units. Provide minimum clearance between parallel bars of 1/2 inch between the bars and masonry units for coarse grout and a minimum clearance of 1/4 inch between the bars and masonry units for fine grout. Provide minimum clearance between parallel bars of 1 inch or one diameter of the reinforcement, whichever is greater. Vertical reinforcement may be held in place using bar positioners located near the ends of each bar and at intermediate intervals of not more than 192 diameters of the reinforcement or by other means to prevent displacement beyond permitted tolerances. As masonry work progresses, secure vertical reinforcement to prevent displacement beyond allowable tolerances.

b. Position horizontal reinforcing bars as indicated. Stagger splices in adjacent horizontal bars, unless otherwise indicated.

c. Form splices by lapping bars as indicated. Do not cut, bend or eliminate reinforcing bars. Foundation dowel bars may be field-bent when permitted by TMS MSJC.
3.4.1.3 Splices of Bar Reinforcement

Lap splice reinforcing bars as indicated. When used, provide welded or mechanical connections that develop at least 125 percent of the specified yield strength of the reinforcement.

3.4.2 Placing Grout

3.4.2.1 General

Fill cells containing reinforcing bars with grout. Solidly grout hollow masonry units in walls or partitions supporting plumbing, heating, or other mechanical fixtures, voids at door and window jambs, and other indicated spaces. Solidly grout cells under lintel bearings on each side of openings for full height of openings. Solidly grout walls below grade, lintels, and bond beams. Units other than open end units may require grouting each course to preclude voids in the units.

Discard site-mixed grout that is not placed within 1-1/2 hours after water is first added to the batch or when the specified slump is not met without adding water after initial mixing. Discard ready-mixed grout that does not meet the specified slump without adding water other than water that was added at the time of initial discharge. Allow sufficient time between grout lifts to preclude displacement or cracking of face shells of masonry units. Provide a grout shear key between lifts when grouting is delayed and the lower lift loses plasticity. If blowouts, flowouts, misalignment, or cracking of face shells should occur during construction, tear down the wall and rebuild.

3.4.2.2 Horizontal Grout Barriers

Embed horizontal grout barriers in mortar below cells of hollow units receiving grout.

3.4.2.3 Grout Holes and Cleanouts

3.4.2.3.1 Grout Holes

Provide grouting holes in slabs, spandrel beams, and other in-place overhead construction. Locate holes over vertical reinforcing bars or as required to facilitate grout fill in bond beams. Provide additional openings spaced not more than 16 inches on centers where grouting of hollow unit masonry is indicated. From such openings not less than 4 inches in diameter or 3 by 4 inches in horizontal dimensions. Upon completion of grouting operations, plug and finish grouting holes to match surrounding surfaces.

3.4.2.4 Grout Placement

A grout pour is the total height of masonry to be grouted prior to erection of additional masonry. A grout lift is an increment of grout placement within a grout pour. A grout pour is filled by one or more lifts of grout.

a. Lay masonry to the top of a pour permitted by TMS MSJC Table 7, based on the size of the grout space and the type of grout. Prior to grouting, remove masonry protrusions that extend 1/2 inch or more into cells or spaces to be grouted. Provide grout holes and cleanouts in accordance with paragraph GROUT HOLES AND CLEANOUTS above when the
grout pour height exceeds 5 feet 4 inches. Hold reinforcement, bolts, and embedded connections rigidly in position before grouting is started. Do not prewet concrete masonry units.

b. Place grout using a hand bucket, concrete hopper, or grout pump to fill the grout space without segregation of aggregate. Operate grout pumps to produce a continuous stream of grout without air pockets, segregation, or contamination.

c. If the masonry has cured at least 4 hours, grout slump is maintained between 10 to 11 inches, and no intermediate reinforced bond beams are placed between the top and bottom of the pour height, place conventional grout in lifts not exceeding 12 feet 8 inches. For the same curing and slump conditions but with intermediate bond beams, limit conventional grout lift to the bottom of the lowest bond beam that is more than 5 feet 4 inches above the bottom of the lift, but do not exceed 12 feet 8 inches. If masonry has not cured at least 4 hours or grout slump is not maintained between 10 to 11 inches, place conventional grout in lifts not exceeding 5 feet 4 inches.

d. Consolidate conventional grout lift and reconsolidate after initial settlement before placing next lift. For grout pours that are 12 inches or less in height, consolidate and reconsolidate grout by mechanical vibration or puddling. For grout pours that are greater than 12 inches in height, consolidate and reconsolidate grout by mechanical vibration. Apply vibrators at uniformly spaced points not further apart than the visible effectiveness of the machine. Limit duration of vibration to time necessary to produce satisfactory consolidation without causing segregation. If previous lift is not permitted to set, dip vibrator into previous lift. Do not insert vibrators into lower lifts that are in a semi-solidified state. If lower lift sets prior to placement of subsequent lift, form a grout key by terminating grout a minimum of 1-1/2 inch below a mortar joint. Vibrate each vertical cell containing reinforcement in partially grouted masonry. Do not form grout keys within beams.

e. If the masonry has cured 4 hours, place self-consolidating grout (SCG) in lifts not exceeding the pour height. If masonry has not cured for at least 4 hours, place SCG in lifts not exceeding 5 feet 4 inches. Do not mechanically consolidate self-consolidating grout. Place self-consolidating grout in accordance with manufacturer's recommendations.

f. Upon completion of each day's grouting, remove waste materials and debris from the equipment, and dispose of outside the masonry.

3.4.3 Joint Reinforcement Installation

Install joint reinforcement at 16 inches on center unless otherwise indicated. Lap joint reinforcement not less than 6 inches. Install prefabricated sections at corners and wall intersections. Place the longitudinal wires of joint reinforcement in mortar beds to provide not less than 5/8 inch cover to either face of the unit.

3.4.4 Bond Beams

Reinforce and grout bond beams as indicated and as described in paragraphs above. Install grout barriers under bond beam units to retain the grout as required, unless wall is fully grouted or solid bottom units are used. For
high lift grouting in partially grouted masonry, provide grout retaining material on the top of bond beams to prevent upward flow of grout. Ensure that reinforcement is continuous, including around corners, except through control joints or expansion joints, unless otherwise indicated.

3.5 APPLICATION

3.5.1 Interface with Other Products

3.5.1.1 Built-In Items

Fill spaces around built-in items with mortar. Point openings around flush-mount electrical outlet boxes in wet locations with mortar. Embed anchors, ties, wall plugs, accessories, flashing, pipe sleeves and other items required to be built-in as the masonry work progresses. Fully embed anchors, ties and joint reinforcement in the mortar. Fill cells receiving anchor bolts and cells of the first course below bearing plates with grout, unless otherwise indicated.

3.5.1.2 Door and Window Frame Joints

On the exposed interior and exterior sides of exterior frames, rake joints between frames and abutting masonry walls to a depth of 3/8 inch.

3.5.2 Tolerances

Lay masonry plumb, true to line, with courses level within the tolerances of TMS MSJC, Article 3.3 F.

3.6 FIELD QUALITY CONTROL

3.6.1 Tests

3.6.1.1 Field Testing of Mortar

Perform mortar testing at the following frequency: 1 times per mix. For each required mortar test, provide a minimum of three mortar samples. Perform initial mortar testing prior to construction for comparison purposes during construction.

Prepare and test mortar samples for mortar aggregate ratio in accordance with ASTM C780 Appendix A4.

3.6.1.2 Field Testing of Grout

a. Perform grout testing at the following frequency: 1 times per day. For each required grout property to be evaluated, provide a minimum of three specimens.

b. Sample and test conventional and self-consolidating grout for compressive strength and temperature in accordance with ASTM C1019.

c. Evaluate slump in conventional grout in accordance with ASTM C1019.

d. Evaluate slump flow and visual stability index of self-consolidating grout in accordance with ASTM C1611/C1611M.
3.7 POINTING AND CLEANING

After mortar joints have attained their initial set, but prior to hardening, completely remove mortar and grout daubs and splashings from masonry-unit surfaces that will be exposed or painted. Before completion of the work, rake out defects in joints of masonry to be exposed or painted, fill with mortar, and tool to match existing joints. Immediately after grout work is completed, remove scum and stains that have percolated through the masonry work using a low pressure stream of water and a stiff bristled brush. Do not clean masonry surfaces, other than removing excess surface mortar, until mortar in joints has hardened. Leave masonry surfaces clean, free of mortar daubs, dirt, stain, and discoloration, including scum from cleaning operations, and with tight mortar joints throughout. Do not use metal tools and metal brushes for cleaning.

3.7.1 Dry-Brushing Concrete Masonry

Dry brush exposed concrete masonry surfaces at the end of each day's work and after any required pointing, using stiff-fiber bristled brushes.

3.8 PROTECTION

Protect facing materials against staining. Cover top of walls with nonstaining waterproof covering or membrane to protect from moisture intrusion when work is not in progress. Continue covering the top of the unfinished walls until the wall is waterproofed with a complete roof or parapet system. Extend covering a minimum of 2 feet down on each side of the wall and hold securely in place. Before starting or resuming work, clean top surface of masonry in place of loose mortar and foreign material.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2015; Errata 1 2015; Errata 2 2016)
Structural Welding Code - Steel

ASME INTERNATIONAL (ASME)

ASME B18.2.1 (2012; Errata 2013) Square and Hex Bolts and Screws (Inch Series)

ASTM INTERNATIONAL (ASTM)

Ferritic Malleable Iron Castings

ASTM A500/A500M (2013) Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes

ASTM A653/A653M (2017) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM A924/A924M (2017a) Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process

ASTM C1513 (2013) Standard Specification for Steel Tapping Screws for Cold-Formed Steel Framing Connections

ASTM D1187/D1187M (1997; E 2011; R 2011) Asphalt-Base Emulsions for Use as Protective Coatings for Metal

MASTER PAINTERS INSTITUTE (MPI)

MPI 79 (2012) Primer, Alkyd, Anti-Corrosive for Metal

SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC SP 3 (1982; E 2004) Power Tool Cleaning

SSPC SP 6/NACE No.3 (2007) Commercial Blast Cleaning
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

- Aluminum Roof Access Ladder, Fabrication and Installation drawings
- Embedded Angles and Plates, Installation Drawings

Submit templates, erection and installation drawings indicating thickness, type, grade, class of metal, and dimensions. Show construction details, reinforcement, anchorage, and installation with relation to the building construction.

SD-03 Product Data

- Aluminum Roof Access Ladder

1.3 QUALIFICATION OF WELDERS

Qualify welders in accordance with AWS D1.1/D1.1M. Use procedures, materials, and equipment of the type required for the work.

1.4 DELIVERY, STORAGE, AND PROTECTION

Protect from corrosion, deformation, and other types of damage. Store items in an enclosed area free from contact with soil and weather. Remove and replace damaged items with new items.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Structural Carbon Steel

- ASTM A36/A36M

2.1.2 Structural Tubing

- ASTM A500/A500M

2.1.3 Steel Pipe

- ASTM A53/A53M, Type E or S, Grade B

2.1.4 Fittings for Steel Pipe

- Standard malleable iron fittings ASTM A47/A47M

2.1.5 Anchor Bolts

- ASTM A307. Where exposed, shall be of the same material, color, and finish as the metal to which applied.

2.1.5.1 Adhesive Anchors

- Provide 3/8in. diameter adhesive anchors. Minimum masonry embedment shall be
4"in. Design values listed shall be as tested according to ASTM E488/E488M.

2.1.5.2 Lag Screws and Bolts

ASME B18.2.1, type and grade best suited for the purpose.

2.1.5.3 Bolts, Nuts, Studs and Rivets

ASME B18.2.2 or ASTM A307.

2.1.5.4 Screws

ASME B18.2.1, ASME B18.6.2, ASME B18.6.3 and ASTM C1513.

2.1.5.5 Washers

Provide plain washers to conform to ASME B18.21.1. Provide beveled washers for American Standard beams and channels, square or rectangular, tapered in thickness, and smooth. Provide lock washers to conform to ASME B18.21.1.

2.1.6 Aluminum Alloy Products

Conform to ASTM B209 for sheet plate, ASTM B221 for extrusions and ASTM B26/B26M or ASTM B108/B108M for castings, as applicable. Provide aluminum extrusions at least 1/8 inch thick and aluminum plate or sheet at least 0.050 inch thick.

2.2 FABRICATION FINISHES

2.2.1 Galvanizing

Hot-dip galvanize items specified to be zinc-coated, after fabrication where practicable. Galvanizing: ASTM A123/A123M, ASTM A153/A153M, ASTM A653/A653M or ASTM A924/A924M, G90, as applicable.

2.2.2 Galvanize

Anchor bolts, grating fasteners, washers, and parts or devices necessary for proper installation, unless indicated otherwise.

2.2.3 Repair of Zinc-Coated Surfaces

Repair damaged surfaces with galvanizing repair method and paint conforming to ASTM A780/A780M or by application of stick or thick paste material specifically designed for repair of galvanizing, as approved by Contracting Officer. Clean areas to be repaired and remove slag from welds. Heat surfaces to which stick or paste material is applied, with a torch to a temperature sufficient to melt the metallics in stick or paste; spread molten material uniformly over surfaces to be coated and wipe off excess material.

2.2.4 Shop Cleaning and Painting

2.2.4.1 Surface Preparation

Blast clean surfaces in accordance with SSPC SP 6/NACE No.3. Surfaces that will be exposed in spaces above ceiling or in attic spaces, crawl spaces, furred spaces, and chases may be cleaned in accordance with SSPC SP 3 in lieu of being blast cleaned. Wash cleaned surfaces which become contaminated with rust, dirt, oil, grease, or other contaminants with
solvents until thoroughly clean. Steel to be embedded in concrete shall be free of dirt and grease. Do not paint or galvanize bearing surfaces, including contact surfaces within slip critical joints, but coat with rust preventative applied in the shop.

2.2.4.2 Pretreatment, Priming and Painting

Apply pretreatment, primer, and paint in accordance with manufacturer's printed instructions.

2.2.5 Nonferrous Metal Surfaces

Protect by plating, anodic, or organic coatings.

2.3 MISCELLANEOUS PLATES AND SHAPES

Provide for items that do not form a part of the structural steel framework, such as lintels, sill angles, miscellaneous mountings and frames. Provide lintels fabricated from structural steel shapes over openings in masonry walls and partitions as indicated and as required to support wall loads over openings. Provide with connections and welds. Construct to have at least 8 inches bearing on masonry at each end.

Provide angles and plates, ASTM A36/A36M, for embedment as indicated. Galvanize embedded items exposed to the elements according to ASTM A123/A123M.

2.4 Aluminum Roof Access Ladders

Aluminum Roof Access Ladder shall be an OSHA-Compliant System, including ladder, wall brackets, floor-mounting brackets, security door and walk-thru side rails. Ladder system shall withstand 1,500-pound loading without failure. Ladder system shall be product of Precision Ladders, LLC P.O. Box 2279 Morristown, TN 37816 (800-225-7814) or approved equivalent.

PART 3 EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS

Install items at locations indicated, according to manufacturer's instructions. Verify all measurements and take all field measurements necessary before fabrication. Exposed fastenings shall be compatible materials, shall generally match in color and finish, and harmonize with the material to which fastenings are applied. Include materials and parts necessary to complete each item, even though such work is not definitely shown or specified. Poor matching of holes for fasteners shall be cause for rejection. Conceal fastenings where practicable. Thickness of metal and details of assembly and supports shall provide strength and stiffness. Form joints exposed to the weather shall be formed to exclude water. Items listed below require additional procedures.

3.2 WORKMANNISH

Provide miscellaneous metalwork that is well formed to shape and size, with sharp lines and angles and true curves. Drilling and punching shall produce clean true lines and surfaces. Provide continuous welding along the entire area of contact except where tack welding is permitted. Do not tack weld exposed connections of work in place and ground smooth. Provide a smooth finish on exposed surfaces of work in place and unless otherwise
approved, flush exposed riveting. Mill joints where tight fits are required. Corner joints shall be coped or mitered, well formed, and in true alignment. Accurately set work to established lines and elevations and securely fastened in place. Install in accordance with manufacturer's installation instructions and approved drawings, cuts, and details.

3.3 ANCHORAGE, FASTENINGS, AND CONNECTIONS

Provide anchorage where necessary for fastening miscellaneous metal items securely in place. Include for anchorage not otherwise specified or indicated slotted inserts, expansion shields, and powder-driven fasteners, when approved for concrete; toggle bolts and through bolts for masonry; machine and carriage bolts for steel; through bolts, lag bolts, and screws for wood. Do not use wood plugs in any material. Provide non-ferrous attachments for non-ferrous metal. Make exposed fastenings of compatible materials, generally matching in color and finish, to which fastenings are applied. Conceal fastenings where practicable.

3.4 BUILT-IN WORK

Form for anchorage metal work built-in with concrete or masonry, or provide with suitable anchoring devices as indicated or as required. Furnish metal work in ample time for securing in place as the work progresses.

3.5 WELDING

Perform welding, welding inspection, and corrective welding, in accordance with AWS D1.1/D1.1M. Use continuous welds on all exposed connections. Grind visible welds smooth in the finished installation.

3.6 FINISHES

3.6.1 Dissimilar Materials

Where dissimilar metals are in contact, protect surfaces with a coat conforming to MPI 79 to prevent galvanic or corrosive action. Where aluminum is in contact with concrete, plaster, mortar, masonry, wood, or absorptive materials subject to wetting, protect with ASTM D1187/D1187M, asphalt-base emulsion.

3.6.2 Field Preparation

Remove rust preventive coating just prior to field erection, using a remover approved by the rust preventive manufacturer. Surfaces, when assembled, shall be free of rust, grease, dirt and other foreign matter.

3.6.3 Environmental Conditions

Do not clean or paint surface when damp or exposed to foggy or rainy weather, when metallic surface temperature is less than 5 degrees F above the dew point of the surrounding air, or when surface temperature is below 45 degrees F or over 95 degrees F, unless approved by the Contracting Officer.

3.7 ALUMINUM ROOF ACCESS LADDER

Install Install Aluminum Roof Access Ladder System in strict conformance with OSHA and manufacturer's installation instructions.
SECTION 06 10 00
ROUGH CARPENTRY

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN LUMBER STANDARDS COMMITTEE (ALSC)

AMERICAN WOOD COUNCIL (AWC)

AMERICAN WOOD PROTECTION ASSOCIATION (AWPA)

AWPA BOOK (2015) AWPA Book of Standards
AWPA M2 (2016) Standard for the Inspection of Preservative Treated Wood Products for Industrial Use
AWPA M6 (2013) Brands Used on Preservative Treated Materials
AWPA P18 (2014) Nonpressure Preservatives

APA – THE ENGINEERED WOOD ASSOCIATION (APA)

APA F405 (19) Product Guide: Performance Rated Panels
APA L870 (2010) Voluntary Product Standard, PS 1-09, Structural Plywood
APA S350 (2014) PS 2-10, Performance Standard for Wood-Based Structural-Use Panels
ASME INTERNATIONAL (ASME)

ASME B18.2.1
(2012; Errata 2013) Square and Hex Bolts and Screws (Inch Series)

ASME B18.2.2

ASME B18.5.2.1M
(2006; R 2011) Metric Round Head Short Square Neck Bolts

ASME B18.5.2.2M
(1982; R 2010) Metric Round Head Square Neck Bolts

ASME B18.6.1
(2016) Wood Screws (Inch Series)

ASTM INTERNATIONAL (ASTM)

ASTM A153/A153M

ASTM A307
(2014; E 2017) Standard Specification for Carbon Steel Bolts, Studs, and Threaded Rod 60 000 PSI Tensile Strength

ASTM F1667

ASTM F547

FM GLOBAL (FM)

FM 4435
(2013) Roof Perimeter Flashing

INTERNATIONAL CODE COUNCIL (ICC)

ICC IBC

NORTEASTERN LUMBER MANUFACTURERS ASSOCIATION (NELMA)

NELMA Grading Rules

SOUTHERN CYPRESS MANUFACTURERS ASSOCIATION (SCMA)

SCMA Spec

SOUTHERN PINE INSPECTION BUREAU (SPIB)

SPIB 1003
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-06 Test Reports

Preservative-treated lumber and plywood
Preservative treatment

1.3 DELIVERY AND STORAGE

Deliver materials to the site in an undamaged condition. Store, protect, handle, and install prefabricated structural elements in accordance with manufacturer's instructions and as specified. Store materials off the ground to provide proper ventilation, with drainage to avoid standing water, and protection against ground moisture and dampness. Store materials with a moisture barrier at both the ground level and as a cover forming a well ventilated enclosure. Remove defective and damaged materials and provide new materials. Store separated reusable wood waste convenient to cutting station and area of work.

1.4 GRADING AND MARKING

1.4.1 Lumber

Mark each piece of framing and board lumber or each bundle of small pieces of lumber with the grade mark of a recognized association or independent inspection agency. Such association or agency shall be certified by the Board of Review, American Lumber Standards Committee, to grade the species used. Surfaces that are to be exposed to view shall not bear grademarks, stamps, or any type of identifying mark. Hammer marking will be permitted on timbers when all surfaces will be exposed to view.
1.4.2 Plywood

Mark each sheet with the mark of a recognized association or independent inspection agency that maintains continuing control over the quality of the plywood. The mark shall identify the plywood by species group or span rating, exposure durability classification, grade, and compliance with APA L870. Surfaces that are to be exposed to view shall not bear grademarks or other types of identifying marks.

1.4.3 Preservative-Treated Lumber and Plywood

The Contractor shall be responsible for the quality of treated wood products. Each treated piece shall be inspected in accordance with AWPA M2 and permanently marked or branded, by the producer, in accordance with AWPA M6. The Contractor shall provide Contracting Officer's Representative (COR) with the inspection report of an approved independent inspection agency that offered products comply with applicable AWPA Standards. The appropriate Quality Mark on each piece will be accepted, in lieu of inspection reports, as evidence of compliance with applicable AWPA treatment standards.

1.5 SIZES AND SURFACING

ALSC PS 20 for dressed sizes of yard and structural lumber. Lumber shall be surfaced four sides. Size references, unless otherwise specified, are nominal sizes, and actual sizes shall be within manufacturing tolerances allowed by the standard under which the product is produced. Other measurements are IP or SI standard.

1.6 MOISTURE CONTENT

Air-dry or kiln-dry lumber. Kiln-dry treated lumber after treatment. Maximum moisture content of wood products shall be as follows at the time of delivery to the job site:

a. Framing lumber and board, 19 percent maximum

b. Materials other than lumber; moisture content shall be in accordance with standard under which the product is produced

1.7 PRESERVATIVE TREATMENT

Treat wood products with waterborne wood preservatives conforming to AWPA P5. Pressure treatment of wood products shall conform to the requirements of AWPA BOOK Use Category System Standards U1 and T1. Pressure-treated wood products shall not contain arsenic, chromium, or other agents classified as carcinogenic, probably carcinogenic, or possibly carcinogenic to humans (compounds in Groups 1, 2A, or 2B) by the International Agency for Research on Cancer (IARC), Lyon, France. Pressure-treated wood products shall not exceed the limits of the U.S. EPA's Toxic Characteristic Leaching Procedure (TCLP), and shall not be classified as hazardous waste. Submit certification from treating plant stating chemicals and process used and net amount of preservatives retained are in conformance with specified standards.

a. 0.25 pcft intended for above ground use.

b. All wood shall be air or kiln dried after treatment. Specific treatments shall be verified by the report of an approved independent
Minimize cutting and avoid breathing sawdust. Brush coat areas that are cut or drilled after treatment with either the same preservative used in the treatment or with a 2 percent copper naphthenate solution. All lumber shall be preservative treated. The following items shall be preservative treated:

1. Nailers, edge strips, curbs, and decking for roof decks.

1.7.1 New Construction

Use a boron-based preservative conforming to AWPA P18, sodium silicate wood mineralization process, or Ammoniacal Copper Quaternary Compound to treat wood. Use boron-based preservatives for above-ground applications only.

PART 2 PRODUCTS

2.1 MATERIALS

2.2 LUMBER

2.2.1 Framing Lumber

Framing lumber such as cant strips, and nailers and board lumber such as roof decking shall be one of the species listed in the table below. Minimum grade of species shall be as listed.
<table>
<thead>
<tr>
<th>Grading Rules</th>
<th>Species</th>
<th>Framing</th>
<th>Board Lumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCLIB 17 standard grading rules</td>
<td>Douglas Fir-Larch, Hem-Fir, Mountain Hemlock, Sitka Spruce, Western Cedars, Western Hemlock</td>
<td>All Species: Standard Light Framing or No. 3 Structural Light Framing (Stud Grade for 2x4 nominal size, 3 m 10 feet and shorter)</td>
<td>All Species: Standard</td>
</tr>
<tr>
<td>Grading Rules</td>
<td>Species</td>
<td>Framing</td>
<td>Board Lumber</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SPIB 1003 standard grading rules</td>
<td>Southern Pine</td>
<td>All Species: Standard Light Framing or No. 3 Structural Light Framing (Stud Grade for 2x4 nominal size, 3 m 10 feet and shorter)</td>
<td>No. 2 Boards</td>
</tr>
<tr>
<td>SCMA Spec standard specifications</td>
<td>Cypress</td>
<td>No. 2 Common</td>
<td>No. 2 Common</td>
</tr>
<tr>
<td>NELMA Grading Rules standard grading rules</td>
<td>Balsam Fir, Eastern Hemlock-Tamarack, Eastern Spruce, Eastern White Pine, Northern Pine, Northern Pine-Cedar</td>
<td>All Species: Standard Light Framing or No. 3 Structural Light Framing (Stud Grade for 2x4 nominal size, 3 m 10 feet and shorter)</td>
<td>All Species: No. 3 Common except Standard for Eastern White and Northern Pine</td>
</tr>
</tbody>
</table>

Construction Heart
2.3 PLYWOOD, STRUCTURAL-USE,

APA L870, APA S350, APA E445, and APA F405 respectively. 2.3.1 Roof Sheathing

2.3.1.1 Plywood

C-D Grade, Exposure 1, with an Identification Index of not less than 24/0

2.3.2 Other Uses

2.3.2.1 Plywood

Plywood for Parapet Sheathing. 2.4 OTHER MATERIALS

2.4.1 Miscellaneous Wood Members

2.4.1.1 Blocking

Blocking shall be standard or number 2 grade.

2.5 ROUGH HARDWARE

Unless otherwise indicated or specified, rough hardware shall be of the type and size necessary for the project requirements. Sizes, types, and spacing of fastenings of manufactured building materials shall be as recommended by the product manufacturer unless otherwise indicated or specified. Rough hardware exposed to the weather or embedded in or in contact with preservative treated wood, exterior masonry, or concrete walls or slabs shall be hot-dip zinc-coated in accordance with ASTM A153/A153M.

2.5.1 Bolts, Nuts, Studs, and Rivets

ASME B18.2.1, ASME B18.5.2.1M, ASME B18.5.2.2M and ASME B18.2.2.

2.5.2 Anchor Bolts

ASTM A307, size as indicated, complete with nuts and washers.

2.5.3 Expansion Shields

2.5.4 Lag Screws and Lag Bolts

ASME B18.2.1.

2.5.5 Wood Screws

ASME B18.6.1.

2.5.6 Nails

ASTM F547, size and type best suited for purpose. In general, 8-penny or larger nails shall be used for nailing through 1 inch thick lumber and for toe nailing 2 inch thick lumber; 16-penny or larger nails shall be used for nailing through 2 inch thick lumber. Nails used with treated lumber and sheathing shall be hot-dipped galvanized in accordance with ASTM A153/A153M. Nailing shall be in accordance with the recommended nailing schedule.
3.2.1 Wood Roof Nailers Curbs

Provide sizes and configurations indicated or specified and anchored securely to continuous construction.

3.2.1.1 Roof Edge Strips and Nailers

Provide at perimeter of roof, around openings through roof, and where roofs
abut walls, curbs, and other vertical surfaces. Except where indicated otherwise, nailers shall be 6 inches wide and the same thickness as the insulation. Anchor nailers securely to underlying construction. Anchor perimeter nailers in accordance with FM 4435.

3.2.1.2 Curbs

Provide wood curbs for scuttles and ventilators, as indicated, specified, or necessary and of lumber.

3.2.2 Wood Blocking

Provide proper sizes and shapes at proper locations for the installation and attachment of wood and other finish materials, fixtures, equipment, and items indicated or specified.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D2583 (2013a) Indentation Hardness of Rigid Plastics by Means of a Barcol Impessor

INTERNATIONAL ASSOCIATION OF PLUMBING AND MECHANICAL OFFICIALS (IAPMO)

IAPMO Z124.3 (2005) Plastic Lavatories

IAPMO Z124.6 (2007) Plastic Sinks

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

ANSI/NEMA LD 3 (2005) Standard for High-Pressure Decorative Laminates

NSF INTERNATIONAL (NSF)

NSF/ANSI 51 (2012) Food Equipment Materials

TILE COUNCIL OF NORTH AMERICA (TCNA)

TCNA Hdbk (2017) Handbook for Ceramic, Glass, and
1.2 SYSTEM DESCRIPTION

a. Work under this section includes countertops and other items utilizing solid polymer (solid surfacing) fabrication as shown on the drawings and as described in this specification. Do not change source of supply for materials after work has started, if the appearance of finished work would be affected.

b. In most instances, installation of solid polymer fabricated components and assemblies will require strong, correctly located structural support provided by other trades. To provide a stable, sound, secure installation, close coordination is required between the solid polymer fabricator/installer and other trades to ensure that necessary structural wall support, cabinet counter top structural support, proper clearances, and other supporting components are provided for the installation of wall panels, countertops, shelving, and all other solid polymer fabrications to the degree and extent recommended by the solid polymer manufacturer.

c. Appropriate staging areas for solid polymer fabrications. Allow variation in component size and location of openings of plus or minus 1/8 inch.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Installation

SD-03 Product Data
 Solid polymer material
 Fabrications

SD-04 Samples
 Material
 Counter Tops

SD-07 Certificates Qualifications

SD-10 Operation and Maintenance Data
 Clean-up

1.4 QUALITY ASSURANCE

1.4.1 Qualifications

To ensure warranty coverage, solid polymer fabricators shall be certified
to fabricate by the solid polymer material manufacturer being utilized. Mark all fabrications with the fabricator's certification label affixed in an inconspicuous location. Fabricators shall have a minimum of 5 years of experience working with solid polymer materials. Submit solid polymer manufacturer's certification attesting to fabricator qualification approval.

1.5 DELIVERY, STORAGE, AND HANDLING

Do not deliver materials to project site until areas are ready for installation. Deliver components and materials to the site undamaged, in containers clearly marked and labeled with manufacturer’s name. Materials shall be stored indoors and adequate precautions taken to prevent damage to finished surfaces. Provide protective coverings to prevent physical damage or staining following installation, for duration of project.

1.6 WARRANTY

Provide manufacturer's warranty of ten years against defects in materials, excluding damages caused by physical or chemical abuse or excessive heat. Warranty shall provide for material and labor for replacement or repair of defective material for a period of ten years after component installation.

PART 2 PRODUCTS

2.1 MATERIAL

Provide solid polymer material that is a homogeneous filled solid polymer; not coated, laminated or of a composite construction; meeting IAPMO Z124.3 and IAPMO Z124.6 requirements. Material shall have minimum physical and performance properties specified. Superficial damage to a depth of 0.01 inch shall be repairable by sanding or polishing. Material thickness shall be as indicated on the drawings. In no case shall material be less than 1/4 inch in thickness. Submit a minimum 4 by 4 inch sample of each color and pattern for approval. Samples shall indicate full range of color and pattern variation. Approved samples shall be retained as a standard for this work. Submit test report results from an independent testing laboratory attesting that the submitted solid polymer material meets or exceeds each of the specified performance requirements.

2.1.1 Cast, 100 Percent Acrylic Polymer Solid Surfacing Material

Cast, 100 percent acrylic solid polymer material shall be composed of acrylic polymer, mineral fillers, and pigments and shall meet the following minimum performance requirements:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT (min. or max.)</th>
<th>TEST PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>291 kg/cm² 4000 psi (max.)</td>
<td>ASTM D638</td>
</tr>
<tr>
<td>Hardness</td>
<td>55-Barcol Impessor (min.)</td>
<td>ASTM D2583</td>
</tr>
<tr>
<td>Thermal Expansion</td>
<td>0.000386cm/cm/deg C 0.00023 in/in/F (max.)</td>
<td>ASTM D696</td>
</tr>
</tbody>
</table>
2.1.2 Acrylic-modified Polymer Solid Surfacing Material

Cast, solid polymer material shall be composed of a formulation containing acrylic and polyester polymers, mineral fillers, and pigments. Acrylic polymer content shall be not less than 5 percent and not more than 10 percent in order to meet the following minimum performance requirements:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT</th>
<th>TEST PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling Water Surface Resistance</td>
<td>No Change</td>
<td>ANSI/NEMA LD 3-3.05</td>
</tr>
<tr>
<td>High Temperature Resistance</td>
<td>No Change</td>
<td>ANSI/NEMA LD 3-3.06</td>
</tr>
<tr>
<td>Impact Resistance (Ball drop)</td>
<td></td>
<td>ANSI/NEMA LD 3-303</td>
</tr>
<tr>
<td>6.4 mm 1/4 inch sheet</td>
<td>910 mm, 227 g 36 inches, 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>12.7 mm 1/2 inch sheet</td>
<td>3550 mm, 227 g 140 inches, 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>19 mm 3/4 inch sheet</td>
<td>5070 mm, 227 g 200 inches, 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>Mold & Mildew Growth</td>
<td>No growth</td>
<td>ASTM G21</td>
</tr>
<tr>
<td>Bacteria Growth</td>
<td>No growth</td>
<td>ASTM G21</td>
</tr>
<tr>
<td>Liquid Absorption (Weight in 24 hrs.)</td>
<td>0.1 percent max.</td>
<td>ASTM D570</td>
</tr>
<tr>
<td>Flammability</td>
<td></td>
<td>ASTM E84</td>
</tr>
<tr>
<td>Flame Spread</td>
<td>25 max.</td>
<td></td>
</tr>
<tr>
<td>Smoke Developed</td>
<td>30 max.</td>
<td></td>
</tr>
<tr>
<td>Sanitation</td>
<td>"Food Contact" approval</td>
<td>NSF/ANSI 51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT</th>
<th>TEST PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>288 kg/cm² 4100 psi (max.)</td>
<td>ASTM D638</td>
</tr>
<tr>
<td>Hardness</td>
<td>50-Barcol Impresor (min.)</td>
<td>ASTM D2583</td>
</tr>
<tr>
<td>Thermal Expansion</td>
<td>.0000386cm/cm/deg C .000023 in/in/F (max.)</td>
<td>ASTM D696</td>
</tr>
<tr>
<td>Boiling Water Surface Resistance</td>
<td>No Change</td>
<td>ANSI/NEMA LD 3-3.05</td>
</tr>
<tr>
<td>PROPERTY</td>
<td>REQUIREMENT (min. or max.)</td>
<td>TEST PROCEDURE</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>------------------------------</td>
</tr>
<tr>
<td>High Temperature Resistance</td>
<td>No Change</td>
<td>ANSI/NEMA LD 3-3.06</td>
</tr>
<tr>
<td>Impact Resistance (Ball drop)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4 mm 1/4 inch sheet</td>
<td>910 mm, 227 g 36 inches, 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>12.7 mm 1/2 inch sheet</td>
<td>3550 mm, 227 g 140 inches, 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>19 mm 3/4 inch sheet</td>
<td>5070 mm, 227 g 200 inches, 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>Mold & Mildew Growth</td>
<td>No growth</td>
<td>ASTM G21</td>
</tr>
<tr>
<td>Bacteria Growth</td>
<td>No growth</td>
<td>ASTM G21</td>
</tr>
<tr>
<td>Liquid Absorption</td>
<td>0.6 percent max.</td>
<td>ASTM D570</td>
</tr>
<tr>
<td>(Weight in 24 hrs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flammability</td>
<td></td>
<td>ASTM E84</td>
</tr>
<tr>
<td>Flame Spread</td>
<td>25 max.</td>
<td></td>
</tr>
<tr>
<td>Smoke Developed</td>
<td>100 max.</td>
<td></td>
</tr>
<tr>
<td>Sanitation</td>
<td>"Food Contact" approval</td>
<td>NSF/ANSI 51</td>
</tr>
</tbody>
</table>

2.1.3 Material Patterns and Colors

Patterns and colors for all solid polymer components and fabrications shall be those indicated on the project drawings, or as selected by the Contracting Officer. Pattern and color shall occur, and shall be consistent in appearance, throughout the entire depth (thickness) of the solid polymer material.

2.1.4 Surface Finish

Exposed finished surfaces and edges shall receive a uniform appearance. Exposed surface finish shall be as indicated on the drawings.

2.2 ACCESSORY PRODUCTS

Accessory products, as specified below, shall be manufactured by the solid polymer manufacturer or shall be products approved by the solid polymer manufacturer for use with the solid polymer materials being specified.

2.2.1 Seam Adhesive

Seam adhesive shall be a two-part adhesive kit to create permanent,
inconspicuous, non-porous, hard seams and joints by chemical bond between solid polymer materials and components to create a monolithic appearance of the fabrication. Adhesive shall be approved by the solid polymer manufacturer. Adhesive shall be color-matched to the surfaces being bonded where solid-colored, solid polymer materials are being bonded together. The seam adhesive shall be clear or color matched where particulate patterned, solid polymer materials are being bonded together.

2.2.2 Panel Adhesive

Panel adhesive shall be neoprene based panel adhesive meeting TCNA Hdbk, Underwriter's Laboratories (UL) listed. Use this adhesive to bond solid polymer components to adjacent and underlying substrates.

2.2.3 Silicone Sealant

Sealant shall be a mildew-resistant, FDA and OSHA Nationally Recognized Testing Laboratory (NRTL) listed silicone sealant or caulk in a clear formulation. The silicone sealant shall be approved for use by the solid polymer manufacturer. Use sealant to seal all expansion joints between solid polymer components and all joints between solid polymer components and other adjacent surfaces such as walls, floors, ceiling, and plumbing fixtures.

2.2.4 Mounting Hardware

Provide mounting hardware, including sink/bowl clips, inserts and fasteners for attachment of undermount sinks and lavatories.

2.3 FABRICATIONS

Components shall be factory or shop fabricated to sizes and shapes indicated, to the greatest extent practical, in accordance with approved Shop Drawings and manufacturer's requirements. Provide factory cutouts for sinks, lavatories, and plumbing fixtures where indicated on the drawings. Contours and radii shall be routed to template, with edges smooth. Defective and inaccurate work will be rejected. Submit product data indicating product description, fabrication information, and compliance with specified performance requirements for solid polymer, joint adhesive, sealants, and heat reflective tape. Both the manufacturer of materials and the fabricator shall submit a detailed description of operations and processes in place that support efficient use of natural resources, energy efficiency, emissions of ozone depleting chemicals, management of water and operational waste, indoor environmental quality, and other production techniques supporting sustainable design and products.

2.3.1 Joints and Seams

Form joints and seams between solid polymer components using manufacturer's approved seam adhesive. Joints shall be inconspicuous in appearance and without voids to create a monolithic appearance.

2.3.2 Edge Finishing

Rout and finish component edges to a smooth, uniform appearance and finish. Edge shapes and treatments, including any inserts, shall be as detailed on the drawings. Rout all cutouts, then sand all edges smooth. Repair or reject defective or inaccurate work.
2.3.3 Counter Top Splashes

Fabricate backsplashes and end splashes from 1/2 inch thick solid surfacing material to be 4 inches high in conformance with dimensions and shapes as indicated on the drawings. Backsplashes and end splashes shall be provided at locations indicated on the drawings. Backsplashes shall be shop fabricated and be loose, to be field attached.

2.3.3.1 End Splashes

End splashes shall be provided loose for installation at the jobsite after horizontal surfaces to which they are to be attached have been installed.

2.3.4 Counter Tops

Fabricate all solid surfacing, solid polymer counter top and vanity top components from 1/2 inch thick material. Edge details, dimensions, locations, and quantities shall be as indicated on the drawings. Counter tops shall be complete with 4 inch high loose where indicated on the drawings. Attach 2 inch wide reinforcing strip of polymer material under each horizontal counter top seam. Solid polymer material shall be of a pattern and color as indicated on the drawings.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Components

Install all components and fabricated units plumb, level, and rigid. Make field joints between solid polymer components using solid polymer manufacturer's approved seam adhesives, to provide a monolithic appearance with joints inconspicuous in the finished work. Solid polymer sinks and bowls shall be installed using a color-matched seam adhesive. Plumbing connections to sinks and lavatories shall be made in accordance with Section 22 00 00 PLUMBING, GENERAL PURPOSE.

3.1.1.1 Loose Counter Top Splashes

Mount loose splashes in the locations noted on the drawings. Loose splashes shall be adhered to the counter top with a color matched silicone sealant when the solid polymer components are solid colors. Use a clear silicone sealant to provide adhesion of particulate patterned solid polymer splashes to counter tops.

3.1.2 Silicone Sealant

Use a clear, silicone sealant or caulk to seal all expansion joints between solid polymer components and all joints between solid polymer components and other adjacent surfaces such as walls, floors, ceiling, and plumbing fixtures. Sealant bead shall be smooth and uniform in appearance and shall be the minimum size necessary to bridge any gaps between the solid surfacing material and the adjacent surface. Bead shall be continuous and run the entire length of the joint being sealed.

3.1.3 Plumbing

Make plumbing connections to sinks and lavatories in accordance with Section 22 00 00 PLUMBING, GENERAL PURPOSE.
3.2 CLEAN-UP

Components shall be cleaned after installation and covered to protect against damage during completion of the remaining project items. Components damaged after installation by other trades will be repaired or replaced at the General Contractor's cost. Component supplier will provide a repair/replace cost estimate to the General Contractor who shall approve estimate before repairs are made. Maintenance video shall be provided, if available. Maintenance kit for matte finishes shall be submitted.

-- End of Section --
SECTION 07 21 16
MINERAL FIBER BLANKET INSULATION

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM E136 (2016) Behavior of Materials in a Vertical Tube Furnace at 750 Degrees C

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3; TIA 17-4; TIA 17-5; TIA 17-6; TIA 17-7; TIA 17-8; TIA 17-9; TIA 17-10; TIA 17-11; TIA 17-12; TIA 17-13; TIA 17-14) National Electrical Code

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910.134 Respiratory Protection

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data
Blanket Insulation
Accessories

SD-08 Manufacturer's Instructions

Insulation

1.3 DELIVERY, STORAGE, AND HANDLING

1.3.1 Delivery

Deliver materials to site in original sealed wrapping bearing manufacturer's name and brand designation, specification number, type, grade, R-value, and class. Store and handle to protect from damage. Do not allow insulation materials to become wet, soiled, crushed, or covered with ice or snow. Comply with manufacturer's recommendations for handling, storing, and protecting of materials before and during installation.

1.3.2 Storage

Inspect materials delivered to the site for damage; unload and store out of weather in manufacturer's original packaging. Store only in dry locations, not subject to open flames or sparks, and easily accessible for inspection and handling.

1.4 SAFETY PRECAUTIONS

1.4.1 Respirators

Provide installers with dust/mist respirators, training in their use, and protective clothing, all approved by National Institute for Occupational Safety and Health (NIOSH)/Mine Safety and Health Administration (MSHA) in accordance with 29 CFR 1910.134.

1.4.2 Other Safety Concerns

Consider other safety concerns and measures as outlined in ASTM C930.

PART 2 PRODUCTS

2.1 BLANKET INSULATION

ASTM C665, Type I, blankets without membrane coverings, except a flame spread rating of 25 or less and a smoke developed rating of 150 or less when tested in accordance with ASTM E84.

2.1.1 Prohibited Materials

Do not provide asbestos-containing materials.

2.2 BLOCKING

Wood, metal, unfaced mineral fiber blankets in accordance with ASTM C665, Type I, or other approved materials. Use only non-combustible materials meeting the requirements of ASTM E136 for blocking around chimneys and heat producing devices.
2.3 ACCESSORIES

2.3.1 Mechanical Fasteners

Corrosion resistant fasteners as recommended by the insulation manufacturer.

PART 3 EXECUTION

3.1 EXISTING CONDITIONS

Before installing insulation, ensure that areas that will be in contact with the insulation are dry and free of projections which could cause voids, compressed insulation, or punctured vapor retarders. If moisture or other conditions are found that do not allow the workmanlike installation of the insulation, do not proceed but notify Contracting Officer of such conditions.

3.2 PREPARATION

3.2.1 Blocking Around Heat Producing Devices

Install non-combustible blocking around heat producing devices to provide the following clearances:

a. Recessed lighting fixtures, including wiring compartments, ballasts, and other heat producing devices, unless these are certified by the manufacturer for installation surrounded by insulation: 3 inches from outside face of fixtures and devices or as required by NFPA 70 and, if insulation is to be placed above fixture or device, 24 inches above fixture.

b. Vents and vent connectors used for venting the products of combustion, flues, and chimneys other than masonry chimneys: Minimum clearances as required by NFPA 211.

c. Gas Fired Appliances: Clearances as required in NFPA 54.

d. Oil Fired Appliances: Clearances as required in NFPA 31.

Blocking around flues and chimneys is not required when insulation blanket, including any attached vapor retarder, passed ASTM E136, in addition to meeting all other requirements stipulated in Part 2. Blocking is also not required if the chimneys are certified by the manufacturer for use in contact with insulating materials.

3.3 INSTALLATION

3.3.1 Insulation

Install and handle insulation in accordance with manufacturer's instructions. Keep material dry and free of extraneous materials. Any materials that show visual evidence of biological growth due to presence of moisture must not be installed on the building project. Ensure personal protective clothing and respiratory equipment is used as required. Observe safe work practices.

3.3.1.1 Electrical wiring

Do not install insulation in a manner that would sandwich electrical wiring between two layers of insulation.
3.3.1.2 Continuity of Insulation

Install blanket insulation to butt tightly against adjoining blankets and to studs, rafters, joists, sill plates, headers and any obstructions. Where insulation required is thicker than depth of joist, provide full width blankets to cover across top of joists. Provide continuity and integrity of insulation at corners, wall to ceiling joints, roof, and floor. Avoid creating thermal bridges.

3.3.1.3 Installation at Bridging and Cross Bracing

Insulate at bridging and cross bracing by splitting blanket vertically at center and packing one half into each opening. Butt insulation at bridging and cross bracing; fill in bridged area with loose or scrap insulation.

3.3.1.4 Insulation without Affixed Vapor Retarder

Provide snug friction fit to hold insulation in place. Stuff pieces of insulation into cracks between trusses, joists, studs and other framing, such as at attic access doors, door and window heads, jambs, and sills, band joists, and headers.

3.3.1.5 Sizing of Blankets

Provide only full width blankets when insulating between trusses, joists, or studs. Size width of blankets for a snug fit where trusses, joists or studs are irregularly spaced.

--- End of Section ---
SECTION 07 22 00

ROOF AND DECK INSULATION

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

INTERNATIONAL CODE COUNCIL (ICC)

UNDERWRITERS LABORATORIES (UL)

UL 1256 (2002; Reprint Jul 2013) Fire Test of Roof Deck Constructions

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Insulation Board Layout and Attachment; G

SD-03 Product Data
Insulation; G
Protection Board; G
Fasteners; G
Sheathing Paper; G
SD-06 Test Reports
Flame Spread Rating; G
SD-07 Certificates
Installer Qualifications; G
SD-08 Manufacturer's Instructions
Nails and Fasteners; G
Roof Insulation; G

1.3 SHOP DRAWINGS

Submit insulation board layout and attachment indicating methods of attachment and spacing, transitions, tapered components, thicknesses of materials, and closure and termination conditions. Show locations of ridges, valleys, crickets, interface with, and slope to, roof drains. Base shop drawings on verified field measurements and include verification of existing conditions.

1.4 PRODUCT DATA

Include data for material descriptions, recommendations for product shelf life, requirements for protection board or coatings, and precautions for flammability and toxicity. Include data to verify compatibility of sealants with insulation.

1.5 MANUFACTURER'S INSTRUCTIONS

Include field of roof and perimeter attachment requirements.

Provide a complete description of installation sequencing for each phase of the roofing system. Include weatherproofing procedures.

1.6 QUALITY CONTROL

Provide certification of installer qualifications from the insulation manufacturer confirming the specific installer has the required qualifications for installing the specific roof insulation system(s) indicated.
1.7 FIRE PERFORMANCE REQUIREMENTS

1.7.1 Insulation in Roof Systems

Comply with the requirements of ICC IBC or UL 1256. Roof insulation to have a flame spread rating of 75 or less when tested in accordance with ASTM E84. Additional documentation of compliance with flame spread rating is not required when insulation of the type used for this project as part of the specific roof assembly is listed and labeled as FM Class 1 approved.

1.7.2 Fire Resistance Ratings for Roofs

Provide in accordance with ICC IBC Chapter 7 and Table 721.1(3) Min Protection For Floor and Roof Systems.

1.8 DELIVERY, STORAGE, AND HANDLING

1.8.1 Delivery

Deliver materials to the project site in manufacturer's unopened and undamaged standard commercial containers bearing the following legible information:

a. Name of manufacturer

b. Brand designation

c. Specification number, type, and class, as applicable, where materials are covered by a referenced specification

Deliver materials in sufficient quantity to allow continuity of the work.

1.8.2 Storage and Handling

Store and handle materials in accordance with manufacturer's printed instructions. Protect from damage, exposure to open flame or other ignition sources, wetting, condensation, and moisture absorption. Keep materials wrapped and separated from off-gassing materials (such as drying paints and adhesives). Do not use materials that have visible moisture or biological growth. Store in an enclosed building or trailer that provides a dry, adequately ventilated environment. Replace damaged material with new material.

1.9 ENVIRONMENTAL CONDITIONS

Do not install roof insulation during inclement weather or when air temperature is below 40 degrees F and interior humidity is 45 percent or greater, or when there is visible ice, frost, or moisture on the roof deck.

1.10 PROTECTION

1.10.1 Completed Work

Cover completed work with protection board for the duration of construction. Avoid traffic on completed work particularly when ambient temperature is above 80 degrees F. Replace crushed or damaged insulation prior to roof surface installation.
PART 2 PRODUCTS

2.1 INSULATION

2.1.1 Insulation Types

Provide the following roof insulation materials. Provide roof insulation that is compatible with attachment methods for the specified insulation and roof membrane.

a. Polyisocyanurate Board: Provide in accordance with ASTM C1289 REV A Type II, fibrous felt or glass mat membrane both sides, except minimum compressive strength of 20 pounds per square inch (psi).

2.1.2 Insulation Thickness

As necessary to provide minimum slope of 1/2 inch per foot.

2.1.3 Tapered Roof Insulation

One layer of the tapered roof insulation assembly must be factory tapered to a slope of not less than 1/2 inch per foot. Factory fabricate mitered joints from two diagonally cut boards or one board shaped to provide required slopes.

2.1.4 Cants and Tapered Edge Strips

Provide preformed cants and tapered edge strips of the same material as the roof insulation. When unavailable, provide pressure-preservative treated wood, wood fiberboard, or rigid perlite board cants and edge strips as recommended by the roofing manufacturer for the specific application, unless otherwise indicated. Face of cant strips to incline at 45 degrees with a minimum vertical height of 4 inches. Taper edge strips at a rate of one to 1 1/2 inch per foot down to approximately 1/8 inch thick.

2.2 PROTECTION BOARD

For use as a protection board for hot-mopped, roofing membrane over roof insulation.

2.2.1 Glass Mat Gypsum Roof Board

ASTM C1177/C1177M, 0 Flame Spread and 0 Smoke Developed when tested in accordance with ASTM E84, 500 psi, Class A, non-combustible, 1/2 inch thick, 4 by 8 feet board size.

2.3 BITUMENS

2.3.1 Asphalt Primer

Provide in accordance with ASTM D41/D41M.

2.3.2 Asphalt

Provide in accordance with ASTM D312, Type III or IV. Asphalt flash point, finished blowing temperature, and equiviscous temperature (EVT) for mop and mechanical spreader application must be indicated on each container.
2.3.3 Asphalt Roof Cement

Provide in accordance with ASTM D4586/D4586M, Type I, for horizontal surfaces and surfaces sloped from 0 to 3 inches per foot. Type II for vertical and surfaces sloped more than 3 inches per foot.

2.4 SHEATHING PAPER FOR WOOD DECKS

Rosin-sized building paper or unsaturated felt weighing not less than 5 pounds per 100 square feet.

2.5 FASTENERS

Provide flush-driven fasteners through flat round or hexagonal steel or plastic plates. Provide zinc-coated steel plates, flat round not less than 1 3/8 inch diameter, hexagonal not less than 28 gage. Provide high-density plastic plates, molded thermoplastic with smooth top surface, reinforcing ribs and not less than 3 inches in diameter. Fully recess fastener head into plastic plate after it is driven. Form plates to prevent dishing. Do not use bell or cup shaped plates. Provide fasteners in accordance with insulation manufacturer's recommendations for holding power when driven.

2.5.1 Roofing Nails for Wood Decks

Barbed 11 gage, zinc-coated nails with 7/16 to 5/8 inch diameter heads or annular ring shank, square head, one piece composite nails. Provide nails long enough to penetrate wood deck at least 5/8 inch without protruding through underside of decking.

2.5.2 Fasteners for Plywood Decks

Annular ring shank, square head, one piece composite nails long enough to penetrate into plywood decks approximately 1/2 inch without protruding through underside of decking.

2.6 WOOD NAILERS

Pressure-preservative treated as specified in Section 06 10 00 ROUGH CARPENTRY.

PART 3 EXECUTION

3.1 EXAMINATION AND PREPARATION

3.1.1 Surface Inspection

Ensure surfaces are clean, smooth, and dry prior to application. Check roof deck surfaces, for defects before starting work.

The Contracting Officer will inspect and approve the surfaces immediately before starting installation. Prior to installing insulation, perform the following:

a. Examine wood decks to ascertain that deck boards have been properly nailed and that exposed nail heads have been set.

3.1.2 Surface Preparation

Correct defects and inaccuracies in roof deck surface to eliminate poor
3.2 INSULATION INSTALLATION

Apply insulation in two layers with staggered joints when total required thickness of insulation exceeds 1/2 inch. Lay insulation so that continuous longitudinal joints are perpendicular to direction of roofing, as specified in Section 07 52 00, and end joints of each course are staggered with those of adjoining courses. When using multiple layers of insulation, provide joints of each succeeding layer that are parallel and offset in both directions with respect to the layer below. Keep insulation 1/2 inch clear of vertical surfaces penetrating and projecting from roof surface.

3.2.1 Special Precautions for Installation of Foam Insulation

3.2.1.1 Polyisocyanurate Insulation

Where polyisocyanurate foam board insulation is provided, install 1/2 inch thick, glass mat gypsum roof board, over top surface of foam board insulation. Stagger joints of insulation with respect to foam board insulation below.

3.2.2 Cant Strips

Where indicated, provide cant strips at intersections of roof with walls, parapets, and curbs extending above roof. Wood cant strips must bear on and be anchored to wood blocking. Fit cant strips flush to vertical surfaces. Where possible, nail cant strips to adjoining surfaces. Where cant strips are installed against non-nailable materials, install in heavy mopping of asphalt or set in a heavy coating of asphalt roof cement or an approved adhesive.

3.2.3 Tapered Edge Strips

Where indicated, provide edge strips in the right angle formed by the juncture of roof and wood nailing strips that extend above the level of the roof. Install edge strips flush to vertical surfaces of wood nailing strips. Where possible, nail edge strips to adjoining surfaces. Where installed against non-nailable materials, install in a heavy mopping of asphalt or set in a heavy coating of asphalt roof cement or an approved adhesive.

3.3 PROTECTION

3.3.1 Protection of Applied Insulation

Completely cover each day's installation of insulation with finished
roofing specified in 07 52 00 on same day. Phased construction is not permitted. Protect open spaces between insulation and parapets or other walls and spaces at curbs, until permanent roofing and flashing are applied. Storing, walking, wheeling, or trucking directly on insulation or on roofed surfaces is not permitted. Provide smooth, clean board or plank walkways, runways, and platforms near supports, as necessary, to distribute weight in accordance with indicated live load limits of roof construction. Protect exposed edges of insulation with cutoffs at the end of each work day or whenever precipitation is imminent. Cutoffs must be two layers of bituminous-saturated felt set in plastic bituminous cement set in roof cement. Fill all profile voids in cutoffs to prevent trapping moisture below the membrane. Remove cutoffs when work resumes.

3.3.2 Damaged Work and Materials

Restore work and materials that become damaged during construction to original condition or replace with new materials.

3.4 INSPECTION

Establish and maintain inspection procedures to assure compliance of the installed roof insulation with contract requirements. Remove, replace, correct in an approved manner, any work found not in compliance. Quality control must include, but is not limited to, the following:

a. Observation of environmental conditions; number and skill level of insulation workers; start and end time of work.

c. Verification of proper storage and handling of insulation materials before, during, and after installation.

d. Inspection of mechanical fasteners; type, number, length, and spacing.

e. Coordination with other materials, cants, and nailing strips.

f. Inspection of insulation joint orientation and laps between layers, joint width and bearing of edges of insulation on deck.

g. Installation of cutoffs and proper joining of work on subsequent days.

h. Continuation of complete roofing system installation to cover insulation installed same day.

i. Verification of required slope.

--- End of Section ---
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

Resistance of Organic Coatings by Falling Abrasive

ASTM E136 (2016) Behavior of Materials in a Vertical Tube Furnace at 750 Degrees C

INTERNATIONAL CODE COUNCIL (ICC)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

1.2 SYSTEM DESCRIPTION AND REQUIREMENTS

The exterior insulation and finish system (EIFS) must be a job-fabricated, drainable (Field-Verify if existing EIFS System is drainable), exterior wall covering consisting of sheathing, insulation board, reinforcing fabric, base coat, finish coat, adhesive and mechanical fasteners as applicable. The system components must be compatible with each other and with the substrate as recommended or approved by, and the products of, a single manufacturer regularly engaged in furnishing Exterior Insulation and Finish Systems. All materials must be installed by an applicator approved by the system manufacturer. EIFS must match existing and must be color and finish to match existing.

1.2.1 System Requirements and Tests

The system must meet the performance requirements as verified by the tests listed below. Where a wall system of similar type, size, and design as specified for this project has been previously tested under the condition specified herein, the resulting test reports may be submitted in lieu of job specific tests.

1.2.1.1 Water Penetration

Test the system for water penetration by uniform static air pressure in accordance with ASTM E331. There must be no penetration of water beyond the plane of the base coat/EPS board interface after 15 minutes at 6.4 psf, or 20 percent of positive design wind pressure, whichever is greater.

1.2.1.2 Wind Load

Test the system for wind load by uniform static air pressure in accordance with ASTM E330/E330M (procedure A). There must be no permanent deformation, delamination, or other deterioration.

1.2.1.3 Full scale or intermediate scale fire test

Conduct wall fire test using apparatus, specimen, performance criteria, and procedure in accordance with NFPA 285 when required by ICC IBC 2603.5.5. The following requirements must be met:

a. No vertical spread of flame within core of panel from one story to the next.

b. No flame spread over the exterior surface.

c. No vertical flame spread over the interior surface from one story to the next.

d. No significant lateral spread of flame from compartment of fire origin to adjacent spaces.

1.2.2 Component Requirements and Tests

The components of the system must meet the performance requirements as verified by the tests listed below.
1.2.2.1 Surface Burning Characteristics

Conduct ASTM E84 test on samples consisting of base coat, reinforcing fabric, and finish coat. Cure for 28 days. The flame spread index must be 25 or less and the smoke developed index must be 450 or less.

1.2.2.2 Radiant Heat

The system must be tested in accordance with NFPA 268 on both the minimum and maximum thickness of insulation intended for use with no ignition during the 20-minute period.

1.2.2.3 Impact Resistance

a. Class PB Systems: Hemispherical Head Test; 28 day cured specimen of PB EIFS in accordance with ASTM E2486. The test specimen must exhibit no broken reinforcing fabric per ASTM E2486.

b. Impact Mass: Test 28 day cured specimen of PM EIFS in accordance with ASTM E695. The test specimen must exhibit no cracking or denting after twelve impacts by 30 lbs lead shot mass from 6 in to 6 ft drop heights in 6 in intervals.

1.2.3 Sub-Component Requirements and Tests

Unless otherwise stated, the test specimen must consist of reinforcing mesh, base coat, and finish coat applied in accordance with manufacturer's printed recommendations to the insulation board to be used on the building. For mildew resistance, only the finish coat is applied onto glass slides for testing. These specimen must be suitably sized for the apparatus used and be allowed to cure for a minimum of 28 days prior to testing.

1.2.3.1 Abrasion Resistance

Test in accordance with ASTM D968, Method A. Test a minimum of two specimens. After testing, the specimens must show only very slight smoothing, with no loss of film integrity after 132 gallons of sand.

1.2.3.2 Accelerated Weathering

Test in accordance with ASTM G153, Cycle 1. After 2000 hours specimens must exhibit no visible cracking, flaking, peeling, blistering, yellowing, fading, or other such deterioration.

1.2.3.3 Mildew Resistance

Test in accordance with ASTM D3273. The specimen shall consist of the finish coat material, applied to clean 3 inch by 4 inch glass slides and must be allowed to cure for 28 days. After 28 days of exposure, the specimen must not show any growth.

1.2.3.4 Salt Spray Resistance

Test in accordance with ASTM B117. The specimen must be a minimum of 4 inch by 6 inch and must be tested for a minimum of 300 hours. After exposure, the specimen must exhibit no observable deterioration, such as chalking, fading, or rust staining.
1.2.3.5 Water Resistance

Test in accordance with ASTM D2247. The specimen must be a minimum of 4 inch by 6 inch. After 14 days, the specimen must exhibit no cracking, checking, crazing, erosion, blistering, peeling, or delamination.

1.2.3.6 Absorption-Freeze/Thaw

Class PB systems must be tested in accordance with ASTM E2570/E2570M for 60 cycles of freezing and thawing. After testing, the specimen must exhibit no cracking, checking, or splitting, and negligible weight gain. Class PM systems must be tested in accordance with ASTM C67 for 50 cycles of freezing and thawing. After testing, the specimens must exhibit no cracking or checking and have negligible weight gain.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Shop Drawings; G, G

Show wall layout, construction and expansion joints, decorative grooves, layout of sheathing board, thermal insulation board, and reinforcing mesh and strip reinforcing fabric; joint and flashing details; details at wall penetrations; types and location of fasteners; details at windows and doors; and details at decorative reveals.

SD-03 Product Data

Sheathing Board

Thermal Insulation

Adhesive

Mechanical Fasteners

Accessories

Base Coat

Portland Cement

Reinforcing Fabric

Finish Coat

Joint Sealant

Sealant Primer

Bond Breaker
Backer Rod

Insulation Board

Warranty

Include joint and other details, such as end conditions, corners, windows, and parapet. Include shelf life and recommended cleaning solvents in data for sealants. Include Safety Data Sheets (SDS) for all components of the EIFS. The SDS shall be available at the job site.

SD-04 Samples

Sample Boards
Color and Texture

SD-05 Design Data

Wind Load Calculations
Moisture Analysis Calculations

SD-06 Test Reports

Abrasion Resistance
Accelerated Weathering
Impact Resistance
Mildew Resistance
Salt Spray Resistance
Water Vapor Transmission
Absorption-Freeze-Thaw
Wall Fire Test
Water Penetration
Water Resistance
Full Scale or Intermediate Scale Fire Test
Surface Burning Characteristics
Radiant Heat
Substrate
Wind Load

SD-07 Certificates

Qualifications of EIFS Manufacturer
Qualification of EIFS Installer

Qualification of Sealant Applicator

Certify that EIFS installer meets requirements specified under paragraph "Qualification of Installer," and that sealant applicator is approved by the EIFS Manufacturer.

SD-08 Manufacturer's Instructions

Installation

Manufacturer's standard printed instructions for the installation of the EIFS. Include requirements for condition and preparation of substrate, installation of EIFS, and requirements for sealants and sealing.

SD-10 Operation and Maintenance Data

EIFS

Include detailed finish repair procedures and information regarding compatibility of sealants with base and finish coatings.

1.4 QUALITY ASSURANCE

1.4.1 Qualifications of EIFS Manufacturer

The EIFS must be the product of a manufacturer who has been in the practice of manufacturing and designing EIFS for a period of not less than 3 years, and has been involved in at least five projects similar to this project in size, scope, and complexity, in the same or a similar climate as this project.

1.4.2 Qualification of EIFS Installer

The EIFS Installer must be trained by the EIFS manufacturer to perform the installation of the System and must have successfully installed at least five projects at or near the size and complexity of this project. The contractor must employ qualified workers trained and experienced in installing the manufacturer's EIFS.

1.4.3 Qualification of Sealant Applicator

The sealant applicator must be experienced and competent in the installation of high performance industrial and commercial sealants and must have successfully installed at least five projects at or near the size and complexity of this project.

1.4.4 Pre-Installation Conference

After approval of submittals and before commencing any work on the EIFS, including installation of any sheathing board, insulation, and associated work, the Contracting Officer will hold a pre-installation conference to review:

a. Drawings, specifications, and samples;
b. Procedure for on site inspection and acceptance of EIFS substrate and pertinent details;

c. Contractor's plan for coordination of work of the various trades involved in providing EIF system and other components;

d. Inspection procedures; and

e. Safety requirements.

Pre-installation conference must be attended by the Contractor, and all personnel directly responsible for installation of the EIF system, including sealant applicator, and personnel responsible for related work, such as flashing and sheet metal, windows and doors, and a representative of the EIFS manufacturer. Before beginning EIFS work, the contractor must confirm in writing the resolution of conflicts among those attending the pre-installation conference.

1.5 DELIVERY AND STORAGE

Deliver materials to job site in original unopened packages, marked with manufacturer's name, brand name, and description of contents. Store materials off the ground and in accordance with the manufacturer's recommendations in a clean, dry, well-ventilated area. Protect stored materials from rain, sunlight, and excessive heat. Keep coating materials which would be damaged by freezing at a temperature not less than 40 degrees F. Do not expose insulation board to flame or other ignition sources.

1.6 ENVIRONMENTAL CONDITIONS

a. Do not prepare materials or apply EIFS during inclement weather unless appropriate protection is provided. Protect installed materials from inclement weather until they are dry.

b. Apply sealants and wet materials only at ambient temperatures of 40 degrees F or above and rising, unless supplemental heat is provided. The system must be protected from inclement weather and maintain this temperature for a minimum of 24 hours after installation.

c. Do not leave insulation board exposed to sunlight after installation.

1.7 WARRANTY

Furnish manufacturer's standard warranty for the EIFS. Warranty must run directly to Government and cover a period of not less than 5 years from date Government accepted the work.

PART 2 PRODUCTS

2.1 COMPATIBILITY

Provide all materials compatible with each other and with the substrate, and as recommended by EIFS manufacturer.
2.2 SHEATHING BOARD

2.2.1 Fiber Reinforced Cement Sheathing Board

a. Meet ASTM C1186, Type A, Grade I.
b. Meet ASTM C1325, Type A,
c. Non-combustible per ASTM E136.
d. Nail Pull Resistance: No less than 120 lb when tested in accordance with ASTM C473.
e. Thickness no less than 1/2 inch.
f. Water Absorption not to exceed 17 percent.

2.2.2 Glass Mat Gypsum Sheathing Board

a. Conform to ASTM C1177/C1177M; or.
b. ASTM C1278/C1278M, Water Resistant Exterior Type only
c. Nail Pull Resistance: No less than 120 lb when tested in accordance with ASTM C473.

2.3 ADHESIVE

Manufacturer's standard product, including primer as required, must be compatible with substrate and insulation board to which the system is applied.

2.4 LATHING AND FURRING

Conform to ASTM C847, 2.5 lb/sqyd, self-furring, galvanized.

2.5 MECHANICAL FASTENERS

Corrosion resistant and as approved by EIFS manufacturer. Select fastener type and pattern based on applicable wind loads and substrate into which fastener will be attached, to provide the necessary pull-out, tensile, and shear strengths.

2.6 THERMAL INSULATION

2.6.1 Manufacturer's Recommendations

Provide only thermal insulation recommended by the EIFS manufacturer for the type of application intended.

2.6.2 Insulation Board

Insulation board must be standard product of manufacturer and must be compatible with other systems components. Boards must be factory marked individually with the manufacturer's name or trade mark, the material specification number, the R-value at 75 degree F, and thickness. No layer of insulation shall be less than 3/4 inch thick. The maximum thickness of all layers must not exceed 4 inches. Insulation Board must be certified as aged, in block form, prior to cutting and shipping, a minimum of 6 weeks by
air drying, or equivalent.

a. Insulating material: ASTM C578 Type I as recommended by the EIFS manufacturer and treated to be compatible with other EIFS components. Age insulation by air drying a minimum of 6 weeks prior to cutting and shipping.

b. Drainage: Preform channels into the interior face of insulation board or provide polypropylene drainage lath spacer to provide water drainage system. Verify that existing EIFS System utilizes a wall drainage system.

2.7 BASE COAT

Manufacturer's standard product and compatible with other systems components.

2.8 PORTLAND CEMENT

Conform to ASTM C150/C150M, Type I or II as required, fresh and free of lumps, and approved by the systems manufacturer.

2.9 REINFORCING FABRIC

Reinforcing fabric mesh must be alkali-resistant, balanced, open weave, glass fiber fabric made from twisted multi-end strands specifically treated for compatibility with the other system materials, and comply with ASTM E2098/E2098M and as recommended by EIFS manufacturer.

2.10 FINISH COAT

Manufacturer's standard product conforming to the requirements in the paragraph on Sub-Component Requirements and Tests. For color consistency, use materials from the same batch or lot number.

2.11 SEALANT PRIMER

Non-staining, quick-drying type recommended by sealant manufacturer and EIFS manufacturer.

2.12 ACCESSORIES

Conform to recommendations of EIFS manufacturer, including trim, edging, anchors, and expansion joints. All metal items and fasteners to be corrosion resistant.

2.13 JOINT SEALANT

Non-staining, quick-drying type meeting ASTM C920, as Type S or M, minimum Grade NS, minimum Class 25 and compatible with the finish system type and grade, and recommended by both the sealant manufacturer and EIFS manufacturer.

2.14 BOND BREAKER

As required by EIFS manufacturer and recommended by sealant manufacturer and EIFS manufacturer.
2.15 BACKER ROD

Closed cell polyethylene free from oil or other staining elements and as recommended by sealant manufacturer and EIFS manufacturer. Do not use absorptive materials as backer rod. The backer rod should be sized 25 percent larger than the width of the joint.

PART 3 EXECUTION

3.1 EXAMINATION

Examine substrate and existing conditions to determine that the EIFS can be installed as required by the EIFS manufacturer and that all work related to the EIFS is properly coordinated. Surface must be sound and free of oil, loose materials or protrusions which will interfere with the system installation. If deficiencies are found, notify the Contracting Officer and do not proceed with installation until the deficiencies are corrected. The substrate must be plane, with no deviation greater than 1/4 inch when tested with a 10 foot straightedge. Determine flatness, plumbness, and any other conditions for conformance to manufacturer's instructions.

3.2 SURFACE PREPARATION

Prepare existing surfaces for application of the EIFS to meet flatness tolerances and surface preparation according to manufacturer's installation instructions. Provide clean surfaces free of oil and loose material without protrusions adversely affecting the installation of the insulation board. For adhesively attached EIFS, existing deteriorated paint must be removed. Due to substrate conditions or as recommended by the system manufacturer, a primer may be required. Apply the primer to existing surfaces as recommended by the manufacturer. Use masking tape to protect areas adjacent to the EIFS to prevent base or finish coat to be applied to areas not intended to be covered with the EIFS. The contractor must not proceed with the installation until all noted deficiencies of the substrate are corrected.

3.3 INSTALLATION

Install EIFS as indicated, comply with manufacturer's instructions except as otherwise specified, and in accordance with the shop drawings. EIFS must be installed only by an applicator trained by the EIFS manufacturer. Specifically, include all manufacturer recommended provisions regarding flashing and treatment of wall penetrations. Any materials that show visual evidence of biological growth due to the presence of moisture must not be installed on the building project.

3.3.1 Sheathing Board

Edges and ends of boards must be butted snugly with vertical joints staggered to provide full and even support for the insulation. Do not align sheathing board joints with wall openings. Provide support at both vertical and horizontal joints. Attach sheathing board to concrete or masonry with corrosion resistant metal fasteners. Place fasteners sufficiently close to support imposed loads, but not more than:

a. Maximum of 12 inches apart horizontally and vertically into masonry.

Space fasteners more closely when required for negative wind load resistance.
3.3.2 Insulation Board

Unless otherwise specified by the system manufacturer, place the long edge horizontally from level base line. Stagger vertical joints and interlock at corners. Butt joints tightly. Provide flush surfaces at joints. Offset insulation board joints from joints in sheathing by at least 8 inches. Align drainage channels of integral drainage system or provide polypropylene drainage lath space to provide a path for any water weeped from behind the insulation to escape wall construction. Use L-shaped insulation board pieces at corners of openings. Joints of insulation must be butted tightly. Surfaces of adjacent insulation boards must be flush at joints. Gaps greater than 1/16 inch between the insulation boards must be filled with slivers of insulation. Uneven board surfaces with irregularities projecting more than 1/16 inch must be rasped in accordance with the manufacturer's instructions to produce an even surface. Attach insulation board as recommended by manufacturer. The adhered insulation board must be allowed to remain undisturbed for 24 hours prior to proceeding with the installation of the base coat/reinforcing mesh, or longer if necessary for the adhesive to dry. However, do not leave insulation board exposed longer than recommended by insulation manufacturer.

3.3.2.1 Mechanically Fastened Insulation Boards

Fasten with manufacturer's standard corrosion resistant anchors, spaced as recommended by manufacturer, but not more than 2 feet horizontally and vertically.

3.3.2.2 Adhesively Fastened Insulation Boards

Apply insulation board using adhesive spread with a notched trowel to the back of the insulation boards in accordance with the manufacturer’s instructions.

3.3.3 Base Coat and Reinforcing Fabric Mesh

3.3.3.1 Class PB Systems

Allow the adhered insulation board to dry for 24 hours, or longer if necessary, prior to proceeding with the installation of the base coat/reinforcing fabric mesh. Install reinforcing fabric in accordance with manufacturer's instructions. Mix base coat in accordance with the manufacturer's instructions and apply to insulated wall surfaces to the thickness specified by the system manufacturer and provide any other reinforcement recommended by EIFS manufacturer. Trowel the reinforcing fabric mesh into the wet base coat material. Fully embed the mesh in the base coat. When properly worked-in, the pattern of the reinforcing fabric mesh must not be visible. Provide diagonal reinforcement at opening corners. Back-wrap or edge wrap all terminations of the EIFS. Overlap the reinforcing fabric mesh a minimum of 2.5 inches on previously installed mesh, or butted, in accordance with the manufacturer’s instructions.

3.3.4 Finish Coat

The base coat/reinforcing mesh must be allowed to dry a minimum of 24 hours prior to application of the finish coat. Surface irregularities in the base coat, such as trowel marks, board lines, reinforcing mesh laps, etc., must be corrected prior to the application of the finish coat. Apply and level finish coat in one operation. Obtain final texture by trowels,
3.4 JOINT SEALING

Seal EIFS at openings as recommended by the system manufacturer. Apply sealant only to the base coat or base coat with EIFS Manufacturer's color coating. Do not apply sealant to the finish coat.

3.4.1 Surface Preparation, Backer Rod, and Primer

Immediately prior to application, remove loose matter from joint. Ensure that joint is dry and free of finish coat, or other foreign matter. Install backer rod. Apply primer as required by sealant and EIFS manufacturer. Check that joint width is as shown on drawings but in no case shall it be less than 0.5 inch for perimeter seals and 0.75 inch for expansion joints. The width must not be less than 4 times the anticipated movement. Check sealant manufacturer's recommendations regarding proper width to depth ratio.

3.4.2 Sealant

Do not apply sealant until all EIFS coatings are fully dry. Apply sealant in accordance with sealant manufacturer's instructions with gun having nozzle that fits joint width. Do not use sealant that has exceeded shelf life or cannot be discharged in a continuous flow. Completely fill the joint solidly with sealant without air pockets so that full contact is made with both sides of the joint. Tool sealant with a round instrument that provides a concave profile and a uniformly smooth and wrinkle free sealant surface. Do not wet tool the joint with soap, water, or any other liquid tooling aid. During inclement weather, protect the joints until sealant application. Use particular caution in sealing joints between window and door frames and the EIFS wall and at all other wall penetrations. Clean all surfaces to remove excess sealant.

3.5 FIELD QUALITY CONTROL

Throughout the installation, the contractor must establish and maintain an inspection procedure to assure compliance of the installed EIFS with contract requirements. Work not in compliance must be removed and replaced or corrected in an approved manner. The inspection procedures, from acceptance of deliveries through installation of sealants and final acceptance must be performed by qualified inspector trained by the manufacturer. No work on the EIFS is allowed unless the inspector is present at the job site.

3.6 CLEANUP

Upon completion, remove all scaffolding, equipment, materials and debris from site. Remove all temporary protection installed to facilitate installation of EIFS.

-- End of Section --
SECTION 07 52 00
MODIFIED BITUMINOUS MEMBRANE ROOFING

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)

AMERICAN SOCIETY OF SAFETY ENGINEERS (ASSE/SAFE)

 ASPHALT ROOFING MANUFACTURER'S ASSOCIATION (ARMA)

 ARMA PMBRG98 (1998) Quality Control Guideline for the Application of Polymer Modified Bitumen Roofing

ASTM INTERNATIONAL (ASTM)

ASTM C208 (2012) Cellulosic Fiber Insulating Board

ASTM D1668/D1668M (1997a; R 2014; E 2014) Glass Fabrics (Woven and Treated) for Roofing and Waterproofing

ASTM E108 (2011) Fire Tests of Roof Coverings

FM GLOBAL (FM)

FM 4470 (2010) Single-Ply, Polymer-Modified Bitumen Sheet, Built-up Roof (BUR), and Liquid Applied Roof Assemblies for Use in Class 1 and Noncombustible Roof Deck Construction

INTERNATIONAL SAFETY EQUIPMENT ASSOCIATION (ISEA)

ANSI/ISEA Z87.1 (2015) Occupational and Educational Personal Eye and Face Protection Devices

MIDWEST ROOFING CONTRACTORS ASSOCIATION (MRCA)

CERTA (2007) NRCA/MRCA Certified Roofing Torch Applicator Program

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 58 (2017; ERTA 17-1) Liquefied Petroleum Gas Code

NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)

NRCA Details (2003) NRCA Roof Perimeter Flashing Systems Construction Details for Class 1 Roof Construction

1.2 DESCRIPTION OF ROOF MEMBRANE SYSTEM

Minimum three-ply SBS modified bitumen roof membrane consisting of modified bitumen base sheet, interply sheet and cap sheet. Modified bitumen roof membrane must be set in hot asphalt.

All work must follow the NRCA RoofMan guidelines and standards stated within this Section.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Roof plan; G drawing depicting wind loads and boundaries of enhanced perimeter and corner attachments of roof system components, as applicable

SD-03 Product Data

Modified Bitumen Sheets; G
Asphalt
Fiberglass Felt; GPrimer; G
Modified Bitumen Roof Cement; G
Pre-Manufactured Accessories
Fasteners And Plates; G
Sample Warranty certificate; G

Submit all data required by Section 07 22 00 ROOF AND DECK INSULATION, together with requirements of this section. Include in data written acceptance by the roof membrane manufacturer of the products and accessories provided. Products must be as listed in the applicable wind uplift and fire rating classification listings, unless approved otherwise by the Contracting Officer.

SD-05 Design Data

Wind Uplift Calculations; G

Provide Engineering calculations, signed, sealed, and dated by a qualified Engineer validating the wind resistance per ASCE 7, ASTM D4073, and ANSI/SPRI/PM 4435/ES-1 of non-rated roof system.

SD-07 Certificates

Provide evidence that products used within this specification are manufactured in the United States.

Qualification of Manufacturer

Certify that the manufacturer of the modified bitumen membrane meets requirements specified under paragraph entitled "Qualification of Manufacturer."

Qualification of Applicator

Certify that the applicator meets requirements specified under paragraph entitled "Qualification of Applicator."

Qualification of Engineer of Record

Certify that the Engineer of Record is fully qualified, competent, and currently licensed to practice in the project jurisdiction.

Bill of Lading

Submit bill of lading when labels of asphalt containers do not bear the flash point (FP), finished blowing temperature (FBT), and equiviscous temperature (EVT).

Wind Uplift Resistance; G classification, as applicable

Fire Resistance classification; G

Submit the roof system assembly wind uplift and fire rating classification listings.

SD-08 Manufacturer's Instructions
Modified Bitumen Membrane Application; G

Flashing; G

Temperature Limitations for Asphalt

Base Sheet attachment, including pattern and frequency of mechanical attachments required in field of roof, corners, and perimeters to provide for the specified wind resistance.

Primer

Fasteners

Cold Weather Installation; G

Include detailed application instructions and standard manufacturer drawings altered as required by these specifications. Explicitly identify in writing, differences between manufacturer's instructions and the specified requirements.

SD-11 Closeout Submittals

Warranty

Information Card

Instructions To Government Personnel

Include copies of Material Safety Data Sheets for maintenance/repair materials.

Submit 20 year "No-Dollar-Limit" warranty for labor and materials.

1.4 QUALITY ASSURANCE

1.4.1 Qualification of Manufacturer

Modified bitumen sheet roofing system manufacturer must have a minimum of 5 years experience in manufacturing modified bitumen roofing products.

1.4.2 Qualification of Applicator

Roofing system applicator must be approved, authorized, or licensed in writing by the modified bitumen sheet roofing system manufacturer and have a minimum of five years experience as an approved, authorized, or licensed applicator with that manufacturer and be approved at a level capable of providing the specified warranty. The applicator must supply the names, locations and client contact information of five projects of similar size and scope that the applicator has constructed using the manufacturer’s roofing products submitted for this project within the previous three years.

1.4.3 Qualification of Engineer of Record

Engineer of Record must be currently licensed within the jurisdiction of the project. Engineer of Record must be approved, authorized, and currently licensed by the state of Florida, and have a minimum of five years experience as an approved Engineer for manufacturers of similar roof
systems. Engineer of Record must supply the names and locations of five projects of similar size and scope for which he has provided engineering calculations using the manufacturer's products submitted for this project within the previous three years. Engineer of Record must provide certified engineering calculations for:

Wind uplift requirements in accordance with Local and State codes

ASCE 7, in accordance with International Building Code.

1.4.4 Fire Resistance

Complete roof covering assembly must:

a. Be Class A rated in accordance with ASTM E108, FM 4470, or UL 790; and

b. Be listed as part of Fire-Classified roof deck construction in UL RMSD, or Class I roof deck construction in FM APP GUIDE.

FM or UL approved components of the roof covering assembly must bear the appropriate FM or UL label.

1.4.5 Wind Uplift Resistance

The complete roof system assembly shall be rated and installed to resist wind loads indicated on structural drawings and validated by uplift resistance testing in accordance with Factory Mutual (FM) test procedures. Non-rated systems must not be installed, except as approved by the Contracting Officer. Submit licensed engineer's Wind uplift calculations and substantiating data to validate any non-rated roof system. Base wind uplift measurements on a design wind speed of 145 mph in accordance with ASCE 7 and/or other applicable building code requirements.

1.4.6 Preroofing Conference

After approval of submittals and before performing roofing and insulation system installation work, hold a preroofing conference to review the following:

a. Drawings, including Roof Plan, specifications and submittals related to the roof work

b. Field inspection and verification of all existing conditions, including all fire safety issues, existing structure, and existing materials, including concealed combustibles, which may require additional protection during installation.

c. Roof system components installation

d. Procedure for the roof manufacturer's technical representative's onsite inspection and acceptance of the roof structure, and roofing substrate, the name of the manufacturer's technical representatives, the frequency of the onsite visits, distribution of copies of the inspection reports from the manufacturer's technical representatives to roof manufacturer

e. Contractor's plan for coordination of the work of the various trades involved in providing the roofing system and other components secured to the roofing
f. Quality control, (ARMA PMBRG98) plan for the roof system installation

g. Safety requirements

Coordinate preroofing conference scheduling with the Contracting Officer. The conference must be attended by the Contractor, the Contracting Officer's designated personnel, and personnel directly responsible for the installation of roofing and insulation, flashing and sheet metal work, mechanical and electrical work, other trades interfacing with the roof work, designated safety personnel trained to enforce and comply with ASSE/SAFE A10.24, Fire Marshall, and representative of the roofing materials manufacturer. Before beginning roofing work, provide a copy of meeting notes and action items to all attending parties. Note action items requiring resolution prior to start of roof work.

1.5 DELIVERY, STORAGE, AND HANDLING

1.5.1 Delivery

Deliver materials in manufacturers' original unopened containers and rolls with labels intact and legible. Mark and remove wet or damaged materials from the site. Where materials are covered by a referenced specification, the container must bear the specification number, type, and class, as applicable. Labels or bill of lading for roofing asphalt must indicate asphalt type, FP, FBT, and EVT, that is, the temperature at which the viscosity is either 125 centistokes when tested in accordance with ASTM D2170/D2170M or 75 centipoise when tested in accordance with ASTM D4402/D4402M. Deliver materials in sufficient quantity to allow work to proceed without interruption.

1.5.2 Storage

Protect materials against moisture absorption and contamination or other damage. Avoid crushing or crinkling of roll materials. Store roll materials on end on clean raised platforms or pallets one level high in dry locations with adequate ventilation, such as an enclosed building or closed trailer. Do not store roll materials in buildings under construction until concrete, mortar, and plaster work is finished and dry. Maintain roll materials at temperatures above 50 degrees F for 24 hours immediately before application. Do not store materials outdoors unless approved by the Contracting Officer. Completely cover felts stored outdoors, on and off roof, with waterproof canvas protective covering. Do not use polyethylene sheet as a covering. Tie covering securely to pallets to make completely weatherproof. Provide sufficient ventilation to prevent condensation. Do not store more materials on roof than can be installed the same day and remove unused materials at end of each days work. Distribute materials temporarily stored on roof to stay within live load limits of the roof construction.

Maintain a minimum distance of 35 foot for all stored flammable materials, including materials covered with shrink wraps, craft paper and/or tarps from all torch/welding applications.

Immediately remove wet, contaminated or otherwise damaged or unsuitable materials from the site. Damaged materials may be marked by the Contracting Officer.
1.5.3 Handling

Prevent damage to edges and ends of roll materials. Do not install damaged materials in the work. Select and operate material handling equipment to prevent damage to materials or applied roofing.

1.6 ENVIRONMENTAL REQUIREMENTS

Do not install roofing system when air temperature is below 40 degrees F, during any form of precipitation, including fog, or when there is ice, frost, moisture, or any other visible dampness on the roof deck. Follow manufacturer's printed instructions for Cold Weather Installation.

1.7 HOT-MOPPED ASPHALT APPLIED MODIFIED BITUMEN MEMBRANE SAFETY

1.7.1 Property Protection

Take all precautions necessary to prevent ignition of combustible materials during hot-mopped asphalt application of roofing. Immediately call the fire department if a fire commences. Review all fire safety procedures as outlined at the pre-roofing conference.

Install materials using the techniques recommended by CERTA NRCA/MRCA Certified Roofing Torch Applicator Program available from the National Roofing Contractors Association (NRCA) and the Midwest Roofing Contractors Association (MRCA) as endorsed by the Asphalt Roofing Manufacturers Association (ARMA) and the United Union of Roofers, Waterproofers and Allied Workers. Application procedures must comply with NFPA 241, OSHA 29 CFR 1910 and 29 CFR 1910.12, 29 CFR 1926.16, 29 CFR 1926 Subpart F.

Do not store flammable liquids on the roof.

Provide a minimum of two 2.65 gallon containers of water and two fully charged minimum 20 pound CO2 fire extinguishers in separate, easily accessible locations on the roof and within 10 foot of each hot-mopped kettle at all times.

No AsphaltKettles are allowed on roofs. Locate kettles and supply LP-Gas Cylinders safely and secured per NFPA 241 outside of the building's perimeter a minimum of 20 foot from the structure and any combustible materials.

Maintain a minimum separation of 20 foot between LP-Gas Cylinders and kettle. Provide protective fire retardant blanket barrier or shield between any building structure to a minimum height of 8 foot and a clear surround distance of 4 foot if operations force placement of kettle within a distance of 20 foot. Do not obstruct or place kettles or Cylinder storage within 10 foot of exits, means of egress, gates, roadways, entrances. Locate kettles downwind and away from any building air intakes.

Provide a minimum of two portable fully charged 20 pound CO2 fire extinguishers no closer than 5 foot and no further than 25 foot of horizontal travel distance from each kettle at all times while kettle is in operation, in easily accessible and identifiable locations. Also provide a minimum of one multipurpose 2-A:20-B:C portable fire extinguisher on the roof being covered or repaired.

Comply with the following safety procedures:
a. Fuel containers, burners, and related appurtenances of roofing equipment in which liquefied petroleum gas is used for heating must comply with the requirements of NFPA 58.

b. Fuel containers having capacities greater than one pound must be located a minimum of 10 foot clear distance from the burner flame.

c. All LP-Gas Cylinders must be clearly labeled "Flammable Gas", and secured to prevent accidental tip-over.

d. Check all pressure regulators and hoses prior to use for proper functioning and integrity.

e. Turn off fuel supply at LP Gas Cylinder when kettle is not in use.

f. Equip all kettles with a functioning temperature measuring device to ensure no heating in excess of 50 degrees F below the flash point.

g. Provide covers, lid, or top which are close fitting, constructed of minimum No.14 manufacturer's gauge steel, and can be gravity closed on all kettles.

h. Clean all roofing mops and rags free of excess asphalt and store safely away from all combustible materials. Store discarded roofing mops and rags in a non-combustible container and remove from site each day.

i. Position all pump lines handling hot asphalt securely and equip all pump lines with a shut-off valve on each with a coupler which may be opened when lines are full. Do not subject pump lines to pressures in excess of safe and recommended NRCA and ARMA working pressures. Station an operator near the equipment to cut off flow and care for other emergencies while conducting heating, pumping and application operations.

j. Asphalt bucket used by roofers or workers in similar trades must be constructed of minimum No. 24 gauge or heavier sheet steel and have a metal ball of no less than 1/4 inch diameter material. The ball is to be fastened to offset ears or equivalent which have been riveted, welded, or otherwise safely and securely attached to the bucket. Soldered ball sockets are prohibited. Position workers and other employees to avoid being struck by bucket or other roofing materials, which may accidentally fall while being hoisted, lowered, or used in the roofing operation. Provide safety barriers and caution signs at all skylights or other roof holes.

k. Do not use flammable liquids with a flash point below100 degrees F (gasoline and similar products) for cleaning purposes.

Do not use solid fuel or Class I liquids as fuel for roofing asphalt kettles. Provide a minimum of one employee fully knowledgeable of kettle operations and hazards to maintain constant surveillance during kettle operation within a minimum distance of 25 foot of the kettle.

Check all fire extinguishers prior to commencement of work, and upon completion of the day's work, to ensure fullness and operability.

Project supervisor must make daily inspections with the facility manager of all conditions and operations which could present hazards during hot-mopped applications and issue directives to address all such concerns and items of
the work and existing conditions.

Identify and protect all combustible roof components, possible fire traps, and hidden hazards. Seal off voids or openings in the substrate with non-combustible materials prior to installing hot-mopped applied materials in the area. Install protective fire retardant blankets and shields at building walls, eaves, parapets and equipments curbs constructed of combustible materials within 3 foot radius of the area of hot-mopped kettle prior to commencement of the work.

When working around intakes and openings, temporarily disconnect and block to prevent fumes from kettle from being drawn into the opening.

1.7.2 Fire Watch

All personnel on the roof during hot-mopped application must be properly trained to use a fire extinguisher. Provide a fire watch for a minimum of 30 minutes after completion of hot-mopped kettle operations at the end of each work shift. Maintain the fire watch for additional time required to ensure no potential ignition conditions exist. Utilize heat sensing meters to scan for hot spots in the work.

Do not leave the rooftop unattended during breaks in work during a work shift. Walk and scan all areas of application checking for hot spots, fumes, or smoldering, especially at wall and curb areas, prior to departure at the end of each work shift. Ensure any and all suspect conditions are eliminated prior to leaving the site each work shift.

1.7.3 Open Flame Application (Torch) Equipment and Personnel Safety

All crew members must be trained in preventive measures for indirect and direct dangers and hazards associated with roofing work, which include, but are not limited to the following:

a. Heat Stress: Wear light colored clothing, a hat for ultra-violet protection, and other eye protective devices. Drink sufficient quantities of non-alcoholic, non-caffeine liquids. Stage shifts for crew members to allow for breaks from heat and sun exposure without interfering with work progress.

b. First Aid for Burns: Immediately call for an ambulance. Contact local Occupational Health Services (OHS).

All crew members must wear correct personal protective equipment (PPE), including, but not limited to the following items:

a. Long-sleeved shirts buttoned at the collar and cuffs, and must be made of non-flammable materials. Polyester materials are not allowed.

b. Work boots covering ankles with rubber or composite soles.

c. Long pants without cuffs to extend over the top of the work boots, and must be made of non-flammable materials. No polyester allowed.

d. Heavy leather gloves and/or flame retardant gauntlets.

e. OSHA and ANSI/ISEA Z87.1 approved face shields, goggles and/or safety glasses to be worn during other applicable roofing functions.
f. OSHA and ANSI approved hard hats.

1.8 SEQUENCING

Coordinate the work with other trades to ensure that components which are to be secured to or stripped into the roofing system are available and that permanent flashing and counter flashing, per NRCA Details, and are installed as the work progresses. Ensure temporary protection measures are in place to preclude moisture intrusion or damage to installed materials. Application of roofing must immediately follow application of insulation as a continuous operation. Coordinate roofing operations with insulation work so that all roof insulation applied each day is covered with roof membrane installation the same day.

1.9 WARRANTY

Provide roof system material and workmanship warranties meeting specified requirements. Provide revision or amendment to standard membrane manufacturer warranty as required to comply with the specified requirements. Minimum manufacturer warranty shall have no dollar limit, cover full system water-tightness, and shall have a minimum duration of 20 years.

1.9.1 Roof Membrane Manufacturer Warranty

Furnish the roof membrane manufacturer's 20-year no dollar limit roof system materials and installation workmanship warranty, including flashing, insulation in compliance with ASTM C1289, and accessories necessary for a watertight roof system construction. Provide warranty directly to the Government and commence warranty effective date at time of Government's acceptance of the roof work. The warranty must state that:

a. If within the warranty period the roof system, as installed for its intended use in the normal climatic and environmental conditions of the facility, becomes non-watertight, shows evidence of moisture intrusion within the assembly, blisters, splits, tears, delaminates, separates at the seams, or shows evidence of excessive weathering due to defective materials or installation workmanship, the repair or replacement of the defective and damaged materials of the roof system assembly and correction of defective workmanship are the responsibility of the roof membrane manufacturer. All costs associated with the repair or replacement work are the responsibility of the roof membrane manufacturer.

b. When the manufacturer or his approved applicator fail to perform the repairs within 72 hours of notification, emergency temporary repairs performed by others does not void the warranty.

c. Upon completion of installation, and acceptance by the Contracting Office and Roofing System Engineer of Record, the manufacturer must supply the appropriate warranty to the Owner.

d. Installer must submit a minimum two year warranty to the membrane manufacturer from the date of acceptance, with a copy to the Contracting Officer and Roofing System Engineer of Record.

1.9.2 Roofing System Installer Warranty

The roof system installer must warrant for a period of two years that the

SECTION 07 52 00 Page 11
roof system, as installed, is free from defects in installation workmanship, to include the roof membrane, flashing, insulation, accessories, attachments, and sheet metal installation integral to a complete watertight roof system assembly. Write the warranty directly to the Government. The roof system installer is responsible for correction of defective workmanship and replacement of damaged or affected materials. The roof system installer is responsible for all costs associated with the repair or replacement work.

1.9.3 Continuance of Warranty

Repair or replacement work, ARMA 410BUR88, NRCA C3701 that becomes necessary within the warranty period and accomplished in a manner so as to restore the integrity of the roof system assembly and validity of the roof membrane manufacturer warranty for the remainder of the manufacturer warranty period.

1.10 CONFORMANCE AND COMPATIBILITY

The entire roofing and flashing system must be in accordance with specified and indicated requirements, including fire and wind resistance (ANSI/SPRI/FM 4435/ES-1) requirements. Work not specifically addressed and any deviation from specified requirements must be in general accordance with recommendations of the NRCA Roofing and Waterproofing Manual, membrane manufacturer published recommendations and details, and compatible with surrounding components and construction. Submit any deviation from specified or indicated requirements to the Contracting Officer for approval prior to installation.

PART 2 PRODUCTS

2.1 MODIFIED BITUMEN SHEETS AND FIBERGLASS FELT MATERIALS

Furnish a combination of specified materials that comprise the modified bitumen manufacturer's standard system of the number and type of plies specified. Materials provided must be suitable for the service and climatic conditions of the installation. Modified bitumen sheets must be watertight and visually free of pinholes, particles of foreign matter, non-dispersed raw material, factory splices, or other conditions that might affect serviceability. Polymer modifier must comply with ARMA PMBRG98 and be uniformly dispersed throughout the sheet. Edges of sheet must be straight and flat.

a. Fiberglass Felt Base Sheet: ASTM D4601/D4601M, ASTM D1668/D1668M Type II, without perforations and as approved by the modified bitumen roof membrane manufacturer.

b. SBS Base Sheet: ASTM D6162/D6162M, Type II, Grade S, minimum 80 mils thick.

c. SBS Interply Sheet: ASTM D6162/D6162M, Type II, Grade S, minimum 80 mils thick.

d. SBS Cap Sheet: ASTM D6162/D6162M; Type II, Grade G, minimum 145 mils thick, and as required to provide specified fire safety rating.

2.2 BASE FLASHING MEMBRANE

Membrane manufacturer's standard, minimum two-ply modified bitumen membrane flashing system compatible with the roof membrane specified and as recommended in membrane manufacturer's published literature. Flashing
membranes must meet or exceed the properties of the material standards specified for the modified bitumen base, interply and cap sheet, except that flashing membrane thickness must be as recommended by the membrane manufacturer.

2.3 ASPHALT

ASTM D312/D312M, Type III or IV, in accordance with modified bitumen membrane manufacturer requirements and compatible with the slope conditions of the installation.

2.4 MEMBRANE SURFACING

Provide modified bitumen roof membrane cap sheet with factory-applied granule surfacing of white color.

2.5 PRIMER

ASTM D41/D41M, or other primer compatible with the application and as approved in writing by the modified bitumen membrane manufacturer.

2.6 MODIFIED BITUMEN ROOF CEMENT

ASTM D4586/D4586M, Type II for vertical surfaces, Type I for horizontal surfaces, compatible with the modified bitumen roof membrane and as recommended by the modified bitumen membrane manufacturer.

2.7 CANT AND TAPERED EDGE STRIPS

Provide standard cants and tapered edge strips of pressure preservative treated wood, wood fiberboard, or rigid perlite board cants and edge strips as recommended by the manufacturer or wood fiber conforming to ASTM C208 treated with bituminous impregnation, sizing, or waxing and fabricated to provide maximum 45 degree change in direction of membrane. Cant strips must be minimum 4 inch vertical height with 45 degree cant angle, except where clearance restricts height to lesser dimension. Taper edge strips at a rate of one to 1-1/2 inch per foot to a minimum of 1/8 inch of thickness. Provide kiln-dried preservative-treated wood cants, in compliance with requirements of Section 06 10 00 ROUGH CARPENTRY at base of wood nailers set on edge and wood curbing and where otherwise indicated.

2.8 FASTENERS AND PLATES

Provide coated, corrosion-resistant fasteners as recommended by the modified bitumen sheet manufacturer’s printed instructions and meeting the requirements of FM 4470 and FM APP GUIDE for Class I roof deck construction and the wind uplift resistance specified. For fastening of membrane or felts to wood materials, provide fasteners driven through 1 inch diameter metal discs, or one piece composite fasteners with heads not less than 1 inch in diameter or 1 inch square with rounded or 45 degree tapered corners.

2.8.1 Masonry or Concrete Walls and Vertical Surfaces

Use hardened steel nails or screws with flat heads, diamond shaped points, and mechanically deformed shanks not less than 1 inch long for securing felts, modified bitumen sheets, metal items, and accessories to masonry or concrete walls and vertical surfaces. Use power-driven fasteners only when approved in writing by the Contracting Officer.
2.8.2 Metal Plates

Provide flat corrosion-resistant round stress plates as recommended by the modified bitumen sheet manufacturer's printed instructions and meeting the requirements of FM 4470; not less than 2 inch in diameter. Form discs to prevent dishing or cupping.

2.9 PRE-MAINTAINED ACCESSORIES

Pre-manufactured accessories must be manufacturer's standard for intended purpose, compatible with the membrane roof system and approved for use by the modified bitumen membrane manufacturer.

2.10 WALKPADS

Roof walkpads must be polyester reinforced, granule-surfaced modified bitumen membrane material, minimum 197 mils thick, compatible with the modified bitumen sheet roofing and as recommended by the modified bitumen sheet roofing manufacturer. Panels must not exceed 4 foot in length. Other walkpad materials require approval of the Contracting Officer prior to installation.

PART 3 EXECUTION

3.1 EXAMINATION

Ensure that the following conditions exist prior to application of the roofing materials:

- Curbs, cants, control joints, expansion joints, perimeter walls, roof penetrating components are in place.

- Surfaces are rigid, clean, dry, smooth, and free from cracks, holes, and sharp changes in elevation. Joints in the substrate are sealed to prevent dripping of bitumen into building or down exterior walls.

- The plane of the substrate does not vary more than 1/4 inch within an area 10 by 10 foot when checked with a 10 foot straight edge placed anywhere on the substrate.

- Substrate is sloped as indicated to provide positive drainage.

- Walls and vertical surfaces are constructed to receive counter flashing, and will permit mechanical fastening of the base flashing materials.

- Treated wood nailers are in place on non-nailable surfaces, to permit nailing of base flashing at minimum height of 8 inch above finished roofing surface.

- Protect all combustible materials and surfaces which may contain concealed combustible or flammable materials. All fire extinguishing equipment has been placed as specified.

- Verify all Fire Watch personnel assignments.

- Treated wood nailers are fastened in place at eaves, openings, and intersections with vertical surfaces for securing of membrane, edging strips, attachment flanges of sheet metal, and roof fixtures.
Surface-applied nailers are the same thickness as the roof insulation.

j. Cants are securely fastened in place in the angles formed by walls and other vertical surfaces. The angle of the cant is 45 degrees and the height of the vertical leg is not less than 4 inches.

k. Exposed nail heads in wood substrates are properly set. Warped and split boardsheets have been replaced. There are no cracks or end joints 1/4 inch in width or greater. Knot holes are covered with sheet metal and nailed in place. WoodPlywood decks are covered with rosin paper or unsaturated felt prior to base sheet or roof membrane application. Joints in plywood substrates are taped or otherwise sealed to prevent air leakage from the underside.

l. Insulation boards are installed smoothly and evenly, and are not broken, cracked, or curled. There are no gaps in insulation board joints exceeding 1/4 inch in width. Insulation is being roofed over on the same day the insulation is installed.

m. Roof deck and framing are sloped as indicated to provide positive drainage.

3.2 PREPARATION

3.2.1 Protection of Property

3.2.1.1 Protective Coverings

Install protective coverings at paving and building walls adjacent to holists, tankers, and kettles prior to starting the work. Lap protective coverings not less than 6 inch, secure against wind, and vent to prevent collection of moisture on covered surfaces. Keep protective coverings in place for the duration of the roofing work.

3.2.1.2 Bitumen Stops

Provide felt bitumen stops or other means to prevent bitumen drippage at roof edges, openings, and vertical projections before hot mopped application of the roofing membrane.

3.2.2 Equipment

3.2.2.1 Mechanical Application Devices

Mount mechanical application devices on pneumatic-tired wheels. Use devices designed and maintained to operate without damaging the insulation, roofing membrane, or structural components.

3.2.2.2 Flame-Heated Equipment

Do not place flame-heated equipment on roof. Provide and maintain a fire extinguisher adjacent to flame-heated equipment and on the roof.

3.2.2.3 Open Flame Application Equipment

Open flame equipment must be specifically designated for use in application of modified bitumen materials and approved by the modified bitumen sheet manufacturer. Open flame equipment must not be ignited (burning) when left unattended. Provide and maintain a fire extinguisher adjacent to open flame equipment on the roof. Specific requirements for fire watches and
burn permits exist. These requirements will be reviewed at the preroofing conference.

3.2.6 Heating of Asphalt

Break up solid asphalt on a surface free of dirt and debris. Heat asphalt in kettle designed to prevent contact of flame with surfaces in contact with the asphalt. Kettles must have visible working thermometer and thermostatic controls set to the temperature limits specified herein. Keep controls in working order and calibrated. Use immersion thermometer, accurate within a tolerance of plus or minus 1.8 degrees F, to check temperatures of the asphalt frequently. When temperatures exceed maximums specified, remove asphalt from the site. Do no permit cutting back, adulterating, or fluxing of asphalt.

3.2.3 Temperature Limitations for Asphalt

Heat and apply asphalt at the temperatures specified below unless specified otherwise by manufacturer's printed application instructions. Use thermometer to check temperature during heating and application. Have kettle attended constantly during heating process to ensure specified temperatures are maintained. Do not heat asphalt above its finished blowing temperature (FBT). Do not heat asphalt between 500 and 525 degrees F for longer than four consecutive hours. Do not heat asphalt to the flash point (FP). Apply asphalt and embed membrane sheets when temperature of asphalt is within plus or minus 25 degrees F of the equiviscous temperature (EVT) but not less than 400 degrees F. Before heating and application of asphalt refer to the asphalt manufacturer's label or bill of lading for FP, FBT, and EVT of the asphalt used.

3.2.4 Priming of Surfaces

Prime all surfaces to be in contact with adhered membrane materials. Apply primer at the rate of 0.75 gallon per 100 sq. ft. or as recommended by modified bitumen sheet manufacturer's printed instructions to promote adhesion of membrane materials. Allow primer to dry prior to application of membrane materials to primed surface. Avoid flammable primer material conditions in torch applied membrane applications.

3.2.4.1 Priming of Metal Surfaces

Prime flanges of metal components to be embedded into the roof system prior to setting in bituminous materials or stripping into roofing system.

3.2.5 Membrane Preparation

Unroll modified bitumen membrane materials and allow to relax a minimum of 30 minutes prior to installation. In cold weather, adhere to membrane manufacturer's additional recommendations for pre-installation membrane handling and preparation. Inspect for damage, pinholes, particles of foreign matter, non-dispersed raw material, factory splices, or other conditions that might affect serviceability. Edges of seams must be straight and flat so that they may be seamed to one another without forming fish mouths or wrinkles. Discard damaged or defective materials.

3.2.6 Substrate Preparation

Apply membrane to clean, dry surfaces only. Do not apply membrane to surfaces that have been wet by rain or frozen precipitation within the previous 12 hours. Provide cleaning and artificial drying with heated blowers or torches as necessary to ensure clean, dry surface prior to
membrane application.

3.3 APPLICATION

Apply roofing materials as specified herein unless approved otherwise by the Contracting Officer. Keep roofing materials dry before and during application. Complete application of roofing in a continuous operation. Begin and apply only as much roofing in one day as can be completed that same day. Maintain specified temperatures for asphalt.

3.3.1 Phased Membrane Construction

Phased application of membrane plies is prohibited unless otherwise approved by the Contracting Officer and supported by the membrane manufacturer's written application instructions. If cap sheet installation is delayed, thoroughly clean the applied membrane material surface and dry immediately prior to cap sheet installation. Priming of the applied membrane surface may be required at the discretion of the Contracting Officer prior to cap sheet installation.

3.3.2 Application Method

3.3.2.1 Hot Asphalt Application of Modified Bitumen Membrane

Apply membrane immediately following application of hot asphalt. Apply hot asphalt within 6 foot of roll. Do not work ahead with asphalt. Asphalt must be completely fluid, with mop temperatures within the asphalt's EVT range, but not less than 400 degrees F, at the instant membrane comes into contact with asphalt. Application of bitumen between layers must be such as to provide full, continuous, uniform coverage and complete contact of hot asphalt with the sheet above and below. Embed sheets in asphalt. As sheets are being rolled into hot asphalt, immediately and thoroughly apply uniform positive pressure by squeegee, roll, or broom to ensure full adhesion and lap seal, eliminate trapped air and to provide tight, smooth laminations. Avoid excessive extrusion of asphalt at lap areas. Control asphalt bleed out to approximately 1 inch maximum.

3.3.3 Modified Bitumen Base Sheet

Fully adhere base sheets in accordance with membrane manufacturer's printed instructions. Roll and broom in the base sheet to ensure full contact with the hot asphalt application. Apply sheets in a continuous operation. Apply sheets with side laps at a minimum of 2 inch unless greater side lap is recommended by the manufacturer's standard written application instructions. Provide end laps of not less than 6 inch and staggered a minimum of 36 inch. Apply sheets at right angles to the roof slope so that the direction of water flow is over and not against the laps. Extend base sheets approximately 2 inch above the top of cant strips at vertical surfaces and to the top of cant strips elsewhere. Trim base sheet to a neat fit around vent pipes, roof drains, and other projections through the roof. Application must be free of ridges, wrinkles, and buckles.

3.3.4 Modified Bitumen Membrane Application

Ensure proper sheet alignment prior to installation. Apply membrane layers perpendicular to slope of roof in shingle fashion to shed water, including application on areas of tapered insulation that change slope direction. Bucking or backwater laps are prohibited. Fully adhere membrane sheets to

SECTION 07 52 00 Page 17
underlying substrate materials. Provide minimum 3 inch side laps and minimum 6 inch end laps and as otherwise required by membrane manufacturer. Stagger end laps minimum 36 inch. Offset side laps between membrane layers a minimum of 12 inch. Offset end laps between membrane layers a minimum of 36 inch. Install all membrane layers the same workday, unless supported otherwise by roof membrane manufacturer application instructions and approved by the Contracting Officer. Provide tight smooth laminations of each membrane layer without wrinkles, ridges, buckles, kinks, fishmouths, or voids. Ensure full membrane adhesion and full lap seals. Rework to seal any open laps prior to application of subsequent membrane layers. The completed membrane application must be free of surface abrasions, air pockets, blisters, ridges, wrinkles, buckles, kinks, fishmouths, voids, or open seams.

3.3.4.1 Cap Sheet Installation

Underlying applied membrane must be inspected and repaired free of damage, holes, puncture, gouges, abrasions, and any other defects, and free of moisture, loose materials, debris, sediments, dust, and any other conditions required by the membrane manufacturer prior to cap sheet installation. Do not apply cap sheet if rain or frozen precipitation has occurred within the previous 24 hours. Align cap membrane and apply by the specified method with the proper side and end lap widths. Cut at a 45 degree angle across selvage edge of cap membrane to be overlapped in end lap areas prior to applying overlapping cap membrane. Apply matching granules in any areas of bitumen bleed out while the asphalt is still hot. Minimize traffic on newly installed cap sheet membrane.

3.3.5 Membrane Flashing

Apply two-ply modified bitumen strip flashing and sheet flashing in the angles formed where the roof deck abuts walls, curbs, ventilators, pipes, and other vertical surfaces, and where necessary to make the work watertight. Apply membrane flashing in accordance with the roof membrane manufacturers printed instructions and as specified. Cut at a 45 degree angle across terminating end lap area of cap membrane prior to applying adjacent overlapping cap membrane. Press flashing into place to ensure full adhesion and avoid bridging. Ensure full lap seal in all lap areas. Mechanically fasten top edge of modified bituminous base flashing 150 mm (6 inches) on center through minimum 1 inch diameter tin caps with fasteners of sufficient length to embed minimum one inch into attachment substrate. Apply matching granules in any areas of asphalt bleed out while the asphalt is still hot. Apply membrane liner over top of exposed nailers and blocking and to overlap top edge of base flashing installation at curbs, parapet walls, expansion joints and as otherwise indicated to serve as waterproof lining under sheet metal flashing components. Metal flashing per SMACNA 1793 guidelines and standards is specified under Section 07 60 00 FLASHING AND SHEET METAL. Do not set metal flashing in hot asphalt.

3.3.5.1 Membrane Strip Flashing

Set primed flanges of metal flashing in full bed of modified bituminous cement material and securely fasten through to attachment substrate. Strip-in with membrane flashing so that strip extends not less than 4 inch beyond outer edge of flange. Where multiple membrane stripping plies are installed, extend each additional stripping ply minimum 4 inch beyond edge of previous ply.
3.3.5.2 Set-On Accessories

Where pipe or conduit blocking, supports and similar roof accessories are set on the membrane, adhere walkpad material to bottom of accessories prior to setting on roofing membrane. Specific method of installing set-on accessories must permit normal movement due to expansion, contraction, vibration, and similar occurrences without damaging roofing membrane. Do not mechanically secure set-on accessories through roofing membrane into roof deck substrate.

3.3.6 Roof Walkpads

Install walkpads at roof access points and where otherwise indicated for traffic areas and for access to mechanical equipment, in accordance with the modified bitumen sheet roofing manufacturer's printed instructions. Provide minimum 6 inch separation between adjacent walkpads to accommodate drainage.

3.3.7 Correction of Deficiencies

Where any form of deficiency is found, additional measures will be taken as deemed necessary by the Contracting Officer to determine the extent of the deficiency and corrective actions must be performed as directed by the Contracting Officer.

3.3.8 Clean Up

Remove debris, scraps, containers and other rubbish and trash resulting from installation of the roofing system from job site each day.

3.4 CORRECTION OF DEFICIENCIES

Where any form of deficiency is found, additional measures must be taken as deemed necessary by the Contracting Officer to determine the extent of the deficiency and corrective actions must be as directed by the Contracting Officer.

3.5 PROTECTION OF APPLIED ROOFING

At the end of the day's work and when precipitation is imminent, protect applied modified bitumen roofing system from water intrusion.

3.5.1 Water Cutoffs

Straighten insulation line using loose-laid cut insulation sheets and seal the terminated edge of modified bitumen roofing system in an effective manner. Remove the water cut-offs to expose the insulation when resuming work, and remove the insulation sheets used for fill-in.

3.5.2 Temporary Flashing for Permanent Roofing

Provide temporary flashing at, curbs, walls and other penetrations and terminations of roofing sheets until permanent flashing can be applied. Remove temporary flashing before applying permanent flashing.

3.5.3 Temporary Walkways, Runways, and Platforms

Do not permit storing, walking, wheeling, and trucking directly on applied roofing materials. Provide temporary walkways, runways, and platforms of
smooth clean boards, mats or planks as necessary to avoid damage to applied roofing materials, and to distribute weight to conform to live load limits of roof construction. Use rubber-tired equipment for roofing work.

3.6 FIELD QUALITY CONTROL

Perform field tests in the presence of the Contracting Officer. Notify the Contracting Officer one day before performing tests.

3.6.1 Construction Monitoring

During progress of the roof work, Contractor must make visual inspections as necessary to ensure compliance with specified parameters. Additionally, verify the following:

a. Materials comply with the specified requirements.

b. Materials are not installed in adverse weather conditions.

 All materials are properly stored, handled and protected from moisture or other damages.

c. Equipment is in working order. Metering devices are accurate.

d. Substrates are in acceptable condition, in compliance with specification, prior to application of subsequent materials.

 (1) Nailers and blocking are provided where and as needed.

 Insulation substrate is smooth, properly secured to its substrate, and without excessive gaps prior to membrane application.

 (2) The proper number, type, and spacing of fasteners are installed.

 (3) Hot mopping application is provided uniformly and as necessary to ensure full adhesion of roll materials. Asphalt is heated and applied within the specified temperature range.

 The proper number and types of plies are installed, with the specified overlaps.

 Applied membrane surface is inspected, cleaned, dry, and repaired as necessary prior to cap sheet installation.

 (4) Lap areas of all plies are completely sealed.

 Membrane is fully adhered without ridges, wrinkles, kinks, fishmouths, or other voids or delaminations.

 Installer adheres to specified and detailed application parameters.

 Associated flashing and sheet metal are installed in a timely manner in accord with the specified requirements.

 Temporary protection measures are in place at the end of each work shift.
3.6.1.1 Manufacturer's Inspection

Manufacturer's technical representative must visit the site a minimum of three times during the installation for purposes of reviewing materials installation practices and adequacy of work in place. Inspections must occur during the first 20 squares of membrane installation, at mid-point of the installation, and at substantial completion, at a minimum. Additional inspections must not exceed one for each 100 squares of total roof area with the exception that follow-up inspections of previously noted deficiencies or application errors must be performed as requested by the Contracting Officer. After each inspection, submit a report, signed by the manufacturer's technical representative to the Contracting Officer within 3 working days. Note in the report overall quality of work, deficiencies and any other concerns, and recommended corrective action.

3.7 INSTRUCTIONS TO GOVERNMENT PERSONNEL

Furnish written and verbal instructions on proper maintenance procedures to designated Government personnel. Furnish instructions by a competent representative of the modified bitumen membrane manufacturer and include a minimum of 4 hours on maintenance and emergency repair of the membrane. Include a demonstration of membrane repair, and give sources of required special tools. Furnish information on safety requirements during maintenance and emergency repair operations.

3.8 INFORMATION CARD

For each roof, furnish a typewritten information card for facility Records and a card laminated in plastic and framed for interior display at roof access point, or a photoengraved 0.039 inch thick aluminum card for exterior display. Card must be 8 1/2 by 11 inch minimum. Information card must identify facility name and number; location; contract number; approximate roof area; detailed roof system description, including deck type, membrane, number of plies, method of application, manufacturer, insulation and cover board system and thickness; presence of tapered insulation for primary drainage; date of completion; installing contractor identification and contact information; membrane manufacturer warranty expiration, warranty reference number, and contact information. The card must be a minimum size of 8 1/2 by 11 inch. Install card at roof top or access location as directed by the Contracting Officer and provide a paper copy to the Contracting Officer.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WELDING SOCIETY (AWS)

AWS D1.2/D1.2M (2014) Structural Welding Code - Aluminum

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2017) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

1.2 GENERAL REQUIREMENTS

Finished sheet metalwork will form a weathertight construction without waves, warps, buckles, fastening stresses or distortion, which allows for expansion and contraction. Sheet metal mechanic is responsible for cutting, fitting, drilling, and other operations in connection with sheet metal required to accommodate the work of other trades. Coordinate installation of sheet metal items used in conjunction with roofing with roofing work to permit continuous roofing operations.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Covering on flat, sloped, or curved surfaces

Gutters; G

Downspouts; G

Expansion joints; G

Gravel stops and fascias; G

Base flashing; G

Counterflushing; G

Coping; G

Reglets; G

Drip edge; G

Eave flashing

Indicate thicknesses, dimensions, fastenings and anchoring methods, expansion joints, and other provisions necessary for thermal expansion and contraction. Scaled manufacturer's catalog data may be submitted for factory fabricated items.
1.4 DELIVERY, HANDLING, AND STORAGE

Package and protect materials during shipment. Uncrate and inspect materials for damage, dampness, and wet-storage stains upon delivery to the job site. Remove from the site and replace damaged materials that cannot be restored to like-new condition. Handle sheet metal items to avoid damage to surfaces, edges, and ends. Store materials in dry, weather-tight, ventilated areas until immediately before installation.

PART 2 PRODUCTS

2.1 MATERIALS

Use any metal listed by SMACNA Arch. Manual for a particular item, unless otherwise specified or indicated. Conform to the requirements specified and to the thicknesses and configurations established in SMACNA Arch. Manual for the materials. Different items need not be of the same metal, except that if copper is selected for any exposed item, all exposed items must be copper.

Furnish sheet metal items in 8 to 10 foot lengths. Single pieces less than 8 feet long may be used to connect to factory-fabricated inside and outside corners, and at ends of runs. Factory fabricate corner pieces with minimum 12 inch legs. Provide accessories and other items essential to complete the sheet metal installation. Provide accessories made of the same or compatible materials as the items to which they are applied. Fabricate sheet metal items of the materials specified below and to the gage, thickness, or weight shown in Table I at the end of this section. Provide sheet metal items with mill finish unless specified otherwise. Where more than one material is listed for a particular item in Table I, each is acceptable and may be used except as follows:

2.1.1 Exposed Sheet Metal Items

Must be of the same material. Consider the following as exposed sheet metal: gutters, including hangers; downspouts; gravel stops and fascias; cap, valley, steeped, base, and eave flashings and related accessories.

2.1.2 Drainage

Do not use copper for an exposed item if drainage from that item will pass over exposed masonry, stonework or other metal surfaces. In addition to the metals listed in Table I, lead-coated copper may be used for such items.

2.1.3 Copper, Sheet and Strip

ASTM B370, cold-rolled temper, H 00 (standard).

2.1.4 Lead-Coated Copper Sheet

ASTM B101.

2.1.5 Lead Sheet

Minimum weight 4 pounds per square foot.

2.1.6 Steel Sheet, Zinc-Coated (Galvanized)

ASTM A653/A653M.
2.1.6.1 Finish

Exposed exterior items of zinc-coated steel sheet must have a baked-on, factory-applied color coating of polyvinylidene fluoride or other equivalent fluorocarbon coating applied after metal substrates have been cleaned and pretreated. Provide finish coating dry-film thickness of 0.8 to 1.3 mils and color to match existing or as approved by the Contracting Officer.

2.1.7 Zinc Sheet and Strip

ASTM B69, Type I, a minimum of 0.024 inch thick.

2.1.8 Stainless Steel

ASTM A480/A480M, Type 302 or 304, 2D Finish, fully annealed, dead-soft temper.

2.1.9 Terne-Coated Steel

Minimum of 14 by 20 inch with minimum of 40 pound coating per double base box. ASTM A308/A308M.

2.1.10 Aluminum Alloy Sheet and Plate

ASTM B209 anodized clear form alloy, and temper appropriate for use.

2.1.10.1 Finish

Exposed exterior sheet metal items of aluminum must have a baked-on, factory-applied color coating of polyvinylidene fluoride (PVF2) or other equivalent fluorocarbon coating applied after metal substrates have been cleaned and pretreated. Provide finish coating dry-film thickness of 0.8 to 1.3 mils and color of to match existing or as approved by the Contracting Officer.

2.1.11 Aluminum Alloy, Extruded Bars, Rods, Shapes, and Tubes

ASTM B221.

2.1.12 Solder

ASTM B32, 95-5 tin-antimony.

2.1.13 Bituminous Plastic Cement

ASTM D4586/D4586M, Type I.

2.1.14 Roofing Felt

ASTM D226/D226M Type I.

2.1.15 Asphalt Primer

ASTM D41/D41M.
2.1.16 Fasteners

Use the same metal or a metal compatible with the item fastened. Use stainless steel fasteners to fasten dissimilar materials.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Workmanship

Make lines and angles sharp and true. Free exposed surfaces from visible wave, warp, buckle, and tool marks. Fold back exposed edges neatly to form a 1/2 inch hem on the concealed side. Make sheet metal exposed to the weather watertight with provisions for expansion and contraction.

Make surfaces to receive sheet metal plumb and true, clean, even, smooth, dry, and free of defects and projections. For installation of items not shown in detail or not covered by specifications conform to the applicable requirements of SMACNA 1793, Architectural Sheet Metal Manual. Provide sheet metal flashing in the angles formed where roof decks abut walls, curbs, ventilators, pipes, or other vertical surfaces and wherever indicated and necessary to make the work watertight. Join sheet metal items together as shown in Table II.

3.1.2 Nailing

Confine nailing of sheet metal generally to sheet metal having a maximum width of 18 inch. Confine nailing of flashing to one edge only. Space nails evenly not over 3 inch on center and approximately 1/2 inch from edge unless otherwise specified or indicated. Face nailing will not be permitted. Where sheet metal is applied to other than wood surfaces, include in shop drawings, the locations for sleepers and nailing strips required to secure the work.

3.1.3 Cleats

Provide cleats for sheet metal 18 inch and over in width. Space cleats evenly not over 12 inch on center unless otherwise specified or indicated. Unless otherwise specified, provide cleats of 2 inch wide by 3 inch long and of the same material and thickness as the sheet metal being installed. Secure one end of the cleat with two nails and the cleat folded back over the nailheads. Lock the other end into the seam. Where the fastening is to be made to concrete or masonry, use screws and drive in expansion shields set in concrete or masonry. Pretin cleats for soldered seams.

3.1.4 Bolts, Rivets, and Screws

Install bolts, rivets, and screws where indicated or required. Provide compatible washers where required to protect surface of sheet metal and to provide a watertight connection. Provide mechanically formed joints in aluminum sheets 0.040 inch or less in thickness.

3.1.5 Seams

Straight and uniform in width and height with no solder showing on the face.
3.1.5.1 Flat-lock Seams

Finish not less than 3/4 inch wide.

3.1.5.2 Lap Seams

Finish soldered seams not less than one inch wide. Overlap seams not soldered, not less than 3 inch.

3.1.5.3 Loose-Lock Expansion Seams

Not less than 3 inch wide; provide minimum one inch movement within the joint. Completely fill the joints with the specified sealant, applied at not less than 1/8 inch thick bed.

3.1.5.4 Standing Seams

Not less than one inch high, double locked without solder.

3.1.5.5 Flat Seams

Make seams in the direction of the flow.

3.1.6 Soldering

Where soldering is specified, apply to copper, terne-coated stainless steel, zinc-coated steel, and stainless steel items. Pretin edges of sheet metal before soldering is begun. Seal the joints in aluminum sheets of 0.040 inch or less in thickness with specified sealants. Do not solder aluminum.

3.1.6.1 Edges

Scrape or wire-brush the edges of lead-coated material to be soldered to produce a bright surface. Flux brush the seams in before soldering. Treat with soldering acid flux the edges of stainless steel to be pretinned. Seal the joints in aluminum sheets of 0.040 inch or less in thickness with specified sealants. Do not solder aluminum.

3.1.7 Welding and Mechanical Fastening

Use welding for aluminum of thickness greater than 0.040 inch. Aluminum 0.040 inch or less in thickness must be butted and the space backed with formed flashing plate; or lock joined, mechanically fastened, and filled with sealant as recommended by the aluminum manufacturer.

3.1.7.1 Welding of Aluminum

Use welding of the inert gas, shield-arc type. For procedures, appearance and quality of welds, and the methods used in correcting welding work, conform to AWS D1.2/D1.2M.

3.1.7.2 Mechanical Fastening of Aluminum

Use No. 12, aluminum alloy, sheet metal screws or other suitable aluminum alloy or stainless steel fasteners. Drive fasteners in holes made with a No. 26 drill in securing side laps, end laps, and flashings. Space fasteners 12 inch maximum on center. Where end lap fasteners are required to improve closure, locate the end lap fasteners not more than 2 inch from
3.1.8 Protection from Contact with Dissimilar Materials

3.1.8.1 Copper or Copper-bearing Alloys

Paint with heavy-bodied bituminous paint surfaces in contact with dissimilar metal, or separate the surfaces by means of moistureproof building felts.

3.1.8.2 Aluminum

Do not allow aluminum surfaces in direct contact with other metals except stainless steel, zinc, or zinc coating. Where aluminum contacts another metal, paint the dissimilar metal with a primer followed by two coats of aluminum paint. Where drainage from a dissimilar metal passes over aluminum, paint the dissimilar metal with a non-lead pigmented paint.

3.1.8.3 Metal Surfaces

Paint surfaces in contact with mortar, concrete, or other masonry materials with alkali-resistant coatings such as heavy-bodied bituminous paint.

3.1.8.4 Wood or Other Absorptive Materials

Paint surfaces that may become repeatedly wet and in contact with metal with two coats of aluminum paint or a coat of heavy-bodied bituminous paint.

3.1.9 Expansion and Contraction

Provide expansion and contraction joints at not more than 32 foot intervals for aluminum and at not more than 40 foot intervals for other metals. Provide an additional joint where the distance between the last expansion joint and the end of the continuous run is more than half the required interval. Space joints evenly. Join extruded aluminum gravel stops and fascias by expansion and contraction joints spaced not more than 12 feet apart.

3.1.10 Base Flashing

Lay the base flashings with each course of the roof covering, shingle fashion, where practicable, where sloped roofs abut chimneys, curbs, walls, or other vertical surfaces. Extend up vertical surfaces of the flashing not less than 8 inch and not less than 4 inch under the roof covering. Where finish wall coverings form a counterflashing, extend the vertical leg of the flashing up behind the applied wall covering not less than 6 inch. Overlap the flashing strips or shingles with the previously laid flashing not less than 3 inch. Fasten the strips or shingles at their upper edge to the deck. Horizontal flashing at vertical surfaces must extend vertically above the roof surface and fastened at their upper edge to the deck a minimum of 6 inch on center with large headed aluminum roofing nails a minimum of 2-inch lap of any surface. Solder end laps and provide for expansion and contraction. Extend the metal flashing over crickets at the up-slope side of chimneys, curbs, and similar vertical surfaces extending through sloping roofs, the metal flashings. Extend the metal flashings onto the roof covering not less than 4.5 inch at the lower side of dormer walls, chimneys, and similar vertical surfaces extending through the roof decks. Install and fit the flashings so as to be completely weathertight. Provide factory-fabricated base flashing for interior and exterior corners. Do not
3.1.1 Counterflashing

Except where indicated or specified otherwise, insert counterflashing in reglets located from 9 to 10 inch above roof decks, extend down vertical surfaces over upturned vertical leg of base flashings not less than 3 inch. Fold the exposed edges of counterflashings 1/2 inch. Where stepped counterflashings are required, they may be installed in short lengths a minimum 8 inch by 8 inch or may be of the preformed one-piece type. Provide end laps in counterflashings not less than 3 inch and make it weathertight with plastic cement. Do not make lengths of metal counterflashings exceed 10 feet. Form the flashings to the required shapes before installation. Factory-form the corners not less than 12 inch from the angle. Secure the flashings in the reglets with lead wedges and space not more than 18 inch apart; on chimneys and short runs, place wedges closer together. Fill caulked-type reglets or raked joints which receive counterflashing with caulk compound. Turn up the concealed edge of counterflashings built into masonry or concrete walls not less than 1/4 inch and extend not less than 2 inch into the walls. Install counterflashing to provide a spring action against base flashing. Where bituminous base flashings are provided, extend down the counter flashing as close as practicable to the top of the cant strip. Factory form counter flashing to provide spring action against the base flashing.

3.1.12 Metal Reglets

Provide factory fabricated caulked type or friction type reglets with a minimum opening of 1/4 inch and a depth of 1 1/4 inch, as approved.

3.1.12.1 Caulked Reglets

Provide with rounded edges and metal strap brackets or other anchors for securing to the concrete forms. Provide reglets with a core to protect them from injury during the installation. Provide built-up mitered corner pieces for internal and external angles. Wedge the flashing in the reglets with lead wedges every 18 inch, caulked full and solid with an approved compound.

3.1.12.2 Friction Reglets

Provide with flashing receiving slots not less than 5/8 inch deep, one inch jointing tongues, and upper and lower anchoring flanges installed at 24 inch maximum snaplock receiver. Insert the flashing the full depth of the slot and lock by indentations made with a dull-pointed tool, wedges, and filled with a sealant. For friction reglets, install flashing snaplock receivers at 24 inch on center maximum. When the flashing has been inserted the full depth, caulk the slot and lock with wedges and fill with sealant.

3.1.13 Gravel Stops and Fascias

Prefabricate in the shapes and sizes indicated and in lengths not less that 8 feet. Extend flange at least 4 inch onto roofing. Provide prefabricated, mitered corners internal and external corners. Install gravel stops and fascias after all plies of the roofing membrane have been applied, but before the flood coat of bitumen is applied. Prime roof flange of gravel stops and fascias on both sides with an asphalt primer. After primer has dried, set flange on roofing membrane and strip-in. Nail
flange securely to wood nailer with large-head, barbed-shank roofing nails 1.5 inch long spaced not more than 3 inch on center, in two staggered rows.

3.1.13.1 Edge Strip

Hook the lower edge of fascias at least 3/4 inch over a continuous strip of the same material bent outward at an angle not more than 45 degrees to form a drip. Nail hook strip to a wood nailer at 6 inch maximum on center. Where fastening is made to concrete or masonry, use screws spaced 12 inch on center driven in expansion shields set in the concrete or masonry. Where horizontal wood nailers are slotted to provide for insulation venting, install strips to prevent obstruction of vent slots. Where necessary, install strips over 1/16 inch thick compatible spacer or washers.

3.1.13.2 Joints

Leave open the section ends of gravel stops and fascias 1/4 inch and backed with a formed flashing plate, mechanically fastened in place and lapping each section end a minimum of 4 inch set laps in plastic cement. Face nailing will not be permitted. Install prefabricated aluminum gravel stops and fascias in accordance with the manufacturer's printed instructions and details.

3.1.14 Metal Drip Edge

Provide a metal drip edge, designed to allow water run-off to drip free of underlying construction, at eaves and rakes prior to the application of roofing shingles. Apply directly on the wood deck at the eaves and over the underlay along the rakes. Extend back from the edge of the deck not more than 3 inch and secure with compatible nails spaced not more than 10 inch on center along upper edge.

3.1.15 Gutters

The hung type of shape indicated and supported on underside by brackets that permit free thermal movement of the gutter. Provide gutters in sizes indicated complete with mitered corners, end caps, outlets, brackets, and other accessories necessary for installation. Bead with hemmed edge or reinforce the outer edge of gutter with a stiffening bar not less than 3/4 by 3/16 inch of material compatible with gutter. Fabricate gutters in sections not less than 8 feet. Lap the sections a minimum of one inch in the direction of flow or provide with concealed splice plate 6 inch minimum. Join the gutters, other than aluminum, by riveted and soldered joints. Join aluminum gutters with riveted sealed joints. Provide expansion-type slip joints midway between outlets. Install gutters below slope line of the roof so that snow and ice can slide clear. Support gutters on adjustable hangers spaced not more than 30 inch on center. Adjust gutters to slope uniformly to outlets, with high points occurring midway between outlets. Fabricate hangers and fastenings from metals.

3.1.16 Downspouts

Space supports for downspouts according to the manufacturer's recommendation for the wood masonry or steel substrate. Types, shapes and sizes are indicated. Provide complete including elbows and offsets. Provide downspouts in approximately 10 foot lengths. Provide end joints to telescope not less than 1/2 inch and lock longitudinal joints. Keep downspouts not less than one inch away from walls. Fasten to the walls at top, bottom, and at an intermediate point not to exceed 5 feet on center.
with leader straps or concealed rack-and-pin type fasteners. Form straps and fasteners of metal compatible with the downspouts.

3.1.16.1 Terminations

Neatly fit into the drainage connection the downspouts terminating in drainage lines and fill the joints with a portland cement mortar cap sloped away from the downspout. Provide downspouts terminating in splash blocks with elbow-type fittings.

3.1.17 Sheet Metal Covering on Flat, Sloped, or Curved Surfaces

Except as specified or indicated otherwise, cover and flash all minor flat, sloped, or curved surfaces such as crickets, bulkheads, dormers and small decks with metal sheets of the material used for flashing; maximum size of sheets, 16 by 18 inch. Fasten sheets to sheathing with metal cleats. Lock seams and solder. Lock aluminum seams as recommended by aluminum manufacturer. Provide an underlayment of roofing felt for all sheet metal covering.

3.1.18 Expansion Joints

Provide expansion joints for roofs, as indicated. Provide expansion joints in continuous sheet metal at 32 foot intervals for aluminum, aluminum gravel stops and fascias which must have expansion joints at not more than 12 foot spacing. Provide evenly spaced joints. Provide an additional joint where the distance between the last expansion joint and the end of the continuous run is more than half the required interval spacing. Conform to the requirements of Table I.

3.1.18.1 Roof Expansion Joints

Consist of curb with wood nailing members on each side of joint, bituminous base flashing, metal counterflashing, and metal joint cover. Bituminous base flashing is specified in Roofing Section. Provide counterflashing as specified in paragraph "Counterflashing," except as follows: Provide counterflashing with vertical leg of suitable depth to enable forming into a horizontal continuous cleat. Secure the inner edge to the nailing member. Make the outer edge projection not less than one inch for flashing on one side of the expansion joint and be less than the width of the expansion joint plus one inch for flashing on the other side of the joint. Hook the expansion joint cover over the projecting outer edges of counterflashing. Provide roof joint with a joint cover of the width indicated. Hook and lock one edge of the joint cover over the shorter projecting flange of the continuous cleat, and the other edge hooked over and loose locked with the longer projecting flange. Joints are specified in Table II.

3.1.19 Flashing at Roof Penetrations and Equipment Supports

Provide metal flashing for all pipes, ducts, and conduits projecting through the roof surface and for equipment supports, guy wire anchors, and similar items supported by or attached to the roof deck.

3.1.20 Single Pipe Vents

See Table I, footnote (d). Set flange of sleeve in bituminous plastic cement and nail 3 inch on center. Bend the top of sleeve over and extend down into the vent pipe a minimum of 2 inch. For long runs or long rises
above the deck, where it is impractical to cover the vent pipe with lead, use a two-piece formed metal housing. Set metal housing with a metal sleeve having a 4 inch roof flange in bituminous plastic cement and nailed 3 inch on center. Extend sleeve a minimum of 8 inch above the roof deck and lapped a minimum of 3 inch by a metal hood secured to the vent pipe by a draw band. Seal the area of hood in contact with vent pipe with an approved sealant.

3.1.21 Coping

Provide coping where indicated. Provide expansion joints at 10'-0" o.c. max., with standing seam joints. Coping shall match existing color and configuration.

3.2 PAINTING

Field-paint sheet metal for separation of dissimilar materials.

3.2.1 Aluminum Surfaces

Shall be solvent cleaned and given one coat of zinc-molybdate primer and one coat of aluminum paint.

3.3 CLEANING

Clean exposed sheet metal work at completion of installation. Remove grease and oil films, handling marks, contamination from steel wool, fittings and drilling debris, and scrub-clean. Free the exposed metal surfaces of dents, creases, waves, scratch marks, and solder or weld marks.

3.4 REPAIRS TO FINISH

Scratches, abrasions, and minor surface defects of finish may be repaired in accordance with the manufacturer's printed instructions and as approved. Repair damaged surfaces caused by scratches, blemishes, and variations of color and surface texture. Replace items which cannot be repaired.

3.5 FIELD QUALITY CONTROL

3.5.1 Procedure

<table>
<thead>
<tr>
<th>TABLE I. SHEET METAL WEIGHTS, THICKNESSES, AND GAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet Metal Items</td>
</tr>
<tr>
<td>Building Expansion Joints</td>
</tr>
<tr>
<td>Cover</td>
</tr>
<tr>
<td>Sheet Metal Items</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Covering on minor flat, pitched or curved surfaces</td>
</tr>
<tr>
<td>Downspouts and leaders</td>
</tr>
<tr>
<td>Downspout clips and anchors</td>
</tr>
<tr>
<td>Downspout straps, 2-inch</td>
</tr>
<tr>
<td>Flashings:</td>
</tr>
<tr>
<td>Base</td>
</tr>
<tr>
<td>Cap (Counter-flashing)</td>
</tr>
<tr>
<td>Eave</td>
</tr>
<tr>
<td>Pipe vent sleeve (d)</td>
</tr>
<tr>
<td>Coping</td>
</tr>
<tr>
<td>Gravel stops and fascias:</td>
</tr>
<tr>
<td>Extrusions</td>
</tr>
<tr>
<td>Sheets, smooth</td>
</tr>
<tr>
<td>Edge strip</td>
</tr>
<tr>
<td>Gutters:</td>
</tr>
<tr>
<td>Gutter section</td>
</tr>
<tr>
<td>Continuous cleat</td>
</tr>
<tr>
<td>Hangers, dimensions</td>
</tr>
</tbody>
</table>

SECTION 07 60 00 Page 12
TABLE I. SHEET METAL WEIGHTS, THICKNESSES, AND GAGES

<table>
<thead>
<tr>
<th>Sheet Metal Items</th>
<th>Aluminum, inch</th>
<th>Terne-Coated Stainless Steel, inch</th>
<th>Zinc-Coated Steel, U.S. Std. Gage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint Cover plates (See Table II)</td>
<td>.032</td>
<td>.015</td>
<td>24</td>
</tr>
<tr>
<td>Reglets (c)</td>
<td>--</td>
<td>.010</td>
<td>--</td>
</tr>
</tbody>
</table>

(a) Brass.

(b) May be lead weighing 4 pounds per square foot.

(c) May be polyvinyl chloride.

(d) 2.5 pound minimum lead sleeve with 4 inch flange. Where lead sleeve is impractical, refer to paragraph entitled "Single Pipe Vents" for optional material.

TABLE II. SHEET METAL JOINTS

<table>
<thead>
<tr>
<th>TYPE OF JOINT</th>
<th>Item Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Designation</td>
<td>Zinc-Coated Steel and Stainless Steel</td>
</tr>
<tr>
<td></td>
<td>Aluminum</td>
</tr>
<tr>
<td></td>
<td>Remarks</td>
</tr>
<tr>
<td>Joint cap for building expansion seam, cleated joint at roof</td>
<td>1.25 inch single lock, standing seam, cleated</td>
</tr>
<tr>
<td></td>
<td>1.25 inch single lock, standing</td>
</tr>
<tr>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Flashings</td>
<td></td>
</tr>
<tr>
<td>TYPE OF JOINT</td>
<td>Item Designation</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Base</td>
<td>One inch</td>
</tr>
<tr>
<td>Cap-in reglet</td>
<td>3 inch lap</td>
</tr>
<tr>
<td>Reglets</td>
<td>Butt joint</td>
</tr>
<tr>
<td>Eave</td>
<td>One inch flat locked, cleated. One inch loose locked, sealed expansion joint, cleated.</td>
</tr>
<tr>
<td>Edge strip</td>
<td>Butt</td>
</tr>
<tr>
<td>Gravel stops:</td>
<td></td>
</tr>
<tr>
<td>Extrusions</td>
<td>--</td>
</tr>
<tr>
<td>Sheet, smooth</td>
<td>Butt with 1/4 inch space</td>
</tr>
<tr>
<td>Sheet, corrugated</td>
<td>Butt with 1/4 inch space</td>
</tr>
<tr>
<td>Item Designation</td>
<td>Type of Joint</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Gutters</td>
<td>Zinc-Coated Steel and Stainless Steel</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Provide a 3 inch lap elastomeric flashing with manufacturer’s recommended sealant.

(b) Seal Polyvinyl chloride reglet with manufacturer’s recommended sealant.

-- End of Section --
SECTION 07 84 00

FIRESTOPPING

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM E2174 (2014b) Standard Practice for On-Site Inspection of Installed Fire Stops

FM GLOBAL (FM)

FM 4991 (2013) Approval of Firestop Contractors

UNDERWRITERS LABORATORIES (UL)

UL 1479 (2015) Fire Tests of Through-Penetration Firestops

UL 723 (2008; Reprint Aug 2013) Test for Surface Burning Characteristics of Building Materials
1.2 SYSTEM DESCRIPTION

1.2.1 General

Furnish and install tested and listed firestopping systems, combination of materials, or devices to form an effective barrier against the spread of flame, smoke and gases, and maintain the integrity of fire resistance rated walls, partitions, floors, and ceiling-floor assemblies, including through-penetrations and construction joints and gaps.

a. Through-penetrations include the annular space around pipes, tubes, conduit, wires, cables and vents.

b. Construction joints include those used to accommodate expansion, contraction, wind, or seismic movement; firestopping material shall not interfere with the required movement of the joint.

Gaps requiring firestopping include gaps between the top of the fire-rated walls and the roof or floor deck above and at the intersection of shaft assemblies and adjoining fire resistance rated assemblies.

1.2.2 Sequencing

Coordinate the specified work with other trades. Apply firestopping materials, at penetrations of pipes and ducts, prior to insulating, unless insulation meets requirements specified for firestopping. Apply firestopping materials at building joints and construction gaps, prior to completion of enclosing walls or assemblies. Cast-in-place firestop devices shall be located and installed in place before concrete placement. Pipe, conduit or cable bundles shall be installed through cast-in-place device after concrete placement but before area is concealed or made inaccessible. Firestop material shall be inspected and approved prior to final completion and enclosing of any assemblies that may conceal installed firestop.

1.2.3 Submittals Requirements

a. Submit detail drawings including manufacturer's descriptive data, typical details conforming to UL Fire Resistance or other details certified by another nationally recognized testing laboratory, installation instructions or UL listing details for a firestopping assembly in lieu of fire-test data or report. For those firestop applications for which no UL tested system is available through a manufacturer, a manufacturer's engineering judgment, derived from similar UL system designs or other tests, shall be submitted for review and approval prior to installation. Submittal shall indicate the firestopping material to be provided for each type of application. When more than a total of 5 penetrations and/or construction joints are to receive firestopping, provide drawings that indicate location, "F" "T" and "I" ratings, and type of application.

b. Submit certificates attesting that firestopping material complies with the specified requirements. For all intumescent firestop materials used in through penetration systems, manufacturer shall provide
certification of compliance with UL 1479.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Firestopping Materials

SD-06 Test Reports

Inspection

SD-07 Certificates

Firestopping Materials

Installer Qualifications

1.4 QUALITY ASSURANCE

1.4.1 Installer

Engage an experienced Installer who is:

a. FM Research approved in accordance with FM 4991, operating as a UL Certified Firestop Contractor, or

b. Certified, licensed, or otherwise qualified by the firestopping manufacturer as having the necessary staff, training, and a minimum of 3 years experience in the installation of manufacturer's products in accordance with specified requirements. A manufacturer's willingness to sell its firestopping products to the Contractor or to an installer engaged by the Contractor does not in itself confer installer qualifications on the buyer. The Installer shall have been trained by a direct representative of the manufacturer (not distributor or agent) in the proper selection and installation procedures. The installer shall obtain from the manufacturer written certification of training, and retain proof of certification for duration of firestop installation.

1.5 DELIVERY, STORAGE, AND HANDLING

Deliver materials in the original unopened packages or containers showing name of the manufacturer and the brand name. Store materials off the ground, protected from damage and exposure to elements and temperatures in accordance with manufacturer requirements. Remove damaged or deteriorated materials from the site. Use materials within their indicated shelf life.

PART 2 PRODUCTS

2.1 FIRESTOPPING MATERIALS

Provide firestopping materials, supplied from a single domestic manufacturer, consisting of commercially manufactured, asbestos-free, nontoxic products FM APP GUIDE approved, or UL listed, for use with applicable construction and penetrating items, complying with the following
minimum requirements:

2.1.1 Fire Hazard Classification

Material shall have a flame spread of 25 or less, and a smoke developed rating of 50 or less, when tested in accordance with ASTM E84 or UL 723. Material shall be an approved firestopping material as listed in UL Fire Resistance or by a nationally recognized testing laboratory.

2.1.2 Toxicity

Material shall be nontoxic and carcinogen free to humans at all stages of application or during fire conditions and shall not contain hazardous chemicals or require harmful chemicals to clean material or equipment. Firestop material must be free from Ethylene Glycol, PCB, MEK, or other types of hazardous chemicals.

2.1.3 Fire Resistance Rating

Firestop systems shall be UL Fire Resistance listed or FM APP GUIDE approved with "F" rating at least equal to fire-rating of fire wall or floor in which penetrated openings are to be protected. Where required, firestop systems shall also have "T" rating at least equal to the fire-rated floor in which the openings are to be protected.

2.1.3.1 Through-Penetrations

Firestopping materials for through-penetrations, as described in paragraph SYSTEM DESCRIPTION, shall provide "F", "T" and "L" fire resistance ratings in accordance with ASTM E814 or UL 1479. Fire resistance ratings shall be as follows:

2.1.3.1.1 Penetrations of Fire Resistance Rated Walls and Partitions

F Rating = Rating of wall or partition being penetrated.

2.1.3.2 Construction Joints and Gaps

Fire resistance ratings of construction joints, as described in paragraph SYSTEM DESCRIPTION, and gaps such as those between floor slabs shall be the same as the construction in which they occur. Construction joints and gaps shall be provided with firestopping materials and systems that have been tested in accordance with ASTM E119, ASTM E1966 or UL 2079 to meet the required fire resistance rating. Systems installed at construction joints shall meet the cycling requirements of ASTM E1399/E1399M or UL 2079. All joints at the intersection of the top of a fire resistance rated wall and the underside of a fire-rated floor, floor ceiling, or roof ceiling assembly shall provide a minimum class II movement capability.

PART 3 EXECUTION

3.1 PREPARATION

Areas to receive firestopping shall be free of dirt, grease, oil, or loose materials which may affect the fitting or fire resistance of the firestopping system. For cast-in-place firestop devices, formwork or metal deck to receive device prior to concrete placement shall be sound and capable of supporting device. Prepare surfaces as recommended by the manufacturer.
3.2 INSTALLATION

Completely fill void spaces with firestopping material regardless of geometric configuration, subject to tolerance established by the manufacturer. Firestopping systems for filling floor voids 4 inches or more in any direction shall be capable of supporting the same load as the floor is designed to support or shall be protected by a permanent barrier to prevent loading or traffic in the firestopped area. Install firestopping in accordance with manufacturer's written instructions. Provide tested and listed firestop systems in the following locations, except in floor slabs on grade:

a. Penetrations of duct, conduit, tubing, cable and pipe through floors and through fire-resistance rated walls, partitions, and ceiling-floor assemblies.

b. Penetrations of vertical shafts such as pipe chases, elevator shafts, and utility chutes.

c. Gaps at the intersection of floor slabs and curtain walls, including inside of hollow curtain walls at the floor slab.

d. Gaps at perimeter of fire-resistance rated walls and partitions, such as between the top of the walls and the bottom of roof decks.

e. Construction joints in floors and fire rated walls and partitions.

f. Other locations where required to maintain fire resistance rating of the construction.

3.2.1 Insulated Pipes and Ducts

Thermal insulation shall be cut and removed where pipes or ducts pass through firestopping, unless insulation meets requirements specified for firestopping. Replace thermal insulation with a material having equal thermal insulating and firestopping characteristics.

3.2.2 Fire Dampers

Install and firestop fire dampers in accordance with Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM. Firestop installed with fire damper must be tested and approved for use in fire damper system. Firestop installed with fire damper must be tested and approved for use in fire damper system.

3.2.3 Data and Communication Cabling

Cabling for data and communication applications shall be sealed with re-enterable firestopping products and devices as indicated.

3.3 INSPECTION

3.3.1 General Requirements

For all projects, the firestopped areas shall not be covered or enclosed until inspection is complete and approved by the Contracting Officer. The inspector shall inspect the applications initially to ensure adequate preparations (clean surfaces suitable for application, etc.) and
periodically during the work to assure that the completed work has been accomplished according to the manufacturer's written instructions and the specified requirements.

3.3.2 Inspection Standards

Inspect all firestopping in accordance to ASTM E2393 and ASTM E2174 for firestop inspection, and document inspection results to be submitted.

-- End of Section --
SECTIO 07 92 00

JOINT SEALANTS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM C509 (2006; R 2015) Elastomeric Cellular Preformed Gasket and Sealing Material

SCIENTIFIC CERTIFICATION SYSTEMS (SCS)

SCS Scientific Certification Systems (SCS) Indoor Advantage

UNDERWRITERS LABORATORIES (UL)

UL 2818 (2013) GREENGUARD Certification Program For Chemical Emissions For Building Materials, Finishes And Furnishings
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

- SD-03 Product Data
 - Sealants; G
 - Primers; G
 - Bond Breakers; G
 - Backstops; G

- SD-06 Test Reports
 - Field Adhesion; G

- SD-07 Certificates
 - Sealant; G
 - Volatile Organic Compounds (VOC) Content; G

1.3 PRODUCT DATA

Include storage requirements, shelf life, curing time, instructions for mixing and application, and accessories. Provide manufacturer's Material Safety Data Sheet (MSDS) for each solvent, primer and sealant material proposed.

1.4 CERTIFICATIONS

Provide product third-party certification for low Volatile Organic Compounds (VOC) Content in accordance with UL 2818, SCS (Scientific Certification Systems) Indoor Advantage or approved equal.

1.5 ENVIRONMENTAL CONDITIONS

Apply sealant when the ambient temperature is between 40 and 90 degrees F.

1.6 DELIVERY AND STORAGE

Deliver materials to the jobsite in unopened manufacturers' sealed shipping containers, with brand name, date of manufacture, color, and material designation clearly marked thereon. Label elastomeric sealant containers to identify type, class, grade, and use. Handle and store materials in accordance with manufacturer's printed instructions. Prevent exposure to foreign materials or subjection to sustained temperatures exceeding 90 degrees F or lower than 0 degrees F. Keep materials and containers closed and separated from absorptive materials such as wood and insulation.

1.7 QUALITY ASSURANCE

1.7.1 Compatibility with Substrate

Verify that each sealant is compatible for use with each joint substrate in...
accordance with sealant manufacturer's printed recommendations for each application.

1.7.2 Joint Tolerance

Provide joint tolerances in accordance with manufacturer's printed instructions.

1.7.3 Adhesion

Provide in accordance with ASTM C1193 or ASTM C1521.

PART 2 PRODUCTS

2.1 SEALANTS

Provide sealant products that have been tested, found suitable, and documented as such by the manufacturer for the particular substrates to which they will be applied.

2.1.1 Product Sustainability Criteria

Where allowed by performance criteria, provide sealants specified for interior use with reduced Volatile Organic Compounds (VOC) content.

2.1.2 Interior Sealants

Provide ASTM C834 Note, color "as selected" refers to manufacturer's full range of color options

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Small voids between walls or partitions and adjacent lockers, casework, shelving, door frames, built-in or surface mounted equipment and fixtures, and similar items.</td>
<td>As selected</td>
</tr>
<tr>
<td>b. Perimeter of frames at doors, windows, and access panels which adjoin exposed interior concrete and masonry surfaces.</td>
<td>As selected</td>
</tr>
<tr>
<td>c. Joints of interior masonry walls and partitions which adjoin columns, pilasters, concrete walls, and exterior walls unless otherwise detailed.</td>
<td>As selected</td>
</tr>
<tr>
<td>d. Joints between edge members for acoustical tile and adjoining vertical surfaces.</td>
<td>As selected</td>
</tr>
<tr>
<td>e. Interior locations, not otherwise indicated or specified, where small voids exist between materials specified to be painted.</td>
<td>As selected</td>
</tr>
</tbody>
</table>

2.1.3 Exterior Sealants

For joints in vertical surfaces, provide ASTM C920, Type S or M, Grade NS, Class 25, Use NT. For joints in horizontal surfaces, provide ASTM C920, Type S or M, Grade P, Class 25, Use T. Provide location(s) and color(s) of sealant as follows. Note, color "as selected" refers to manufacturer's full range of color options:
LOCATION	COLOR
a. Joints and recesses formed where frames and subsills of windows, doors, louvers, and vents adjoin masonry, concrete, or metal frames. Use sealant at both exterior and interior surfaces of exterior wall penetrations. | Match adjacent surface color

b. Joints between new and existing exterior masonry walls. | Match adjacent surface color
c. Masonry joints where shelf angles occur. | Match adjacent surface color
d. Expansion and control joints. | Match adjacent surface color
e. Interior face of expansion joints in exterior concrete or masonry walls where metal expansion joint covers are not required. | Match adjacent surface color

f. Voids where items pass through exterior walls. | Match adjacent surface color
g. Metal reglets, where flashing is inserted into masonry joints, and where flashing is penetrated by coping dowels. | Match adjacent surface color

i. Metal-to-metal joints where sealant is indicated or specified. | Match adjacent surface color

2.1.4 Floor Joint Sealants

ASTM C920, Type S or M, Grade P, Class 25, Use T. Provide location(s) and color(s) of sealant as follows. Note, color "as selected" refers to manufacturer's full range of color options:

LOCATION	COLOR
a. Seats of metal thresholds for exterior doors. | As selected

b. Control and expansion joints in floors, slabs, ceramic tile, and walkways. | As selected

2.2 PRIMERS

Non-staining, quick drying type and consistency as recommended by the sealant manufacturer for the particular application.
2.3 BOND BREAKERS

Type and consistency as recommended by the sealant manufacturer to prevent adhesion of the sealant to the backing or to the bottom of the joint.

2.4 BACKSTOPS

Provide glass fiber roving, neoprene, butyl, polyurethane, or polyethylene foams free from oil or other staining elements as recommended by sealant manufacturer. Provide 25 to 33 percent oversized backing for closed cell and 40 to 50 percent oversized backing for open cell material, unless otherwise indicated. Provide backstop material that is compatible with sealant. Do not use oakum or other types of absorptive materials as backstops.

2.4.1 Rubber

Provide in accordance with ASTM D1056, Type 2, closed cell, Class A, Grade 1, round cross section for cellular rubber sponge backing.

2.4.2 Synthetic Rubber

Provide in accordance with ASTM C509, Option I, Type I preformed rods or tubes for synthetic rubber backing.

2.4.3 Neoprene

Provide in accordance with ASTM D1056, closed cell expanded neoprene cord Type 2, Class C, Grade 2C2 for neoprene backing.

2.4.4 Butyl Rubber Based

Provide in accordance with ASTM C1311, from a single component, with solvent release. color as selected from manufacturer's full range of color choices.

2.5 CAULKING

For interior use and only where there is little or no anticipated joint movement. Provide in accordance with ASTM D2452 and ASTM D2453.

2.6 CLEANING SOLVENTS

Provide type(s) recommended by the sealant manufacturer and in accordance with environmental requirements herein. Protect adjacent aluminum and bronze surfaces from solvents.

PART 3 EXECUTION

3.1 FIELD QUALITY CONTROL

Perform a field adhesion test in accordance with manufacturer's instructions and ASTM C1193, Method A or ASTM C1521, Method A, Tail Procedure. Remove sealants that fail adhesion testing; clean substrates, reapply sealants, and re-test. Test sealants adjacent to failed sealants. Submit field adhesion test report indicating tests, locations, dates, results, and remedial actions taken.
3.2 SURFACE PREPARATION

Prepare surfaces according to manufacturer's printed installation instructions. Clean surfaces from dirt, frost, moisture, grease, oil, wax, lacquer, paint, or other foreign matter that would destroy or impair adhesion. Remove oil and grease with solvent; thoroughly remove solvents prior to sealant installation. Wipe surfaces dry with clean cloths. When resealing an existing joint, remove existing caulk or sealant prior to applying new sealant. For surface types not listed below, provide in accordance with sealant manufacturer's printed instructions for each specific surface.

3.2.1 Steel Surfaces

Remove loose mill scale by sandblasting or, if sandblasting is impractical or would damage finished work, scraping and wire brushing. Remove protective coatings by sandblasting or using a residue free solvent. Remove resulting debris and solvent residue prior to sealant installation.

3.2.2 Aluminum or Bronze Surfaces

Remove temporary protective coatings from surfaces that will be in contact with sealant. When masking tape is used as a protective coating, remove tape and any residual adhesive prior to sealant application. For removing protective coatings and final cleaning, use non-staining solvents recommended by the manufacturer of the item(s) containing aluminum or bronze surfaces.

3.2.3 Concrete and Masonry Surfaces

Where surfaces have been treated with curing compounds, oil, or other such materials, remove materials by sandblasting or wire brushing. Remove laitance, efflorescence and loose mortar from the joint cavity. Remove resulting debris prior to sealant installation.

3.2.4 Wood Surfaces

Ensure wood surfaces that will be in contact with sealants are free of splinters, sawdust and other loose particles.

3.3 SEALANT PREPARATION

Do not add liquids, solvents, or powders to sealants. Mix multicomponent elastomeric sealants in accordance with manufacturer's printed instructions.

3.4 APPLICATION

3.4.1 Joint Width-To-Depth Ratios

Acceptable Ratios:

<table>
<thead>
<tr>
<th>JOINT WIDTH</th>
<th>JOINT DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
</tr>
</tbody>
</table>

For metal, glass, or other nonporous surfaces:
Unacceptable Ratios: Where joints of acceptable width-to-depth ratios have not been provided, clean out joints to acceptable depths and grind or cut to acceptable widths without damage to the adjoining work. Grinding is prohibited at metal surfaces.

3.4.2 Unacceptable Sealant Use

Do not install sealants in lieu of other required building enclosure weatherproofing components such as flashing, drainage components, and joint closure accessories, or to close gaps between walls, floors, roofs, windows, and doors, that exceed acceptable installation tolerances. Remove sealants that have been used in an unacceptable manner and correct building enclosure deficiencies to comply with contract documents requirements.

3.4.3 Masking Tape

Place masking tape on the finished surface on one or both sides of joint cavities to protect adjacent finished surfaces from primer or sealant smears. Remove masking tape within 10 minutes of joint filling and tooling.

3.4.4 Backstops

Provide backstops dry and free of tears or holes. Tightly pack the back or bottom of joint cavities with backstop material to provide joints in specified depths. Provide backstops where indicated and where backstops are not indicated but joint cavities exceed the acceptable maximum depths specified in "Joint Width-to-Depth Ratios" Table.

3.4.5 Primer

Clean out loose particles from joints immediately prior to application of. Apply primer to joints in concrete masonry units, wood, and other porous surfaces in accordance with sealant manufacturer's printed instructions. Do not apply primer to exposed finished surfaces.

3.4.6 Bond Breaker

Provide bond breakers to surfaces not intended to bond in accordance with, sealant manufacturer's printed instructions for each type of surface and
sealant combination specified.

3.4.7 Sealants

Provide sealants compatible with the material(s) to which they are applied. Do not use a sealant that has exceeded its shelf life or has jelled and cannot be discharged in a continuous flow from the sealant gun. Apply sealants in accordance with the manufacturer's printed instructions with a gun having a nozzle that fits the joint width. Work sealant into joints so as to fill the joints solidly without air pockets. Tool sealant after application to ensure adhesion. Apply sealant uniformly smooth and free of wrinkles. Upon completion of sealant application, roughen partially filled or unfilled joints, apply additional sealant, and tool smooth as specified. Apply sealer over sealants in accordance with the sealant manufacturer's printed instructions.

3.5 PROTECTION AND CLEANING

3.5.1 Protection

Protect areas adjacent to joints from sealant smears. Masking tape may be used for this purpose if removed 5 to 10 minutes after the joint is filled and no residual tape marks remain.

3.5.2 Final Cleaning

Upon completion of sealant application, remove remaining smears and stains and leave the work in a clean and neat condition.

 a. Masonry and Other Porous Surfaces: Immediately remove fresh sealant that has been smeared on adjacent masonry, rub clean with a solvent, and remove solvent residue, in accordance with sealant manufacturer's printed instructions. Allow excess sealant to cure for 24 hour then remove by wire brushing or sanding. Remove resulting debris.

 b. Metal and Other Non-Porous Surfaces: Remove excess sealant with a solvent moistened cloth. Remove solvent residue in accordance with solvent manufacturer’s printed instructions.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2015; Errata 1 2015; Errata 2 2016)
Structural Welding Code - Steel

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2017) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM A924/A924M (2017a) Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process

ASTM C612 (2014) Mineral Fiber Block and Board Thermal Insulation

ASTM E283 (2004; R 2012) Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

ANSI/BHMA A156.115 (2016) Hardware Preparation in Steel Doors and Steel Frames

STEEL DOOR INSTITUTE (SDI/DOOR)

SDI/DOOR 113 (2001; R2006) Standard Practice for Determining the Steady State Thermal Transmittance of Steel Door and Frame Assemblies

SDI/DOOR A250.11 (2001) Recommended Erection Instructions for Steel Frames

SDI/DOOR A250.4 (2011) Test Procedure and Acceptance Criteria for Physical Endurance for Steel Doors and Hardware Reinforcing

SDI/DOOR A250.6 (2003; R2009) Recommended Practice for Hardware Reinforcing on Standard Steel Doors and Frames

SDI/DOOR A250.8 (2003; R2008) Recommended Specifications for Standard Steel Doors and Frames

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Doors; G
Frames; G
Weatherstripping
Show elevations, construction details, metal gages, hardware provisions, method of glazing, and installation details.
Schedule of doors; G
Schedule of frames; G
Submit door and frame locations.

SD-03 Product Data
Doors; G

Frames; G

Submit manufacturer's descriptive literature for doors, frames, and accessories. Include data and details on door construction, panel (internal) reinforcement, insulation, and door edge construction.

1.3 DELIVERY, STORAGE, AND HANDLING

Deliver doors, frames, and accessories undamaged and with protective wrappings or packaging. Provide temporary steel spreaders securely fastened to the bottom of each welded frame. Store doors and frames on platforms under cover in clean, dry, ventilated, and accessible locations, with 1/4 inch airspace between doors. Remove damp or wet packaging immediately and wipe affected surfaces dry. Replace damaged materials with new.

PART 2 PRODUCTS

2.1 STANDARD STEEL DOORS

SDI/DOOR A250.8, except as specified otherwise. Prepare doors to receive door hardware as specified in Section 08 71 00. Undercut where indicated. Exterior doors shall have top edge closed flush and sealed to prevent water intrusion. Doors shall be 1-3/4 inch thick, unless otherwise indicated. Provide exterior glazing in accordance with ASTM F2248 and ASTM E1300.

2.1.1 Classification – Level, Performance, Model

2.1.1.1 Standard Duty Doors

SDI/DOOR A250.8, Level 1, physical performance Level C, Model 1, of size(s) and design(s) indicated and core construction as required by the manufacturer. Provide for interior doors.

2.1.1.2 Extra Heavy Duty Doors

SDI/DOOR A250.8, Level 3, physical performance Level A, Model 1 with core construction as required by the manufacturer for exterior doors, of size(s) and design(s) indicated. Where vertical stiffener cores are required, the space between the stiffeners shall be filled with Polyurethane insulation.

2.2 INSULATED STEEL DOOR SYSTEMS

Insulated steel doors shall have a core of polyurethane foam and an R factor of 10.0 or more (based on a k value of 0.16); face sheets, edges, and frames of galvanized steel not lighter than 23 gage, 16 gage, and 16 gage respectively; magnetic weatherstripping; nonremovable-pin hinges; thermal-break aluminum threshold; and vinyl door bottom. Doors and frames shall receive phosphate treatment, rust-inhibitive primer, and baked acrylic enamel finish. Doors shall have been tested in accordance with SDI/DOOR A250.4 and shall have met the requirements for Level C. Prepare doors to receive specified hardware. Doors shall be 1-3/4 inch thick.
2.3 INSULATION CORES

Insulated cores shall be of type specified, and provide an apparent U-factor of .48 in accordance with SDI/DOOR 113 and shall conform to:

a. Rigid Cellular Polyisocyanurate Foam: ASTM C591, Type I or II, foamed-in-place or in board form, with oxygen index of not less than 22 percent when tested in accordance with ASTM D2863; or

b. Rigid Polystyrene Foam Board: ASTM C578, Type I or II; or

c. Mineral board: ASTM C612, Type I.

2.4 STANDARD STEEL FRAMES

SDI/DOOR A250.8, Level 1a and 3. Form frames to sizes and shapes indicated, with welded corners or knock-down field-assembled corners. Provide steel frames for doors, unless otherwise indicated.

2.4.1 Welded Frames

Continuously weld frame faces at corner joints. Mechanically interlock or continuously weld stops and rabbets. Grind welds smooth.

Weld frames in accordance with the recommended practice of the Structural Welding Code Sections 1 through 6, AWS D1.1/D1.1M and in accordance with the practice specified by the producer of the metal being welded.

2.4.2 Stops and Beads

Form stops and beads from 20 gage steel. Provide for glazed and other openings in standard steel frames. Secure beads to frames with oval-head, countersunk Phillips self-tapping sheet metal screws or concealed clips and fasteners. Space fasteners approximately 12 to 16 inch on center. Miter molded shapes at corners. Butt or miter square or rectangular beads at corners.

2.4.3 Anchors

Provide anchors to secure the frame to adjoining construction. Provide steel anchors, zinc-coated or painted with rust-inhibitive paint, not lighter than 18 gage.

2.4.3.1 Wall Anchors

Provide at least three anchors for each jamb. For frames which are more than 7.5 feet in height, provide one additional anchor for each jamb for each additional 2.5 feet or fraction thereof.

a. Masonry: Provide anchors of corrugated or perforated steel straps or 3/16 inch diameter steel wire, adjustable or T-shaped;

b. Stud partitions: Weld or otherwise securely fasten anchors to backs of frames. Design anchors to be fastened to closed steel studs with sheet metal screws, and to open steel studs by wiring or welding;

c. Completed openings: Secure frames to previously placed concrete or masonry with expansion bolts in accordance with SDI/DOOR 111;
2.4.3.2 Floor Anchors

Provide floor anchors drilled for 3/8 inch anchor bolts at bottom of each jamb member.

2.5 WEATHERSTRIPPING

As specified in Section 08 71 00 DOOR HARDWARE.

2.5.1 Integral Gasket

Black synthetic rubber gasket with tabs for factory fitting into factory slotted frames, or extruded neoprene foam gasket made to fit into a continuous groove formed in the frame, may be provided in lieu of head and jamb seals specified in Section 08 71 00 DOOR HARDWARE. Insert gasket in groove after frame is finish painted. Air leakage of weatherstripped doors shall not exceed 0.5 cubic feet per minute of air per square foot of door area when tested in accordance with ASTM E283.

2.6 HARDWARE PREPARATION

Provide minimum hardware reinforcing gages as specified in SDI/DOOR A250.6. Drill and tap doors and frames to receive finish hardware. Prepare doors and frames for hardware in accordance with the applicable requirements of SDI/DOOR A250.8 and SDI/DOOR A250.6. For additional requirements refer to ANSI/BHMA A156.115. Drill and tap for surface-applied hardware at the project site. Build additional reinforcing for surface-applied hardware into the door at the factory. Locate hardware in accordance with the requirements of SDI/DOOR A250.8, as applicable. Punch door frames to receive a minimum of two rubber or vinyl door silencers on lock side of single doors and one silencer for each leaf at heads of double doors. Set lock strikes out to provide clearance for silencers.

2.7 FINISHES

2.7.1 Hot-Dip Zinc-Coated and Factory-Primed Finish

Fabricate doors and frames from hot dipped zinc coated steel, alloyed type, that complies with ASTM A924/A924M and ASTM A653/A653M. The coating weight shall meet or exceed the minimum requirements for coatings having 0.4 ounces per square foot, total both sides, i.e., A40. Repair damaged zinc-coated surfaces by the application of zinc dust paint. Thoroughly clean and chemically treat to insure maximum paint adhesion. Factory prime as specified in SDI/DOOR A250.8.

2.7.2 Electrolytic Zinc-Coated Anchors and Accessories

Provide electrolytically deposited zinc-coated steel in accordance with ASTM A879/A879M, Commercial Quality, Coating Class A. Phosphate treat and factory prime zinc-coated surfaces as specified in SDI/DOOR A250.8.

2.8 FABRICATION AND WORKMANSHIP

Finished doors and frames shall be strong and rigid, neat in appearance, and free from defects, waves, scratches, cuts, dents, ridges, holes, warp, and buckle. Molded members shall be clean cut, straight, and true, with joints coped or mitered, well formed, and in true alignment. Dress exposed
welded and soldered joints smooth. Design door frame sections for use with the wall construction indicated. Corner joints shall be well formed and in true alignment. Conceal fastenings where practicable. On wraparound frames for masonry partitions, provide a throat opening 1/8 inch larger than the actual masonry thickness. Design frames in exposed masonry walls or partitions to allow sufficient space between the inside back of trim and masonry to receive caulking compound.

2.8.1 Grouted Frames

For frames to be installed in exterior walls and to be filled with mortar or grout, fill the stops with strips of rigid insulation to keep the grout out of the stops and to facilitate installation of stop-applied head and jamb seals.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Frames

Set frames in accordance with SDI/DOOR A250.11. Plumb, align, and brace securely until permanent anchors are set. Anchor bottoms of frames with expansion bolts or powder-actuated fasteners. Build in or secure wall anchors to adjoining construction.

3.1.2 Doors

Hang doors in accordance with clearances specified in SDI/DOOR A250.8. After erection and glazing, clean and adjust hardware.

3.2 PROTECTION

Protect doors and frames from damage. Repair damaged doors and frames prior to completion and acceptance of the project or replace with new, as directed. Wire brush rusted frames until rust is removed. Clean thoroughly. Apply an all-over coat of rust-inhibitive paint of the same type used for shop coat.

3.3 CLEANING

Upon completion, clean exposed surfaces of doors and frames thoroughly. Remove mastic smears and other unsightly marks.

-- End of Section --
SECTION 08 14 00

WOOD DOORS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 80 (2016; TIA 16-1) Standard for Fire Doors and Other Opening Protective

WINDOW AND DOOR MANUFACTURERS ASSOCIATION (WDMA)

ANSI/WDMA I.S.1A (2013) Interior Architectural Wood Flush Doors

WDMA I.S.4 (2015A) Preservative Treatment for Millwork

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES.

SD-02 Shop Drawings

Doors; G

Submit drawings or catalog data showing each type of door unit; descriptive data of head and jamb weatherstripping with installation instructions shall be included. Drawings and data shall indicate door type and construction, sizes, thickness.

SD-03 Product Data

Doors; G

Accessories

Water-resistant sealer

Sample warranty

Fire resistance rating; G Certification

SD-06 Test Reports
Cycle-slam
Hinge loading resistance
Submit cycle-slam test report for doors tested in accordance with WDMA TM-7, and hinge loading resistance test report for doors tested in accordance with WDMA TM-8.

1.3 DELIVERY, STORAGE, AND HANDLING

Deliver doors to the site in an undamaged condition and protect against damage and dampness. Stack doors flat under cover. Support on blocking, a minimum of 4 inch thick, located at each end and at the midpoint of the door. Store doors in a well-ventilated building so that they will not be exposed to excessive moisture, heat, dryness, direct sunlight, or extreme changes of temperature and humidity. Do not store in a building under construction until concrete, masonry work, and plaster are dry. Replace defective or damaged doors with new ones.

1.4 WARRANTY

Warrant doors free of defects as set forth in the door manufacturer's standard door warranty.

PART 2 PRODUCTS

2.1 DOORS

Provide doors of the types, sizes, and designs indicated free of urea-formaldehyde resins.

2.1.1 Flush Doors

Conform to ANSI/WDMA I.S.1A for flush doors. Provide solid core doors with lock blocks and 1 inch minimum thickness hinge stile. Hardwood stile edge bands of doors receives a natural finish, compatible with face veneer. Provide mill option for stile edge of doors scheduled to be painted. No visible finger joints will be accepted in stile edge bands. When used, locate finger-joints under hardware.

2.1.1.1 Interior Flush Doors

Provide particleboard core, Type II flush doors conforming to ANSI/WDMA I.S.1A with faces of premium grade natural birch. Hardwood veneers shall be rotary cut.

2.2 ACCESSORIES

2.2.1 Door Light Openings

Provide glazed openings with the manufacturer's standard wood moldings. Provide moldings for doors to receive natural finish of the same wood species and color as the wood face veneers. 2.2.2 Additional Hardware Reinforcement

Provide the minimum lock blocks to secure the specified hardware. The measurement of top, bottom, and intermediate rail blocks are a minimum 125 mm 5 inch by full core width. Comply with the manufacturer's labeling requirements for reinforcement blocking, but not mineral material similar
to the core.

2.3 FABRICATION

2.3.1 Marking

Stamp each door with a brand, stamp, or other identifying mark indicating quality and construction of the door.

2.3.2 Quality and Construction

Identify the standard on which the construction of the door was based and identify doors having a Type I glue bond.

2.3.3 Preservative Treatment

Treat doors scheduled for restrooms, janitor closets and other possible wet locations with a water-repellent preservative treatment and so marketed at the manufacturer's plant in accordance with WDMA I.S.4.

2.3.4 Adhesives and Bonds

ANSI/WDMA I.S.1A. Use Type I bond for exterior doors and Type II bond for interior doors. Provide a nonstaining adhesive on doors with a natural finish.

2.3.5 Finishes

2.3.5.1 Field Staining

Factory prime or seal doors, and field stain to match existing wood doors.

2.3.5.2 Color

Provide door finish colors to match existing wood doors.

2.3.6 Water-Resistant Sealer

Provide manufacturer's standard water-resistant sealer compatible with the specified finish.

PART 3 EXECUTION

3.1 INSTALLATION

Before installation, seal top and bottom edges of doors with the approved water-resistant sealer. Seal cuts made on the job immediately after cutting using approved water-resistant sealer. Fit, trim, and hang doors with a 1/16 inch minimum, 1/8 inch maximum clearance at sides and top, and a 3/16 inch minimum, 1/4 inch maximum clearance over thresholds. Provide 3/8 inch minimum, 7/16 inch maximum clearance at bottom where no threshold occurs. Bevel edges of doors at the rate of 1/8 inch in 2 inch. Door warp shall not exceed 1/4 inch when measured in accordance with ANSI/WDMA I.S.1A.

3.1.1 Fire Doors

Install fire doors in accordance with NFPA 80.

-- End of Section --
SECTION 08 33 13

COILING COUNTER DOORS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 80 (2016; TIA 16-1) Standard for Fire Doors and Other Opening Protectives

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
Detail Drawings; G

SD-03 Product Data
Warranty
Rolling Counter Doors
Installation
Cleaning

SD-06 Test Reports
Drop-test

SD-10 Operation and Maintenance Data

SD-11 Closeout Submittals
Fire-Rated Rolling Counter Door

1.3 QUALITY ASSURANCE

Submit Detail Drawings showing elevations of each door type, details of
anchorage, details of construction, location and description of hardware, shape and thickness of materials, details of joints and connections, and details of guides and fittings. Include a schedule showing the location of each counter door with the drawings.

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver rolling counter doors to the jobsite wrapped in a protective covering with the brands and names clearly marked thereon. Store rolling counter doors in accordance with the manufacturer's instructions in a dry location that is adequately ventilated and free from dust, water, or other contaminants, and in a manner that permits easy access for inspecting and handling. Handle doors carefully to prevent damage. Replace damaged items that cannot be restored to like-new condition.

1.5 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period. Submit no later than 30 days prior to final inspection.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Furnish rolling counter doors of the type, size, and design indicated on the drawings. Provide the standard product of a manufacturer regularly engaged in the production of rolling counter doors. Provide each door with a permanent label showing the manufacturer's name and address and the model number of the door. Submit Manufacturer's descriptive data and catalog cuts.

2.2 BASIC COMPONENTS

2.2.1 Curtain

Fabricate the curtain of 22 gauge stainless steel slats conforming to ASTM A240/A240M, Type 304 or Type 430. Provide thickness of slat material as required by width of opening or as required by specified fire-rating. Use slats approximately 1-1/4 to 1-1/2 inch wide with a depth of crown of 1/2 inch. Fit alternate slats with endlocks to maintain curtain alignment. Provide bottom of curtain with angle or tubular bar reinforcement matching the curtain, and fitted with a resilient bottom seal.

2.2.2 Jamb Guides

Furnish guides of 13 gauge minimum thickness stainless steel conforming to ASTM A240/A240M, Type 304 or Type 430.

2.2.3 Counterbalance Shaft Assembly

Furnish the curtain coiled around a steel tube of sufficient thickness and diameter to prevent deflection exceeding 0.03 inch per foot. Provide a barrel containing oil tempered helical steel torsion springs capable of sufficient torque to counterbalance the weight of the curtain. Calculate the springs to provide a minimum of 7,500 operating cycles (one complete cycle of door operation will begin with the door in the closed position, move to the full open position and return to the closed position).
2.2.4 Brackets

Furnish brackets of a minimum 12 gauge thickness steel if flat plate, or 16 gauge thickness if there are a minimum of 3 returns of 3/4 inch width.

2.2.5 Hood

Provide a hood of 24 gauge stainless steel conforming to ASTM A240/A240M, Type 304 or Type 430.

2.2.6 Locks

Lock the curtain at each side of the bottom bar by an integral slide bolt. Locate lock on the food service room side of the counter door.

2.3 ROLLING COUNTER DOORS (NON-RATED)

Construct rolling counter doors, curtains, guides and hood components of stainless steel conforming to the requirements specified herein. Submit Six complete copies of Data Package 2 for Fire-Rated Rolling Counter Doors (next paragraph) in accordance with Section 01 78 23 OPERATION AND MAINTENANCE DATA. Provide a list of the parts recommended by the manufacturer to be replaced after 1 year and 3 years of service.

2.4 FIRE-RATED ROLLING COUNTER DOOR

Furnish fire-rated rolling counter doors, Class B (1-1/2 hr.) rated and conforming to the requirements specified and to NFPA 80 for the class indicated. Provide labels of a recognized testing agency for the doors, indicating the applicable fire resistance rating. The construction details necessary for labeled rolling counter doors will take precedence over details indicated or specified herein. Furnish door curtains, guides and hood of stainless steel. Provide fire-rated rolling counter doors complete with hardware, accessories, and automatic closing device. Provide rolling counter doors, in exit corridor walls, with perimeter smoke and draft control gasketing.

2.5 INTEGRAL FRAME ROLLING COUNTER DOOR

Furnish integral frame rolling counter door of stainless steel Class B (1-1/2 hr.) Conform fire-rated doors to the requirements of NFPA 80 for the Class indicated and bearing the labels of a recognized testing agency indicating the applicable fire resistance rating. Form jambs to create guides for the curtain. Provide head and jambs of 16 gauge thickness. Provide counter of 14 gauge thickness. Provide rolling counter doors, in exit corridor walls, with perimeter smoke and draft control gasketing.

2.6 AUTOMATIC CLOSING DEVICE

Equip fire-rated counter doors with an automatic closing device which operates upon activation of the building's fire alarm system. Furnish fire and smoke doors that easily reset by the facility user after they have been released by the detection system. Resetting the door shall not require the use of special tools.

2.7 FINISH

Exposed parts of the counter door, including the curtain, bottom rail, guides, and hood shall be of uniform finish and appearance. Furnish
stainless steel with a No. 4 finish. Give all other steel parts a shop coat of primer paint standard with the manufacturer.

PART 3 EXECUTION

3.1 INSTALLATION

Install doors in accordance with approved detail drawings and manufacturer's instructions. Accurately locate anchors and inserts for guides, brackets, hardware, and other accessories. Upon completion, doors shall be free from warp, twist, or distortion. Lubricate, properly adjust, and demonstrate doors to operate freely. Conform fire-door installation with NFPA 80 for the class indicated and the manufacturer's instructions.

3.2 OPERATION

3.2.1 Power Operation

Furnish a high-starting torque, reversible type motor of sufficient power and torque output to move the door in either direction from any position at the required speed. Provide power operator with an emergency push-up operation, limit switch, three-button type control marked "OPEN", "CLOSE", and "STOP". Provide control voltage of 24 vac. Provide conduit and wiring necessary for proper operation in accordance with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

3.3 TESTS

Drop-test the fire doors in accordance with NFPA 80 to show proper operation and full automatic closure and reset in accordance with the manufacturer's instructions. Provide a written record of initial test to the Contracting Officer.

3.4 CLEANING

Clean stainless steel doors in accordance with manufacturer's approved instructions. Submit Manufacturer's preprinted installation and cleaning instructions.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2017) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM A924/A924M (2017a) Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process

Fasteners

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA ICS 2
(2000; R 2005; Errata 2008) Standard for Controllers, Contactors, and Overload Relays Rated 600 V

NEMA ICS 6
(1993; R 2016) Industrial Control and Systems: Enclosures

NEMA MG 1
(2016; SUPP 2016) Motors and Generators

NEMA ST 1
(1988; R 1994; R 1997) Specialty Transformers (Except General Purpose Type)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70
(2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3; TIA 17-4; TIA 17-5; TIA 17-6; TIA 17-7; TIA 17-8; TIA 17-9; TIA 17-10; TIA 17-11; TIA 17-12; TIA 17-13; TIA 17-14) National Electrical Code

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Overhead Coiling Grilles
Counterbalancing Mechanism
Electric Door Operators
Bottom Bars
Guides
Mounting Brackets
Overhead Drum

Installation Drawings

SD-03 Product Data

Overhead Coiling Grilles
Hardware
Counterbalancing Mechanism
Electric Door Operators
SD-05 Design Data

Overhead Coiling Grilles
Counterbalancing Mechanism
Electric Door Operators

SD-10 Operation and Maintenance Data

Operation and Maintenance Manuals
Materials Devices Procedures Manufacturer’s Brochures Parts Lists

SD-11 Closeout Submittals

Warranty

1.3 QUALITY CONTROL

Provide a permanent label for each grille showing the manufacturer's name and address, and the model/serial number of the grille.

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver grilles to the jobsite wrapped in a protective covering with the brands and names clearly marked thereon. Store grilles in an adequately ventilated dry location that is free from dirt and dust, water, or other contaminants. Store in a manner that permits easy access for inspection and handling.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Grilles to be coiling type, with interlocking slats, complete with anchoring and door hardware, guides, hood, and operating mechanisms, and designed for use on openings as indicated. Use grease-sealed or self-lubricating bearings for rotating members. Basis of Design shall be RapidGrille AP security grille by Overhead Door Corp. 2501 S. State Highway 121, Suite 200, Louisville, TX 75067 (800) 275-3290, or approved equivalent.

2.1.1 Design Requirements

2.1.1.1 Overhead Coiling Grille Detail Shop Drawings

Provide installation drawings for overhead coiling grills assemblies which show: elevations of each grille type, shape and thickness of materials, finishes, details of joints and connections, details of guides and fittings, rough opening dimensions, location and description of hardware, anchorage locations, and counterbalancing mechanism and grille operator details. Include a schedule showing the location of each grille with the drawings.
2.1.2 Performance Requirements

2.1.2.1 Operational Cycle Life

Design all portions of the grille, hardware and operating mechanism that are subject to movement, wear, or stress fatigue to operate through a minimum number of 10 cycles per day. One complete cycle of grille operation is defined as when the grille is in the closed position, moves to the fully open position, and returns to the closed position.

2.2 COMPONENTS

2.2.1 Overhead Coiling Grille

2.2.1.1 Curtain Materials and Construction

Provide curtain slats fabricated from aluminum sheets conforming to ASTM B209, or ASTM B221 extrusions, alloy and tempering standard from manufacturer for type of use and finish indicated; with a thickness of 0.050 inch as specified.

2.2.1.2 Non-Insulated Curtains

Form Curtains from manufacturer's standard shapes of interlocking slats.

2.2.1.3 Curtain Bottom Bar

Install curtain bottom bars as pairs of angles from the manufacturer's standard steel, extrusions not less than 2.0 by 2.0-inches by 0.188-inch. Ensure steel extrusions conform to ASTM A36/A36M. Galvanize angles and fasteners in accordance with ASTM A653/A653M and ASTM A924/A924M. Coat welds and abrasions with paint conforming to ASTM A780/A780M.

2.2.1.4 Locks

Provide end and wind locks of Grade B cast steel conforming to ASTM A27/A27M, galvanized in accordance with ASTM A653/A653M, ASTM A153/A153M and ASTM A924/A924M. Secure locks at every other curtain slat.

2.2.1.5 Locking Devices

Ensure slide bolt engages through slots in tracks for locking by padlock, located on both left and right jamb sides, operable from coil side.

2.2.1.6 Safety Interlock

Equip power-operated grilles with safety interlock switch to disengage power supply when grille is locked.

2.2.1.7 Overhead Drum

Fabricate drums from nominal 0.040-inch thick aluminum sheet complying with ASTM B209. Aluminum of alloy and temper recommended by manufacturer. Select finish for type of use and finish indicated.

2.2.2 Hardware

Ensure all hardware conforms to ASTM A153/A153M, ASTM A307, ASTM F568M, and ASTM A27/A27M.
2.2.2.1 Guides

Fabricate curtain jamb guides from the manufacturer's standard angles or channels of same material and finish as curtain slats unless otherwise indicated. Provide guides with sufficient depth and strength to retain curtain, and to withstand loading. Ensure curtain operates smoothly. Slot bolt holes for track adjustment.

2.2.2.2 Equipment Supports

Fabricate grille-operating equipment supports from the manufacturer's standard steel shapes and plates conforming to ASTM A36/A36M, galvanized in accordance with ASTM A653/A653M and ASTM A924/A924M. Size the shapes and plates in accordance with the industry standards for the size, weight, and type of door installation.

2.2.2.3 Hood

Provide a hood with a minimum 24-gauge aluminum 22-gauge B&S, flanged at top for attachment to header and flanged at bottom to provide longitudinal stiffness. The hood encloses the curtain coil and counterbalance mechanism.

2.2.3 Counterbalancing Mechanism

Counterbalance grilles by means of manufacturer's standard mechanism with an adjustable-tension, steel helical torsion spring mounted, around a steel shaft and contained in a spring barrel connected to top of curtain with barrel rings. Use grease-sealed or self-lubricating bearings for rotating members.

2.2.3.1 Brackets

Provide the manufacturer's standard mounting brackets with one located at each end of the counterbalance barrel conforming to ASTM A48/A48M. Provide brackets of either cast iron or cold-rolled steel.

2.2.3.2 Counterbalance Barrels

Fabricate spring barrel of manufacturer's standard hot-formed, structural-quality, welded or seamless carbon-steel pipe, conforming to ASTM A53/A53M. Ensure the barrel is of sufficient diameter and wall thickness to support rolled-up curtain without distortion of slats. Limit barrel deflection to not more than 0.03 inch per foot of span under full load.

a. Barrel

Provide steel pipe capable of supporting curtain load with maximum deflection of 0.03 inches per foot of width.

b. Spring Balance

Provide an oil-tempered, heat-treated steel helical torsion spring assembly designed for proper balance of grille. Ensure that effort to operate manually operated units does not exceed 25 lbs. Provide wheel for applying and adjusting spring torque.
2.2.3.3 Spring Balance

Install one or more oil-tempered, heat-treated steel helical torsion springs within the barrel, capable of producing sufficient torque to assure easy operation of the grille curtain. Provide and size springs to counterbalance weight of curtain, with uniform adjustment accessible from outside barrel. Secure ends of springs to barrel and shaft with cast-steel barrel plugs.

2.2.3.4 Torsion Rod for Counter Balance

Fabricate rod from the manufacturer’s standard cold-rolled steel, sized to hold fixed spring ends and carry torsional load.

2.2.3.5 Counterbalance Shaft Assembly

a. Barrel

Provide steel pipe capable of supporting the curtain load with maximum deflection of 0.03 inches per foot of width.

b. Spring Balance

Provide an oil-tempered, heat-treated steel helical torsion spring assembly designed for proper balance of door. Ensure that maximum effort to operate does not exceed 25 pounds. Provide wheel for applying and adjusting spring torque.

2.2.4 Electric Door Operators

Provide electrical wiring and grille operating controls conforming to the applicable requirements of NFPA 70.

Electric grille-operator assemblies needs to be the sizes and capacities recommended and provided by the grille manufacturer for specified grilles. Furnish complete assemblies with electric motors and factory-rewired motor controls, starter, gear reduction units, solenoid-operated brakes, clutch, remote-control stations, manual or automatic control devices, and accessories as required for proper operation of the grilles.

Design the operators so that motors may be removed without disturbing the limit-switch adjustment and affecting the emergency auxiliary operators.

Provide a manual operator of chain-gear mechanism with a release clutch to permit manual operation of grilles in case of power failure. Arrange the emergency manual operator so that it may be put into and out of operation from floor level, and its use does not affect the adjustment of the limit switches. Provide an electrical or mechanical device that automatically disconnects the motor from the operating mechanism when the emergency manual operating mechanism is engaged.

2.2.4.1 Grille-Operator Types

Provide an operator mounted to the right or left grille head plate with the operator on top of the grille-hood assembly and connected to the grille drive shaft with drive chain and sprockets. Headroom is required for this type of mounting.
2.2.4.2 Electric Motors

Provide motors which are the high-starting-torque, reversible, constant-duty electrical type with overload protection of sufficient torque and horsepower to move the grille in either direction from any position. Ensure they produce a grille-travel speed of not less than 8 nor more than 12 inches per second without exceeding the horsepower rating.

Provide motors which conform to NEMA MG 1 designation, temperature rating, service factor, enclosure type, and efficiency to the requirements specified.

2.2.4.3 Motor Bearings

Select bearings with bronze-sleeve or heavy-duty ball or roller antifriction type with full provisions for the type of thrust imposed by the specific duty load.

Pre-lubricate and factory seal bearings in motors less than 1/2 horsepower.

Equip motors coupled to worm-gear reduction units with either ball or roller bearings.

Equip bearings in motors 1/2 horsepower or larger with lubrication service fittings. Fit lubrication fittings with color-coded plastic or metal dust caps.

In any motor, bearings that are lubricated at the factory for extended duty periods do not need to be lubricated for a given number of operating hours. Display this information on an appropriate tag or label on the motor with instructions for lubrication cycle maintenance.

2.2.4.4 Motor Starters, Controls, and Enclosures

Provide each grille motor with: a factory-wired, unfused, disconnect switch; a reversing, across-the-line magnetic starter with thermal overload protection; 120-volt operating coils with a control transformer limit switch; and a safety interlock assembled in a NEMA ICS 6 type enclosure as specified herein. Ensure control equipment conforms to NEMA ICS 2.

Provide adjustable switches, electrically interlocked with the motor controls and set to stop the grille automatically at the fully open and fully closed position.

2.2.4.5 Control Enclosures

Provide control enclosures that conform to NEMA ICS 6 for general purpose NEMA Type 1.

2.2.4.6 Transformer

Provide starters with 230/460 to 115 volt control transformers with one secondary fuse when required to reduce the voltage on control circuits to 120 volts or less. Provide a transformer conforming to NEMA ST 1.

2.2.4.7 Safety-Edge Device

Provide each grille with a pneumatic or electric safety device extending the full width of the door and located within a U-section neoprene or
rubber astragal, mounted on the bottom rail of the bottom grille section. Device needs to immediately stop and reverse the grille upon contact with an obstruction in the grille opening during downward travel and cause the grille to return to full-open position. A safety device is not a substitute for a limit switch.

Connect safety device to the control circuit through a retracting safety cord and reel.

2.2.4.8 Remote-Control Stations

Provide interior remote control stations which are full-guarded, momentary-contact three-button, heavy-duty, surface-mounted NEMA ICS 6 type enclosures as specified. Mark buttons "OPEN," "CLOSE," and "STOP." Ensure the "CLOSE" button requires a constant pressure to maintain the closing motion of the grille. When the grille is in motion and the "STOP" button is pressed, ensure the grille stops instantly and remains in the stopped position. From the stopped position, the grille may then be operated in either direction.

2.2.4.9 Speed-Reduction Units

Provide speed-reduction units consisting of hardened-steel worm and bronze worm gear assemblies running in oil or grease and inside a sealed casing, coupled to the motor through a flexible coupling. Drive shafts need to rotate on ball- or roller-bearing assemblies that are integral with the unit.

Provide minimum ratings of speed reduction units in accordance with AGMA provisions for class of service.

Ground worm gears to provide accurate thread form; machine teeth for all other types of gearing. Surface harden all gears.

Provide antifriction type bearings equipped with oil seals.

2.2.4.10 Brakes

Provide 360-degree shoe brakes or shoe and drum brakes. Ensure the brakes are solenoid-operated and electrically interlocked to the control circuit to set automatically when power is interrupted.

2.2.4.11 Clutches

Ensure clutches are either the 4-inch diameter, multiple face, externally adjustable friction type or adjustable centrifugal type.

2.2.5 Surface Finishing

Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes. Noticeable variations in the same metal component are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved samples and are assembled or installed to minimize contrast.
PART 3 EXECUTION

3.1 INSTALLATION

Install overhead coiling grille assembly, anchors and inserts for guides, brackets, motors, switches, hardware, and other accessories in accordance with approved detail drawings and manufacturer's written instructions. Upon completion of installation, ensure grilles are free from all distortion.

3.2 ADJUSTING AND CLEANING

3.2.1 Acceptance Provisions

After installation, adjust hardware and moving parts. Lubricate bearings and sliding parts as recommended by manufacturer to provide smooth operating functions for ease movement, free of warping, twisting, or distortion of the grille assembly.

Engage a factory-authorized service representative to perform startup service and checks according to manufacturer's written instructions.

Test the grille opening and closing operation when activated by controls or alarm-connected fire-release system. Adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. Reset door-closing mechanism after successful test.

Test and make final adjustment of new grilles at no additional cost to the Government.

3.2.1.1 Maintenance and Adjustment

Not more than 90 calendar days after completion and acceptance of the project, examine, lubricate, test, and re-adjust grilles as required for proper operation.

3.2.1.2 Cleaning

Clean aluminum grilles in accordance with manufacturer's approved instructions.

3.3 CLOSEOUT ACTIVITIES

3.3.1 Warranty

Furnish a written guarantee that the helical spring and counterbalance mechanism are free from defects in material and workmanship for not less than two years after completion and acceptance of the project.

Warrant that upon notification by the Government, any defects in material, workmanship, and door operation are immediately correct within the same time period covered by the guarantee, at no cost to the Government.

3.3.2 Operation And Maintenance

Submit 3 copies of the Operation and Maintenance Manuals 30 calendar days prior to testing the Overhead Coiling Grille Assemblies. Update and resubmit data for final approval no later than 30 calendar days prior to contract completion.
Submit Operation and Maintenance Manuals for Overhead Coiling Grille Assemblies, including the following items:

- Materials
- Devices
- Electric Grille Operators
- Counterbalancing Mechanism
- Procedures
- Manufacture's Brochures
- Parts Lists

Provide operation and maintenance manuals which are consistent with manufacturer's standard brochures, schematics, printed instructions, operating procedures, and safety precautions. Provide test data that is legible and of good quality.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ARCHITECTURAL MANUFACTURERS ASSOCIATION (AAMA)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAMA 501</td>
<td>(2015) Methods of Test for Exterior Walls</td>
</tr>
<tr>
<td>AAMA 503</td>
<td>(2014) Voluntary Specification for Field Testing of Newly Installed Storefronts, Curtain Walls and Sloped Glazing Systems</td>
</tr>
<tr>
<td>AAMA 800</td>
<td>(2016) Voluntary Specifications and Test Methods for Sealants</td>
</tr>
</tbody>
</table>

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
</table>

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
</table>

ASTM INTERNATIONAL (ASTM)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM E1424</td>
<td>(1991; R 2016) Standard Test Method for Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls, ...</td>
</tr>
</tbody>
</table>
and Doors Under Specified Pressure and Temperature Differences Across the Specimen

ASTM E1886 (2013a) Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials

ASTM E283 (2004; R 2012) Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

ANSI/BHMA A156.10 (2017) Power Operated Pedestrian Doors

ANSI/BHMA A156.4 (2013) Door Controls - Closers

GLASS ASSOCIATION OF NORTH AMERICA (GANA)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

16 CFR 1201 Safety Standard for Architectural Glazing Materials

UNDERWRITERS LABORATORIES (UL)

UL 325 (2017) UL Standard for Safety Door, Drapery, Gate, Louver, and Window Operators and Systems

1.2 ADMINISTRATIVE REQUIREMENTS

1.2.1 Pre-Installation Meetings

Conduct pre-installation meeting to verify project requirements, substrate conditions, manufacturer's installation instructions, and manufacturer's
warranty requirements.

Within 30 days of the Contract Award, submit the following for review and approval by the Contracting Officer:

- Listing of product installations
- Sample warranty
- Finish and color samples
- Manufacturer's catalog data
- Installation drawings
- Fabrication drawings for custom fabrications

Concurrently submit certified test reports showing compliance with specified performance characteristics and UL 325 for the following:

- a. Air Infiltration ASTM E783
- b. Wind Load (Resistance) AAMA 501
- c. Deflection ASTM F1642
- d. Condensation Resistance and Thermal Transmittance Performance Requirements
- e. Water Infiltration ASTM E1105
- f. Structural Requirements ASTM F16421.3

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

- SD-01 Preconstruction Submittals
 - Sample Warranty; G
- SD-02 Shop Drawings
 - Installation Drawings; G
 - Fabrication Drawings; G
- SD-03 Product Data
 - Manufacturer's Catalog Data; G
- SD-04 Samples
 - Finish and Color Samples; G
- SD-06 Test Reports
 - Certified Test Reports; G

SECTION 08 41 13 Page 3
1.4 QUALITY ASSURANCE

1.4.1 Qualifications

1.4.1.1 Installer Qualifications

Provide documentation of Installer experience to perform work of this section, who has specialized in the installation of work similar to that required for this project, and who is acceptable to product manufacturer.

1.4.1.2 Manufacturer Qualifications

Manufacturers are acceptable providing they meet the requirements specified in this section and project drawings.

Ensure manufacturer is capable of providing field service representation during construction, approving acceptable installer and approving application method.

1.4.2 Single Source Responsibility

When aluminum entrances are part of a building enclosure system, including storefront framing, windows, curtain wall system and related products, provide building enclosure system products from a single source manufacturer.

Provide design, structural engineering, and custom fabrication for door system and supply of all components, materials, and products based on a single manufacturer of sole responsibility. Provision of products from numerous sources for site assembly without complete single source design and supply responsibility is not acceptable.

1.5 DELIVERY, STORAGE, AND HANDLING

1.5.1 Ordering

Comply with manufacturer's ordering instructions and lead-time requirements to avoid construction delays.

1.5.2 Packing, Shipping, Handling and Unloading

Deliver materials in manufacturer's original, unopened, undamaged containers with identification labels intact.

1.5.3 Storage and Protection

Store materials protected from exposure to harmful weather conditions. Handle storefront material and components to avoid damage. Protect storefront material against damage from elements, construction activities, and other hazards before, during and after storefront installation.
1.6 PROJECT / SITE CONDITIONS

1.6.1 Field Measurements

Verify actual measurements/openings by field measurements before fabrication; show recorded measurements on shop drawings. Coordinate field measurements, fabrication schedule with construction progress to avoid construction delays.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

This Specification includes aluminum entrances, glass and glazing, door hardware, and components.

Type of Aluminum Entrance includes:

Impact Resistance Entrances; medium stile, 3-1/2 inch vertical face dimension, 1-3/4 inch depth, interior structural silicone glazed, high traffic/impact resistant applications.

2.1.1 Design Requirements for Aluminum (Entrances and Components)

Design, size components, and install door portal system to withstand these loads without breakage, loss, failure of seals, product deterioration, and other defects, AAMA 503.

a. Dead and Live Loads: Determined by ASCE 7 and calculated in accordance with applicable codes.

b. Seismic Loads: Design and install system to comply with applicable seismic requirements for project location as defined by Section 1613 of the International Building Code (IBC).

c. Effects of applicable wind load acting inward and outward normal to plane of wall in accordance with ASTM E330/E330M.

d. Thermal Loads And Movement:

(1) Ambient Temperature Range: 120 degrees F.

(2) Material Surfaces Range: 180 degrees F.

e. Provide and install weatherstripping, exterior gaskets, sealants, and other accessories to resist water and air penetration.

f. Impact Protective Systems ASTM E1886.2.1.1.1 Material Standard

ASTM B221 ASTM B221M; 6063-T5 alloy and tempered.

Provide door stile and rail face dimensions of the entrance doors as follows:

<table>
<thead>
<tr>
<th>Vertical Stile</th>
<th>Top Rail</th>
<th>Bottom Rail</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1/2 inches</td>
<td>3-1/2 inches</td>
<td>6-1/2 inches</td>
</tr>
</tbody>
</table>

Provide major portions of the door members at.125 inches nominal in
thickness and glazing molding to be .050 inches thick.

2.1.1.2 Tolerances

Reference to tolerances for wall thickness and other cross-sectional dimensions of entrance members are nominal and in compliance with Aluminum Standards and Data, published by The Aluminum Association.

Provide either EPDM elastomeric extrusions or thermoplastic elastomer glazing gaskets. Structural silicone sealant is required.

2.1.2 Performance Requirements

2.1.2.1 Air Infiltration

Submit certified test reports showing compliance with specified performance characteristics as follows:

a. For single acting offset pivot, butt hung or continuous geared hinge entrances in the closed and locked position, test the specimen in accordance with ANSI/BHMA A156.10, and ASTM E283 at a pressure differential of 1.57 psf for pairs of doors; maximum infiltration for a pair of 7 foot - 0 inch by 8 foot - 0 inch entrance doors and frame is 1.2 cfm/ft2.

b. Maximum allowable infiltration, for a completed storefront system is not to exceed 0.06 cfm/square foot when tested in accordance with ASTM E1424 at differential static pressure of 6.24 psf.

2.1.2.2 Wind Loads

Provide completed storefront system capable ofwithstanding wind pressure loads, normal to the wall plane indicated, for design wind speed of 145 mph.

2.1.2.3 Deflection

Submit certified test reports showing compliance with specified performance characteristics as follows:

The maximum allowable deflection in any member when tested in accordance with ASTM E330/E330M with allowable stress in accordance with AA Specifications for Aluminum Structures is L/175 or 3/4 inches maximum.

2.1.2.4 Condensation Resistance and Thermal Transmittance

Submit certified test reports showing compliance with specified performance characteristics as follows:

a. U-Value Requirements:

 (1) Perform test in accordance with AAMA 1503 procedure and on the configuration specified therein.

 (2) Thermal Transmittance ("U" Value) maximum 0.65 (6250) BTU/hr/sf/deg F at 15 mph exterior wind.

b. CRF Class Requirements:

 (1) Perform test in accordance with AAMA 1503.
(2) Condensation Resistance Factor Requirements (CRF) minimum 56.

2.1.2.5 Water Infiltration

Submit certified test reports showing compliance with specified performance characteristics as follows:

System is designed to provide no uncontrolled water when tested in accordance with ASTM E331 at a static pressure of 8 psf.

2.2 FABRICATION

2.2.1 Entrance System Fabrication

Provide door corner construction consisting of mechanical clip fastening, SIGMA deep penetration plug welds and 1-1/8 inch long fillet welds inside and outside of all four corners. Provide hook-in type exterior glazing stop with EPDM glazing gaskets reinforced with non-stretchable cord. Provide interior glazing stop mechanically fastened to the door member incorporating a silicone compatible spacer used with silicone sealant.

Accurately fit and secure joints and corners. Make joints hairline in appearance. Prepare components with internal reinforcement for door hardware. Arrange fasteners and attachments to conceal from view.

2.2.2 Shop Assembly

Fabricate and assemble units with joints only at intersection of aluminum members with hairline joints; rigidly secure, and sealed in accordance with manufacturer's recommendations.

2.2.2.1 Welding

Conceal welds on aluminum members in accordance with AWS recommendations or methods recommended by manufacturer. Members showing welding bloom or discoloration on finish or material distortion will be rejected.

2.2.3 Fabrication Tolerance

Fabricate and assemble units with joints only at intersection of aluminum members with hairline joints; rigidly secure, and sealed in accordance with manufacturer's recommendations.

Fabricate aluminum entrances in accordance with entrance manufacturer's prescribed tolerances.

2.2.3.1 Material Cuts

Square to 1/32 inch off square, over largest dimension; proportionate amount of 1/32 inch on the two dimensions.

2.2.3.2 Maximum Offset At Consecutive Members

1/64 inch in alignment between two consecutive members in line, end to end.

2.2.3.3 Maximum Offset At Glazing Pocket Corners

1/64 inch between framing members at glazing pocket corners.
2.2.3.4 Joints

(Between adjacent members in same assembly: Hairline and square to adjacent member.

2.2.3.5 Variation

In squaring diagonals for doors and fabricated assemblies: 1/16 inch.

2.2.3.6 Flatness

For doors and fabricated assemblies: plus/minus 1/16 inch of neutral plane.

2.3 ACCESSORIES

2.3.1 Fasteners

Provide stainless steel where exposed.

2.3.2 Perimeter Anchors

When steel anchors are used, provide insulation between steel material and aluminum material to prevent galvanic action.

2.3.3 Standard Entrance Hardware

2.3.3.1 Weatherstripping

Equip meeting stiles on pairs of doors with an adjustable astragal utilizing wool pile with polymeric fin.

Provide door weatherstripping on a single acting offset pivot or butt hung door and frame (single or pairs) comprised of a thermoplastic elastomer weatherstripping on a tubular shape with a semi-rigid polymeric backing.

Provide Sill Sweep Strips: EPDM blade gasket sweep strip in an aluminum extrusion applied to the interior exposed surface of the bottom rail with concealed fasteners. (Provide as necessary to meet specified performance tests.)

2.3.3.2 Threshold

Provide extruded aluminum threshold, one piece per door opening, with ribbed surface.

2.3.3.3 Offset Pivots

Provide manufacturer's standard top and bottom pivots with one intermediate offset pivot.

2.3.3.4 Panic Device

Provide manufacturer's recommended standard panic hardware.

2.3.3.5 Closer

Provide surface closer only per ANSI/BHMA A156.4.
2.3.3.6 Security Lock/Dead Lock

Provide A/R MS 1850A lock with (2) A/R 1871 cylinder operated flush bolts.

2.3.3.7 Cylinder(s)/Thumb-turn

Provide manufacturer's recommended standard.

2.3.3.8 Cylinder Guard

Manufacturer standard.

2.4 RELATED MATERIALS

2.4.1 Sealants

Ensure all sealants conform to AAMA 800.

2.4.2 Glass

Refer to Section 08 81 00 GLAZING.

PART 3 EXECUTION

3.1 EXAMINATION

3.1.1 Site Verification of Conditions

Verify substrate conditions (which have been previously installed under other sections) are acceptable for product installation in accordance with manufacturer's instructions.

Verify openings are sized to receive storefront system and sill plate is level in accordance with manufacturer's acceptable tolerances.

3.2 INSTALLATION

Install entrance system in accordance with manufacturer's instructions and AAMA storefront and entrance guide specifications manual. Attach to structure to permit sufficient adjustment to accommodate construction tolerances and other irregularities. Provide alignment attachments and shims to permanently fasten system to building structure. Align assembly plumb and level, free of warp and twist. Maintain assembly dimensional tolerances aligning with adjacent work.

Set thresholds in bed of mastic and secure. Protect aluminum members in contact with masonry, steel, concrete, or dissimilar materials using nylatron pads or bituminous coating. Shim and brace aluminum system before anchoring to structure. Verify weep holes are open, and metal joints are sealed in accordance with manufacturer's installation instructions. Seal metal to metal joints using sealant recommended by system manufacturer.

3.2.1 Preparation

Field verify dimensions prior to fabricating door portal assembly components.

Coordinate requirements for locations of blockouts for anchorage of door portal columns and other embedded components with Section 03 30 53.
MISCELLANEOUS CAST-IN-PLACE CONCRETE.

Coordinate erection of door portal with installation of surrounding glass wall and door assemblies. Ensure adequate provision is made for support and anchorage of assembly components.

3.2.1.1 Adjacent Surfaces Protection

Protect adjacent work areas and finish surfaces from damage during product installation.

3.2.1.2 Aluminum Surface Protection

Protect aluminum surfaces from contact with lime, mortar, cement, acids, and other harmful contaminants.

3.2.2 Adjusting

Adjust operating hardware for smooth operation, and as recommended by the manufacturer.

3.2.3 Related Products Installation Requirements

3.2.3.1 Sealants (Perimeter)

Refer to Section 07 92 00 JOINT SEALANTS.

3.2.3.2 Glass

Refer to Section 08 81 00 GLAZING.

3.2.3.3 Reference

3.3 PROTECTION AND CLEANING

3.3.1 Protection

Protect installed product's finish surfaces from damage during construction. Protect aluminum storefront system from damage from grinding and polishing compounds, plaster, lime, acid, cement, or other harmful contaminants.

3.3.2 Cleaning

Repair or replace damaged installed products. Clean installed products in accordance with manufacturer's instructions prior to owner's acceptance. Remove construction debris from project site and legally dispose of debris.

3.4 WARRANTY

Submit three signed copies of manufacturer's product warranty for entrance system as follows:

Warranty Period: Five years from Date of Substantial Completion of the project, provided that the Limited Warranty begins in no event later than six months from date of shipment by manufacturer. In addition, support welded door corner construction with a limited lifetime warranty.
warranty for the life of the door under normal use.

Ensure Warranty language is identical to "As Approved" version of the sample warranty submitted and returned from the Contracting Officer.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ALUMINUM ASSOCIATION (AA)

AA DAF45 (2003; Reaffirmed 2009) Designation System for Aluminum Finishes

AMERICAN ARCHITECTURAL MANUFACTURERS ASSOCIATION (AAMA)

AAMA 611 (2014) Voluntary Specification for Anodized Architectural Aluminum

ASTM INTERNATIONAL (ASTM)

NATIONAL FENESTRATION RATING COUNCIL (NFRC)

NFRC 100 (2014) Procedure for Determining Fenestration Product U-Factors

1.2 CERTIFICATION

Each prime window unit must bear the AAMA Label warranting that the product
complies with AAMA/WDMA/CSA 101/I.S.2/A440. Certified test reports
attesting that the prime window units meet the requirements of
AAMA/WDMA/CSA 101/I.S.2/A440, including test size, will be acceptable in
lieu of product labeling.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation;
submittals not having a "G" designation are for information only. Submit
the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Windows
Fabrication Drawings

SD-03 Product Data

Windows
Fasteners
Window Performance
Accessories
Adhesives
Thermal Performance

SD-04 Samples

Finish Sample

SD-05 Design Data

Structural Calculations for Deflection
Design Analysis

Submit design analysis with calculations showing that the design
of each different size and type of aluminum window unit and its
anchorage to the structure meets the minimum antiterrorism
standards required by paragraph "Minimum Antiterrorism
Performance", unless conformance is demonstrated by Standard
Airblast Test results. Calculations verifying the structural
performance of each window proposed for use, under the given
loads, must be prepared and signed by a registered Professional
Engineer. The window components and anchorage devices to the
structure, as determined by the design analysis, must be reflected
in the shop drawings.

SD-06 Test Reports

Minimum Condensation Resistance Factor
Standard Airblast Test; G

For Minimum Antiterrorism windows, in lieu of a Design Analysis,
results of airblast testing, whether by arena test or shocktube,
must be included in a test report, providing information in
accordance with ASTM F1642, as prepared by the independent testing
agency performing the test. The test results must demonstrate the ability of each window proposed for use to withstand the airblast loading parameters and achieve the hazard level rating specified in paragraph "Standard Airblast Test Method".

1.4 QUALITY ASSURANCE

1.4.1 Shop Drawing Requirements

Provide drawings that indicate elevations of windows, full-size sections, thickness and gages of metal, fastenings, proposed method of anchoring, size and spacing of anchors, details of construction, method of glazing, details of operating hardware, installation details, and other related items.

1.4.2 Sample Requirements

1.4.2.1 Finish Sample Requirements

Submit color chart of standard factory color coatings when factory-finish color coating is to be provided.

1.4.3 Design Data Requirements

Submit calculations to substantiate compliance with deflection requirements and Minimum Antiterrorism Performance criteria. A registered Professional Engineer must provide calculations.

Submit design analysis with calculations showing that the design of each different size and type of aluminum window unit and its anchorage to the structure meets the requirements of paragraph "Minimum Antiterrorism Performance Criteria". Calculations verifying the structural performance of each window proposed for use, under the given loads, must be prepared and signed by a registered professional engineer. Reflect the window components and anchorage devices to the structure, as determined by the design analysis, in the shop drawings.

1.4.4 Test Report Requirements

Submit test reports for each type of window attesting that identical windows have been tested and meet the requirements specified herein for conformance to AAMA/WDMA/CSA 101/1.S.2/A440 including test size, and minimum condensation resistance factor (CRF) and for Minimum Antiterrorism windows, in lieu of a Design Analysis, results of a Standard Airblast Test.

1.5 DELIVERY AND STORAGE

Deliver windows to project site in an undamaged condition. Use care in handling and hoisting windows during transportation and at the jobsite. Store windows and components out of contact with the ground, under a weathertight covering, so as to prevent bending, warping, or otherwise damaging the windows. Repair damaged windows to an "as new" condition as approved. If windows can not be repaired, provide a new unit.

1.6 PROTECTION

Protect finished surfaces during shipping and handling using the manufacturer's standard method. Do not apply coatings or lacquers to surfaces to which caulking and glazing compounds must adhere.
1.7 FIELD MEASUREMENTS

Take field measurements prior to preparation of the drawings and fabrication.

1.8 PERFORMANCE REQUIREMENTS

1.8.1 Wind Loading Design Pressure

Design window components, including mullions, hardware, and anchors, to withstand a wind-loading design pressure of at least 50 pounds per square foot (psf).

1.8.2 Tests

Test windows proposed for use in accordance with AAMA/WDMA/CSA 101/I.S.2/A440 for the particular type and quality window specified.

Perform tests by a nationally recognized independent testing laboratory equipped and capable of performing the required tests. Submit the results of the tests as certified laboratory reports required herein.

Minimum design load for a uniform-load structural test must be 50 psf.

1.9 DRAWINGS

Submit the Fabrication Drawings for aluminum window units showing complete window assembly including hardware, weatherstripping, and subframe assembly details.

1.10 WINDOW PERFORMANCE

Aluminum windows must meet the following performance requirements. Perform testing requirements by an independent testing laboratory or agency.

1.10.1 Structural Performance

Structural test pressures on window units must be for positive load (inward) and negative load (outward). After testing, there will be no glass breakage, permanent damage to fasteners, hardware parts, support arms or actuating mechanisms or any other damage which could cause window to be inoperable. There must be no permanent deformation of any main frame, sash or ventilator member in excess of the requirements established by AAMA/WDMA/CSA 101/I.S.2/A440 for the window types and classification specified in this section.

1.10.2 Minimum Antiterrorism Performance

Windows must meet the minimum antiterrorism performance as specified in the paragraphs below. Conformance to the performance requirements must be validated by one of the following methods.

1.10.2.1 Computational Design Analysis Method

Window frames, mullions, and sashes must be designed to the criteria listed herein. Computational design analysis must include calculations verifying the structural performance of each window proposed for use, under the given
static equivalent loads.

Aluminum window framing members must restrict deflections of the edges of glazing they support to L/60 under two times (2X) the glazing resistance per the requirements of ASTM F2248 and ASTM E1300. L denotes the length of the glazing supported edge. (L is to be based on edge length of glazing in frame and not on the distance between anchors that fasten frame to the structure.) ATFP Generalized Loads: Peak Pressure 3.41 psi, impulse 20.2 psi-msec

The glazing frame bite for the window frames must be in accordance with ASTM F2248.

Window frames must be anchored to the supporting structure with anchors designed to resist two times (2X) the glazing resistance in accordance with ASTM F2248 and ASTM E1300.

1.10.2.2 Alternate Dynamic Design Analysis Method

As an alternative to the static equivalent load design approach described above, window framing members, anchors, and glazing may be designed using a dynamic analysis to prove the window system will provide performance equivalent to or better than a very low hazard rating in accordance with ASTM F1642 associated with the applicable low level of protection for the project.

1.10.2.3 Standard Airblast Test Method

As an alternative to either of the Computational Design Analysis Methods, each Minimum Antiterrorism window type must be tested for evaluation of hazards generated from airblast loading in accordance with ASTM F1642 by an independent testing agency regularly engaged in blast testing. For proposed window systems that are of the same type as the tested system but of different size, the test results may be accepted provided the proposed window size is within the range from 25 percent smaller to 10 percent larger in area, than the tested window. Proposed windows of a size outside this range require testing to evaluate their hazard rating. Testing may be by shot tube or arena test. The test must be performed on the entire proposed window system, to include, but not be limited to, the glazing, its framing system, operating devices, and all anchorage devices. Anchorage of the window frame or subframe must replicate the method of installation to be used for the project. The minimum airblast loading parameters for the test must be as follows: Peak positive pressure of 40 kPa and positive phase impulse of 285 kPa-msec. The hazard rating for the proposed window systems, as determined by the rating criteria of ASTM F1642, must not exceed the "Very Low Hazard" rating (i.e. the "No Break", "No Hazard", "Minimal Hazard" and "Very Low Hazard" ratings are acceptable. "Low Hazard" and "High Hazard" ratings are unacceptable). Results of window systems previously tested by test protocols other than ASTM F1642 may be accepted provided the required loading, hazard level rating, and size limitations stated herein are met.

1.10.3 Air Infiltration

Air infiltration must not exceed the amount established by AAMA/WDMA/CSA 101/I.S.2/A440 for each window type.
1.10.4 Water Penetration

Water penetration must not exceed the amount established by AAMA/WDMA/CSA 101/I.S.2/A440 for each window type.

1.10.5 Thermal Performance

Non-residential aluminum windows (including frames and glass) must be certified by the National Fenestration Rating Council with a whole-window Solar Heat Gain Coefficient (SHGC) maximum of 27 determined according to NFRC 200 procedures and a U-factor maximum of .40 Btu/hr-ft²-F in accordance with NFRC 100.

1.11 QUALIFICATION

Window manufacturer must specialize in designing and manufacturing the type of aluminum windows specified in this section, and have a minimum of 5 years of documented successful experience. Manufacturer must have the facilities capable of meeting contract requirements, single-source responsibility and warranty.

1.12 WARRANTY

Provide Manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period.

PART 2 PRODUCTS

2.1 WINDOWS

Provide prime windows that comply with AAMA/WDMA/CSA 101/I.S.2/A440 and the requirements specified herein. In addition to compliance with AAMA/WDMA/CSA 101/I.S.2/A440, window framing members for each individual light of glass must not deflect to the extent that deflection perpendicular to the glass light exceeds L/175 of the glass edge length when subjected to uniform loads at specified design pressures. Provide Structural calculations for deflection to substantiate compliance with deflection requirements. Provide windows of types, performance classes, performance grades, combinations, and sizes indicated or specified. Each window must be a complete factory assembled unit with or without glass installed. Dimensions shown are minimum. Provide windows with insulating glass and thermal break necessary to achieve a minimum Condensation Resistance Factor (CRF) of 50 when tested in accordance with AAMA 1503.

2.1.1 Fixed Windows (F)

Type F-AW-70 (Optional Performance Grade).

2.1.2 Glass and Glazing

Materials are specified in Section 08 81 00 GLAZING. At minimum, glass shall be nominal 1", insulated, Low-E, bronze-tinted laminated impact rated.

2.1.3 Caulking and Sealing

Are specified in Section 07 92 00 JOINT SEALANTS.
2.1.4 Weatherstripping

2.2 FABRICATION

Fabrication of window units must comply with AAMA/WDMA/CSA 101/I.S.2/A440.

2.2.1 Provisions for Glazing

Design windows and rabbets suitable for glass thickness shown or specified. For minimum antiterrorism windows, attach glazing to its supporting frame using structural silicone sealant or adhesive glazing tape in accordance with ASTM F2248. Design sash for insidedouble glazing and for securing glass with metal beads.

2.2.2 Fasteners

Use window manufacturer's standard for windows, trim, and accessories. Self-tapping sheet-metal screws are not acceptable for material more than 1/16 inch thick.

2.2.3 Adhesives

Provide joint sealants as specified in Section 07 92 00 JOINT SEALANTS. For interior application of joint sealants, comply with applicable regulations regarding reduced VOC's, and as specified in Section 07 92 00 JOINT SEALANTS.

2.2.4 Drips and Weep Holes

Provide continuous drips over heads of top ventilators. Where fixed windows adjoin ventilators, drips must be continuous across tops of fixed windows. Provide drips and weep holes as required to return water to the outside.

2.2.5 Accessories

2.2.5.1 Fasteners

Provide concealed anchors of the type recommended by the window manufacturer for the specific type of construction. Anchors and fasteners must be compatible with the window and the adjoining construction. Provide a minimum of three anchors for each jamb located approximately 6 inches from each end and at midpoint.

2.2.6 Finishes

Exposed aluminum surfaces must be factory finished with an anodic coating Color must be dark bronze. All windows must have the same finish.

2.2.6.1 Anodic Coating

Clean exposed aluminum surfaces and provide an anodized finish conforming to AA DAF45 and AAMA 611. Finish must be:

a. Architectural Class I (0.7 mil or thicker), designation AA-M10-C22-A42, integral color anodized.

SECTION 08 51 13 Page 7
PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Method of Installation

Install in accordance with the window manufacturer's printed instructions and details. Build in windows as the work progresses or install without forcing into prepared window openings. Set windows at proper elevation, location, and reveal; plumb, square, level, and in alignment; and brace, strut, and stay properly to prevent distortion and misalignment. Protect ventilators and operating parts against accumulation of dirt and building materials by keeping ventilators tightly closed and locked to frame. Bed screws or bolts in sill members, joints at mullions, contacts of windows with sills, built-in fins, and subframes in mastic sealant of a type recommended by the window manufacturer. Install and caulk windows in a manner that will prevent entrance of water and wind. Fasten insect screens securely in place.

Any materials that show visual evidence of biological growth due to the presence of moisture must not be installed on the building project.

3.1.2 Dissimilar Materials

Where aluminum surfaces are in contact with, or fastened to masonry, concrete, wood, or dissimilar metals, except stainless steel or zinc, protect the aluminum surface from dissimilar materials as recommended in the Appendix to AAMA/WDMA/CSA 101/I.S.2/A440. Do not coat surfaces in contact with sealants after installation with any type of protective material.

3.1.3 Anchors and Fastenings

Make provision for securing units to each other, to masonry, and to other adjoining construction. Windows installed in masonry walls must have head and jamb members designed to recess into masonry wall not less than 7/16 inch.

3.2 CLEANING

Clean interior and exterior surfaces of window units of mortar, plaster, paint spattering spots, and other foreign matter to present a neat appearance, to prevent fouling of weathering surfaces and weather-stripping, and to prevent interference with the operation of hardware. Replace all stained, discolored, or abraded windows that cannot be restored to their original condition with new windows.

-- End of Section --
SECTION 08 71 00

DOOR HARDWARE

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM E283 (2004; R 2012) Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

ANSI/BHMA A156.1 (2016) Butts and Hinges
ANSI/BHMA A156.13 (2017) Mortise Locks & Latches Series 1000
ANSI/BHMA A156.16 (2013) Auxiliary Hardware
ANSI/BHMA A156.18 (2016) Materials and Finishes
ANSI/BHMA A156.2 (2017) Bored and Preassembled Locks and Latches
ANSI/BHMA A156.21 (2014) Thresholds
ANSI/BHMA A156.22 (2017) Door Gasketing and Edge Seal Systems
ANSI/BHMA A156.3 (2014) Exit Devices
ANSI/BHMA A156.4 (2013) Door Controls - Closers
ANSI/BHMA A156.6 (2015) Architectural Door Trim
ANSI/BHMA A156.7 (2016) Template Hinge Dimensions
ANSI/BHMA A156.8 (2015) Door Controls - Overhead Stops and Holders

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Hardware Schedule; G
 Keying System; G

SD-03 Product Data
 Hardware Items; G

SD-08 Manufacturer's Instructions
 Installation

SD-10 Operation and Maintenance Data
 Hardware Schedule Items, Data Package 1; G

SD-11 Closeout Submittals
 Key Bitting

1.3 PRODUCT DATA

Indicate fire-ratings at applicable components. Provide documentation of ABA/ADA accessibility compliance of applicable components, as required by 36 CFR 1191 Appendix D - Technical.

1.4 HARDWARE SCHEDULE

Prepare and submit hardware schedule in the following form:
<table>
<thead>
<tr>
<th>Hardware Item</th>
<th>Quantity</th>
<th>Size</th>
<th>Reference Publication Type No.</th>
<th>Finish</th>
<th>Mfr Name and Catalog No.</th>
<th>Key Control Symbols</th>
<th>UL Mark (If fire-rated and listed)</th>
<th>BHMA Finish Designation</th>
</tr>
</thead>
</table>

In addition, submit hardware schedule data package 1 in accordance with Section 01 78 23 OPERATION AND MAINTENANCE DATA.

1.5 KEY BITTING CHART REQUIREMENTS

1.5.1 Requirements

Submit key bitting charts to the Contracting Officer prior to completion of the work. Include:

a. Complete listing of all keys (e.g. AA1 and AA2).
b. Complete listing of all key cuts (AA1-123456, AA2-123458).
c. Tabulation showing which key fits which door.
d. Copy of floor plan showing doors and door numbers.
e. Listing of 20 percent more key cuts than are presently required in each master system.

1.6 QUALITY ASSURANCE

1.6.1 Hardware Manufacturers and Modifications

Provide, as far as feasible, locks, hinges, and closer's of one lock, hinge, or closer manufacturer's make. Modify hardware as necessary to provide features indicated or specified.

1.6.2 Key Shop Drawings Coordination Meeting

Prior to the submission of the key shop drawing, the Contracting Officer, Contractor, Door Hardware Subcontractor, using Activity and Base Locksmith must meet to discuss and coordinate key requirements for the facility.

1.7 DELIVERY, STORAGE, AND HANDLING

Deliver hardware in original individual containers, complete with necessary appurtenances including fasteners and instructions. Mark each individual container with item number as shown on hardware schedule. Deliver permanent keys and removable cores to the Contracting Officer, either directly or by certified mail. Deliver construction master keys with the locks.

PART 2 PRODUCTS

2.1 TEMPLATE HARDWARE

Hardware applied to metal doors must be manufactured using a template.
Provide templates to door and frame manufacturers in accordance with ANSI/BHMA A156.7 for template hinges. Coordinate hardware items to prevent interference with other hardware.

2.2 HARDWARE FOREXIT DOORS

Provide all hardware necessary to meet the requirements of NFPA 101 for exit doors, NFPA 252 for fire tests of door assemblies, ABA/ADA accessibility requirements, and all other requirements indicated, even if such hardware is not specifically mentioned in paragraph HARDWARE SCHEDULE. Provide Underwriters Laboratories, Inc. labels for such hardware in accordance with UL Bld Mat Dir or equivalent labels in accordance with another testing laboratory approved in writing by the Contracting Officer.

2.3 HARDWARE ITEMS

Clearly and permanently mark with the manufacturer's name or trademark, hinges, locks, latches, exit devices, bolts and closers where the identifying mark is visible after the item is installed. For closers with covers, the name or trademark may be beneath the cover.

2.3.1 Hinges

Provide in accordance with ANSI/BHMA A156.1. Provide hinges that are 4-1/2 by 4-1/2 inch unless otherwise indicated. Construct loose pin hinges for interior doors and reverse-bevel exterior doors so that pins are non-removable when door is closed. Other anti-friction bearing hinges may be provided in lieu of ball bearing hinges.

2.3.2 Locks and Latches

2.3.2.1 Bored Locks and Latches

Provide in accordance with ANSI/BHMA A156.2, Series 4000, Grade 1.

2.3.3 Exit Devices

Provide in accordance with ANSI/BHMA A156.3, Grade 1. Provide adjustable strikes for rim type and vertical rod devices. Provide open back strikes for pairs of doors with mortise and vertical rod devices. Provide touch bars in lieu of conventional crossbars and arms.

2.3.4 Cylinders and Cores

Provide cylinders and cores for new locks, including locks provided under other sections of this specification. Provide cylinders and cores with seven pin tumblers. Provide cylinders from the products of one manufacturer, and provide cores from the products of one manufacturer. Rim cylinders, and knobs of bored locksets have interchangeable cores which are removable by special control keys. Stamp each interchangeable core with a key control symbol in a concealed place on the core. All Locks shall be compatible with Best Lock Corporation.

2.3.5 Keying System

The Government will provide permanent cylinders with cores and keys for mortise locksets, auxiliary locks, and exit devices. Provide cylinders of Grade 1 products from one manufacturer. Notify the Contracting Officer 90
days prior to the required delivery of the cylinders. Provide temporary cores and keys for the Contractor's use during construction, and for testing of locksets.

2.3.6 Lock Trim

Provide cast, forged, or heavy wrought construction and commercial plain design for lock trim.

2.3.6.1 Lever Handles

Provide lever handles. Provide in accordance with ANSI/BHMA A156.3 for mortise locks of lever handles for exit devices. Provide lever handle locks with a breakaway feature (such as a weakened spindle or a shear key) to prevent irreparable damage to the lock when force in excess of that specified in ANSI/BHMA A156.13 is applied to the lever handle. Provide lever handles return to within 1/2 inch of the door face.

2.3.6.2 Texture

Provide knurled or abrasive coated knobs or lever handles for doors which are accessible to blind persons and which lead to dangerous areas.

2.3.7 Keys

Furnish seven change keys for each interchangeable core, furnish two control keys, six masters keys, and six construction master keys. Furnish a quantity of key blanks equal to 20 percent of the total number of change keys. Stamp each key with appropriate key control symbol and "U.S. property - do not duplicate." Do not place room numbers on keys.

2.3.8 Door Bolts

Provide in accordance with ANSI/BHMA A156.16. Provide dustproof strikes for bottom bolts, except at doors having metal thresholds. Provide automatic latching flush bolts in accordance with ANSI/BHMA A156.3, Type 25.

2.3.9 Closers

Provide in accordance with ANSI/BHMA A156.4, Series C02000, Grade 1, with PT 4C. Provide with brackets, arms, mounting devices, fasteners, full size covers, except at storefront mounting, and other features necessary for the particular application. Size closers in accordance with manufacturer's printed recommendations, or provide multi-size closers, Sizes 1 through 6, and list sizes in the Hardware Schedule. Provide manufacturer's 10 year warranty.

2.3.9.1 Identification Marking

Engrave each closer with manufacturer's name or trademark, date of manufacture, and manufacturer's size designation in locations that will be visible after installation.

2.3.10 Overhead Holders

Provide in accordance with ANSI/BHMA A156.8.
2.3.11 Door Protection Plates

Provide in accordance with ANSI/BHMA A156.6.

2.3.11.1 Sizes of Kick Plates

2 inch less than door width for single doors; 1 inch less than door width for pairs of doors. Provide 10 inch kick plates for flush doors.

2.3.12 Door Stops and Silencers

Provide in accordance with ANSI/BHMA A156.16. Silencers Type L03011. Provide three silencers for each single door, two for each pair.

2.3.13 Thresholds

Provide in accordance with ANSI/BHMA A156.21. Use J35100, with vinyl or silicone rubber insert in face of stop, for exterior doors opening out, unless specified otherwise.

2.3.14 Weatherstripping Gasketing

Provide in accordance with ANSI/BHMA A156.22. Provide the type and function designation where specified in paragraph HARDWARE SCHEDULE. Provide a set to include head and jamb seals, sweep strips. Air leakage of weatherstripped doors not to exceed 0.5 cubic feet per minute of air per square foot of door area when tested in accordance with ASTM E283. Provide weatherstripping with one of the following:

2.3.14.1 Extruded Aluminum Retainers

Extruded aluminum retainers not less than 0.050 inch wall thickness with vinyl, neoprene, silicone rubber, or polyurethane inserts. Provide bronze anodized aluminum.

2.3.14.2 Interlocking Type

Zinc or bronze not less than 0.018 inch thick.

2.3.14.3 Spring Tension Type

Spring bronze or stainless steel not less than 0.008 inch thick.

2.3.15 Rain Drips

Provide in accordance with ANSI/BHMA A156.22. Provide extruded aluminum rain drips, not less than 0.08 inch thick, bronze anodized finish. Provide the manufacturer's full range of color choices to the Contracting Officer for color selection. Provide rain drips with a 4 inch overlap on each side of each exterior door that is not protected by an awning, roof, eave or other horizontal projection. Set drips in sealant and fasten with stainless steel screws.

2.3.15.1 Door Rain Drips

Approximately 1-1/2 inch high by 5/8 inch projection. Align bottom with bottom edge of door.
2.3.15.2 Overhead Rain Drips

Approximately 1-1/2 inch high by 2-1/2 inch projection. Align bottom with door frame rabbet.

2.3.16 Auxiliary Hardware (Other than locks)

Provide in accordance with ANSI/BHMA A156.16, Grade 1.

2.3.17 Special Tools

Provide special tools, such as spanner and socket wrenches and dogging keys, as required to service and adjust hardware items.

2.4 FASTENERS

Provide fasteners of type, quality, size, and quantity appropriate to the specific application. Fastener finish to match hardware. Provide stainless steel or nonferrous metal fasteners in locations exposed to weather. Verify metals in contact with one another are compatible and will avoid galvanic corrosion when exposed to weather.

2.5 FINISHES

Provide in accordance with ANSI/BHMA A156.18. Provide hardware in BHMA 630 finish (satin stainless steel), unless specified otherwise. Provide items not manufactured in stainless steel in BHMA 626 finish (satin chromium plated) over brass or bronze, except aluminum paint finish for surface door closers. Provide hinges for exterior doors in stainless steel with BHMA 630 finish or chromium plated brass or bronze with BHMA 626 finish. Furnish exit devices in BHMA 626 finish in lieu of BHMA 630 finish except where BHMA 630 is specified under paragraph HARDWARE SETS. Match exposed parts of concealed closers to lock and door trim. Match hardware finish for aluminum doors to the doors.

PART 3 EXECUTION

3.1 INSTALLATION

Provide hardware in accordance with manufacturers' printed installation instructions. Fasten hardware to wood surfaces with full-threaded wood screws or sheet metal screws. Provide machine screws set in expansion shields for fastening hardware to solid concrete and masonry surfaces. Provide toggle bolts where required for fastening to hollow core construction. Provide through bolts where necessary for satisfactory installation.

3.1.1 Weatherstripping Installation

Provide full contact, weathertight seals that allow operation of doors without binding the weatherstripping.

3.1.1.1 Stop Applied Weatherstripping

Fasten in place with color matched sheet metal screws not more than 9 inch on center after doors and frames have been finish painted.
3.1.1.2 Interlocking Type Weatherstripping

Provide interlocking, self adjusting type on heads and jambs and flexible hook type at sills. Nail weatherstripping to door 1 inch on center and to heads and jambs at 4 inch on center.

3.1.1.3 Spring Tension Type Weatherstripping

Provide spring tension type on heads and jambs. Provide bronze nails with bronze. Provide stainless steel nails with stainless steel. Space nails not more than 1-1/2 inch on center.

3.1.2 Threshold Installation

Extend thresholds the full width of the opening and notch end for jamb stops. Set thresholds in a full bed of sealant and anchor to floor with cadmium-plated, countersunk, steel screws in expansion sleeves.

3.2 EXIT DOORS

Provide hardware in accordance with NFPA 101 for exit doors, and NFPA 252 for fire tests of door assemblies.

3.3 HARDWARE LOCATIONS

Provide in accordance with SDI/DOOR A250.8, unless indicated or specified otherwise.

3.4 FIELD QUALITY CONTROL

After installation, protect hardware from paint, stains, blemishes, and other damage until acceptance of work. Submit notice of testing 15 days before scheduled, so that testing can be witnessed by the Contracting Officer. Adjust hinges, locks, latches, bolts, holders, closers, and other items to operate properly. Demonstrate that permanent keys operate respective locks, and give keys to the Contracting Officer. Correct, repair, and finish, errors in cutting and fitting and damage to adjoining work.

3.5 HARDWARE SETS

Set #1 - Door 102 (Motorized Overhead Coiling Grille)
Each to have:

All hardware shall be provided by motorized overhead coiling grille manufacturer.

Set #2 - Doors 103, 107, 111, 111A, 111B, 117 (Aluminum Storefront Doors)
Each to have:

All hardware shall be provided by the Aluminum Storefront Door Manufacturer.

Set #3 - Doors 104, 113, 113A, (Interior SCWD Doors - Storage Function)
Each to have:
1-1/2 PR. Butts BB1168 4.5x4.5 NRP US26D
1 EA Lockset 937D15D US26D
1 EA Cylinder US26D
1 EA Wall Stop 4033 US26D
1 EA Kickplate 10" x 34" US26D

Set #4 - Doors 105, 108, 109, 110 (Interior SCWD Doors - Office Function)
Each to have:

1-1/2 PR. Butts BB1168 4.5x4.5 NRP US26D
1 EA Lockset 93K7EA15D US26D
1 EA Cylinder US26D
1 EA Wall Stop 4033 US26D
1 EA Kickplate 10" x 34" US26D

Set #5 - Doors 114, 115B (Manual Overhead Coiling Counter Shutter)
Each to have:

All hardware shall be provided by overhead coiling counter shutter manufacturer.

Set #6 - Doors 115, 115A (Interior GHM Doors - Passage Function)
Each to have:

1-1/2 PR. Butts BB1168 4.5x4.5 NRP US26D
1 EA Deadbolt 82T-2-3/8"7KSTK US26D
1 EA Closer 8616 SPA8 AL. LAQ .
1 EA Push Plate #70 3"x12" US26D
1 EA Floor Stop 440 US26D
1 EA Kickplate 10" x 34" US26D

Set #7 - Door 115C (Exterior GHM - Entry Function)
Each to have:

1-1/2 PR Butts BB1199 4.5x4.5 NRP US32D
1 EA Lockset 93K7AB15D US32d
1 EA Cylinder US32D
1 EA Closer 8616 SPA8 AL. LAQ .
1 Set Weatherstripping 303AV ALUM.
1 EA Door Bottom 312V x 131N ALUM.
1 EA Threshold 8144S ALUM.
1 EA Sweep 315AN ALUM.
1 EA Drip Strip 17DKB ALUM.

Set #8 - Doors 116, 118 (Pair Exterior GHM Doors)
Each to have:

3 PR Butts BB1199 4.5x4.5 NRP US32D
1 EA Lockset 9K7D15D US32D
1 EA. Cylinder US32D
2 Each Flush Bolts No. 0600-XXX US32D
2 Each Overhead Stop and Hold Opens GJ90MA US32D
2 Set Weatherstripping 303AV ALUM.
1 EA. Threshold 896 x 72" ALUM..
2 EA Sweep 315AN ALUM.
2 EA Drip Strip 17DKB ALUM.

SECTION 08 71 00 Page 9
SECTION 08 81 00

GLAZING

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM C509 (2006; R 2015) Elastomeric Cellular Preformed Gasket and Sealing Material

ASTM D2287 (2012) Nonrigid Vinyl Chloride Polymer and Copolymer Molding and Extrusion Compounds

GLASS ASSOCIATION OF NORTH AMERICA (GANA)

INSULATING GLASS MANUFACTURERS ALLIANCE (IGMA)

IGMA TR-1200 (1983; R 2007) Guidelines for Commercial Insulating Glass Dimensional Tolerances
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Drawings showing complete details of the proposed setting methods, mullion details, edge blocking, size of openings, frame details, materials, and types and thickness of glass.

SD-03 Product Data

Insulating Glass
Laminated Glass
Glazing Accessories

Manufacturer's descriptive product data, handling and storage recommendations, installation instructions, and cleaning instructions.

SD-07 Certificates

Insulating Glass
Laminated Glass

Certificates stating that the glass meets the specified requirements. Glazing Accessories

SD-08 Manufacturer's Instructions

Setting and sealing materials
Glass setting

Submit glass manufacturer's recommendations for setting and sealing materials and for installation of each type of glazing material specified.

1.3 DELIVERY, STORAGE, AND HANDLING

Deliver products to the site in unopened containers, labeled plainly with manufacturers' names and brands. Store glass and setting materials in safe, enclosed dry locations and do not unpack until needed for installation. Handle and install materials in a manner that will protect them from damage.

1.4 ENVIRONMENTAL REQUIREMENTS

Do not start glazing work until the outdoor temperature is above 40 degrees F and rising, unless procedures recommended by the glass manufacturer and approved by the Contracting Officer are made to warm the glass and rabbet surfaces. Provide ventilation to prevent condensation of moisture on glazing work during installation. Do not perform glazing work during damp or rainy weather.
1.5 WARRANTY

1.5.1 Warranty for Insulating Glass Units

Warranty insulating glass units against development of material obstruction to vision (such as dust, fogging, or film formation on the inner glass surfaces) caused by failure of the hermetic seal, other than through glass breakage, for a 10-year period following acceptance of the work. Provide new units for any units failing to comply with terms of this warranty within 45 working days after receipt of notice from the Government.

PART 2 PRODUCTS

2.1 GLASS

2.1.1 Clear Glass

For interior glazing, 1/4 inch thick glass should be used.

Type I, Class 1 (clear), Quality q4 (A). Provide for glazing openings not indicated or specified otherwise. Use double-strength sheet glass or 1/8 inch float glass for openings up to and including 15 square feet, 3/16 inch for glazing openings over 15 square feet but not over 30 square feet, and 1/4 inch for glazing openings over 30 square feet but not over 45 square feet. 2.1.2 Laminated Glass

ASTM C1172, Kind LA fabricated from two nominal 1/8 inch pieces of Type I, Class 1, Quality q3, flat annealed transparent glass conforming to ASTM C1036. Flat glass shall be laminated together with a minimum of 0.030 inch thick, clear polyvinyl butyral interlayer. The total thickness shall be nominally 1/4 inch. 2.1.3 Tempered Glass

ASTM C1048, Kind FT (fully tempered), Condition A (uncoated), Type I, Class 1 (transparent), Quality q3, 1/4 inch thick. Color shall be clear.

2.2 INSULATING GLASS UNITS Two panes of glass separated by a dehydrated airspace and hermetically sealed. Dimensional tolerances shall be as specified in IGMA TR-1200. Spacer shall be roll-formed, with bent or tightly welded or keyed and sealed joints to completely seal the spacer periphery and eliminate moisture and hydrocarbon vapor transmission into airspace through the corners. Primary seal shall be compressed polyisobutylene and the secondary seal shall be a specially formulated silicone.

2.3 SETTING AND SEALING MATERIALS

Provide as specified in the GANA Glazing Manual, I GMA TM-3000, I GMA TB-3001, and manufacturer's recommendations, unless specified otherwise herein. Do not use metal sash putty, nonskinning compounds, nonresilient preformed sealers, or impregnated preformed gaskets. Materials exposed to view and unpainted shall be gray or neutral color.

2.3.1 Putty and Glazing Compound

Glazing compound shall be as recommended by manufacturer for face-glazing metal sash. Putty shall be linseed oil type. Putty and glazing compounds shall not be used with laminated glass.
2.3.2 Glazing Compound

Use for face glazing metal sash. Do not use with laminated glass.

2.3.3 Sealants

Provide elastomeric and structural sealants.

2.3.3.1 Elastomeric Sealant

ASTM C920, Type S, Grade NS, Class 12.5, Use G. Use for channel or stop glazing metal sash. Sealant shall be chemically compatible with setting blocks, edge blocks, and sealing tapes, with sealants used in manufacture of insulating glass units. Color of sealant shall be white.

2.3.3.2 Structural Sealant

ASTM C1184, Type S.

2.3.4 Joint Backer

Joint backer shall have a diameter size at least 25 percent larger than joint width; type and material as recommended in writing by glass and sealant manufacturer.

2.3.5 Sealing Tapes

Preformed, semisolid, PVC-based material of proper size and compressibility for the particular condition, complying with ASTM D2287. Use only where glazing rabbet is designed for tape and tape is recommended by the glass or sealant manufacturer. Provide spacer shims for use with compressible tapes. Tapes shall be chemically compatible with the product being set.

2.3.6 Setting Blocks and Edge Blocks

Closed-cell neoprene setting blocks shall be dense extruded type conforming to ASTM C509 and ASTM D395, Method B, Shore A durometer between 70 and 90. Edge blocking shall be Shore A durometer of 50 (plus or minus 5). Silicone setting blocks shall be required when blocks are in contact with silicone sealant. Profiles, lengths and locations shall be as required and recommended in writing by glass manufacturer. Block color shall be black.

2.3.7 Glazing Gaskets

Glazing gaskets shall be extruded with continuous integral locking projection designed to engage into metal glass holding members to provide a watertight seal during dynamic loading, building movements and thermal movements. Glazing gaskets for a single glazed opening shall be continuous one-piece units with factory-fabricated injection-molded corners free of flashing and burrs. Glazing gaskets shall be in lengths or units recommended by manufacturer to ensure against pull-back at corners. Glazing gasket profiles shall be as recommended by the manufacturer for the intended application.

2.3.7.1 Fixed Glazing Gaskets

Fixed glazing gaskets shall be closed-cell (sponge) smooth extruded compression gaskets of cured elastomeric virgin neoprene compounds conforming to ASTM C509, Type 2, Option 1.
2.3.7.2 Aluminum Framing Glazing Gaskets

Glazing gaskets for aluminum framing shall be permanent, elastic, non-shrinking, non-migrating, watertight and weathertight.

2.3.8 Accessories

Provide as required for a complete installation, including glazing points, clips, shims, angles, beads, and spacer strips. Provide noncorroding metal accessories. Provide primer-sealers and cleaners as recommended by the glass and sealant manufacturers.

PART 3 EXECUTION

3.1 PREPARATION

Preparation, unless otherwise specified or approved, shall conform to applicable recommendations in the GANA Glazing Manual, GANA Sealant Manual, IGMA TB-3001, IGMA TM-3000, and manufacturer's recommendations. Determine the sizes to provide the required edge clearances by measuring the actual opening to receive the glass. Grind smooth in the shop glass edges that will be exposed in finish work. Leave labels in place until the installation is approved, except remove applied labels on heat-absorbing glass and on insulating glass units as soon as glass is installed. Securely fix movable items or keep in a closed and locked position until glazing compound has thoroughly set.

3.2 GLASS SETTING

Field glaze items to be glazed using glass of the quality and thickness specified or indicated. Glazing, unless otherwise specified or approved, shall conform to applicable recommendations in the GANA Glazing Manual, GANA Sealant Manual, IGMA TB-3001, IGMA TM-3000, and manufacturer's recommendations. Aluminum windows, may be glazed in conformance with one of the glazing methods described in the standards under which they are produced, except that face putting with no bedding will not be permitted. Handle and install glazing materials in accordance with manufacturer's instructions. Use beads or stops which are furnished with items to be glazed to secure the glass in place. Verify products are properly installed, connected, and adjusted.

3.2.1 Insulating Glass Units

Do not grind, nip, or cut edges or corners of units after the units have left the factory. Springing, forcing, or twisting of units during setting will not be permitted. Handle units so as not to strike frames or other objects. Installation shall conform to applicable recommendations of IGMA TB-3001 and IGMA TM-3000.3.2.2 Installation of Laminated Glass

Sashes which are to receive laminated glass shall be weeped to the outside to allow water drainage into the channel. 3.3 CLEANING

Clean glass surfaces and remove labels, paint spots, putty, and other defacement as required to prevent staining. Glass shall be clean at the time the work is accepted.
3.4 PROTECTION

Glass work shall be protected immediately after installation. Glazed openings shall be identified with suitable warning tapes, cloth or paper flags, attached with non-staining adhesives. Glass units which are broken, chipped, cracked, abraded, or otherwise damaged during construction activities shall be removed and replaced with new units.

-- End of Section --
SECTION 09 22 00
SUPPORTS FOR PLASTER AND GYPSUM BOARD

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2017) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM C645 (2014; E 2015) Nonstructural Steel Framing Members

ASTM C841 (2003; R 2013) Installation of Interior Lathing and Furring

NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Metal support systems; G

Submit for the erection of metal framing, furring, and ceiling suspension systems. Indicate materials, sizes, thicknesses, and fastenings.
1.3 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the job site and store in ventilated dry locations. Storage area shall permit easy access for inspection and handling. If materials are stored outdoors, stack materials off the ground, supported on a level platform, and fully protected from the weather. Handle materials carefully to prevent damage. Remove damaged items and provide new items.

PART 2 PRODUCTS

2.1 MATERIALS

Provide steel materials for metal support systems with galvanized coating ASTM A653/A653M, G-60; aluminum coating ASTM A463/A463M, T1-25; or a 55-percent aluminum-zinc coating.

2.1.1 Materials for Attachment of Lath

2.1.1.1 Suspended and Furred Ceiling Systems and Wall Furring

ASTM C841, and ASTM C847.

2.1.2 Non-loadbearing Wall Framing

NAAMM EMLA 920.

2.1.2.1 Materials for Attachment of Gypsum Wallboard

2.1.2.2 Nonload-Bearing Wall Framing and Furring

See Drawings for location. Gage and weight are minimum acceptable) Interior Stud walls (Drywall), 3 5/8" x 22 gage, DWS 1 1/4" flange, galvanized, studs, 24" o.c. Physical Properties; Wt/ft.= .415#, Area= .122 in2, I= .216 in4, S= .105 in3, R= 1.601 in.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Systems for Attachment of Lath

3.1.1.1 Suspended and Furred Ceiling Systems and Wall Furring

ASTM C841, except as indicated otherwise.

3.1.1.2 Non-loadbearing Wall Framing

NAAMM EMLA 920, except provide framing members 16 inches o.c. unless indicated otherwise.
3.1.2 Systems for Attachment of Gypsum Wallboard

3.1.2.1 Suspended and Furred Ceiling Systems

ASTM C754, except provide framing members 16 inches o.c. unless indicated otherwise.

3.1.2.2 Non-loadbearing Wall Framing and Furring

ASTM C754, except as indicated otherwise.

3.2 ERECTION TOLERANCES

Provide framing members which will be covered by finish materials such as wallboard, plaster, or ceramic tile set in a mortar setting bed, within the following limits:

a. Layout of walls and partitions: 1/4 inch from intended position;
b. Plates and runners: 1/4 inch in 8 feet from a straight line;
c. Studs: 1/4 inch in 8 feet out of plumb, not cumulative; and
d. Face of framing members: 1/4 inch in 8 feet from a true plane.

Provide framing members which will be covered by ceramic tile set in dry-set mortar, latex-portland cement mortar, or organic adhesive within the following limits:

a. Layout of walls and partitions: 1/4 inch from intended position;
b. Plates and runners: 1/8 inch in 8 feet from a straight line;
c. Studs: 1/8 inch in 8 feet out of plumb, not cumulative; and
d. Face of framing members: 1/8 inch in 8 feet from a true plane.

-- End of Section --
SECTION 09 29 00

GYPSUM BOARD

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM C1002 (2014) Standard Specification for Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs

ASTM C954 (2015) Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness

GYPSUM ASSOCIATION (GA)

GA 214 (2010) Recommended Levels of Gypsum Board Finish

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Gypsum Boards
Accessories

Joint Treatment Materials

Submit manufacturer's product data, indicating VOC content.

SD-07 Certificates

Asbestos Free Materials; G
Certify that gypsum board and joint treating materials do not contain asbestos.

SD-08 Manufacturer's Instructions

Material Safety Data Sheets

SD-10 Operation and Maintenance Data

Manufacturer maintenance instructions

1.3 DELIVERY, STORAGE, AND HANDLING

1.3.1 Delivery

Deliver materials in the original packages, containers, or bundles with each bearing the brand name, applicable standard designation, and name of manufacturer, or supplier.

1.3.2 Storage

Keep materials dry by storing inside a sheltered building. Where necessary to store gypsum board and cementitious backer units outside, store off the ground, properly supported on a level platform, and protected from direct exposure to rain, snow, sunlight, and other extreme weather conditions. Provide adequate ventilation to prevent condensation. Store per manufacturer's recommendations for allowable temperature and humidity range. Gypsum wallboard shall not be stored with materials which have high emissions of volatile organic compounds (VOCs) or other contaminants. Do not store panels near materials that may offgas or emit harmful fumes, such as kerosene heaters, fresh paint, or adhesives.

1.3.3 Handling

Neatly stack gypsum board flat to prevent sagging or damage to the edges, ends, and surfaces.

1.4 ENVIRONMENTAL CONDITIONS

1.4.1 Temperature

Maintain a uniform temperature of not less than 50 degrees F in the structure for at least 48 hours prior to, during, and following the application of gypsum board, cementitious backer units, and joint treatment materials, or the bonding of adhesives.
1.4.2 Exposure to Weather

Protect gypsum board and cementitious backer unit products from direct exposure to rain, snow, sunlight, and other extreme weather conditions.

1.4.3 Temporary Ventilation

Provide temporary ventilation for work of this section.

1.5 QUALIFICATIONS

Furnish type of gypsum board work specialized by the installer with a minimum of 3 years of documented successful experience.

PART 2 PRODUCTS

2.1 MATERIALS

Conform to specifications, standards and requirements specified. Provide gypsum board types, and joint treating materials manufactured from asbestos free materials only. Submit Material Safety Data Sheets and manufacturer maintenance instructions for gypsum materials including adhesives.

2.1.1 Gypsum Boards

ASTM C1396/C1396M.

2.1.1.1 Type X (Special Fire-Resistant)

48 inch wide, 5/8 inch thick, tapered edges.

2.1.2 Regular Water-Resistant Gypsum Backing Boards

ASTM C1396/C1396M2.1.2.1 Type X (Special Fire-Resistant)

48 inch wide, 5/8 inch thick, tapered edges.

2.1.3 Joint Treatment Materials

ASTM C475/C475M. Use all purpose joint and texturing compound containing inert fillers and natural binders, including lime compound. Pre-mixed compounds shall be free of antifreeze, vinyl adhesives, preservatives, biocides and other slow releasing compounds.

2.1.3.1 Embedding Compound

Specifically formulated and manufactured for use in embedding tape at gypsum board joints and compatible with tape, substrate and fasteners.

2.1.3.2 Finishing or Topping Compound

Specifically formulated and manufactured for use as a finishing compound.

2.1.3.3 All-Purpose Compound

Specifically formulated and manufactured to serve as both a taping and a finishing compound and compatible with tape, substrate and fasteners.
2.1.3.4 Setting or Hardening Type Compound

Specifically formulated and manufactured for use with fiber glass mesh tape.

2.1.3.5 Joint Tape

Use cross-laminated, tapered edge, reinforced paper, or fiber glass mesh tape recommended by the manufacturer.

2.1.4 Fasteners

2.1.4.1 Screws

ASTM C1002, Type "G", Type "S" or Type "W" steel drill screws for fastening gypsum board to gypsum board, wood framing members and steel framing members less than 0.033 inch thick. ASTM C954 steel drill screws for fastening gypsum board to steel framing members 0.033 to 0.112 inch thick.

2.1.5 Accessories

ASTM C1047. Fabricate from corrosion protected steel or plastic designed for intended use. Accessories manufactured with paper flanges are not acceptable. Flanges shall be free of dirt, grease, and other materials that may adversely affect bond of joint treatment.

2.1.6 Water

Provide clean, fresh, and potable water.

PART 3 EXECUTION

3.1 EXAMINATION

3.1.1 Framing and Furring

Verify that framing and furring are securely attached and of sizes and spacing to provide a suitable substrate to receive gypsum board and cementitious backer units. Verify that all blocking, headers and supports are in place to support plumbing fixtures and to receive soap dishes, grab bars, towel racks, and similar items. Do not proceed with work until framing and furring are acceptable for application of gypsum board.

3.2 APPLICATION OF GYPSUM BOARD

Apply gypsum board to framing and furring members in accordance with ASTM C840 or GA 216 and the requirements specified. Apply gypsum board with separate panels in moderate contact; do not force in place. Stagger end joints of adjoining panels. Neatly fit abutting end and edge joints. Use gypsum board of maximum practical length; select panel sizes to minimize waste. Cut out gypsum board to make neat, close, and tight joints around openings. In vertical application of gypsum board, provide panels in lengths required to reach full height of vertical surfaces in one continuous piece. Lay out panels to minimize waste; reuse cutoffs whenever feasible. Surfaces of gypsum board and substrate members may not be bonded together with an adhesive. Treat edges of cutouts for plumbing pipes, screwheads, and joints with water-resistant compound as recommended by the gypsum board manufacturer. Minimize framing by floating corners with single studs and drywall clips. Install 5/8 inch gypsum ceiling board over framing at 24 inches on center. Provide type of gypsum board for use...
in each system specified herein as indicated.

3.2.1 Application of Gypsum Board to Steel Framing and Furring

Apply in accordance with ASTM C840, System VIII or GA 216.

3.2.2 Floating Interior Angles

Minimize framing by floating corners with single studs and drywall clips. Locate the attachment fasteners adjacent to ceiling and wall intersections in accordance with ASTM C840, System XII or GA 216.

3.2.3 Control Joints

Install expansion and contraction joints in ceilings and walls in accordance with ASTM C840, System XIII or GA 216.

3.3 FINISHING OF GYPSUM BOARD

Tape and finish gypsum board in accordance with ASTM C840, GA 214 and GA 216. Finish plenum areas above ceilings to Level 1 in accordance with GA 214. Finish water resistant gypsum backing board, ASTM C1396/C1396M, to receive ceramic tile to Level 2 in accordance with GA 214. Finish walls and ceilings to receive a heavy-grade wall covering or heavy textured finish before painting to Level 3 in accordance with GA 214. Finish walls and ceilings without critical lighting to receive flat paints, light textures, or wall coverings to Level 4 in accordance with GA 214. Unless otherwise specified, finish all gypsum board walls, partitions and ceilings to Level 5 in accordance with GA 214. Provide joint, fastener depression, and corner treatment. Tool joints as smoothly as possible to minimize sanding and dust. Do not use fiber glass mesh tape with conventional drying type joint compounds; use setting or hardening type compounds only. Provide treatment for water-resistant gypsum board as recommended by the gypsum board manufacturer. Protect workers, building occupants, and HVAC systems from gypsum dust.

3.3.1 Uniform Surface

Wherever gypsum board is to receive eggshell, semigloss or gloss paint finish, or where severe, up or down lighting conditions occur, finish gypsum wall surface in accordance to GA 214 Level 5. In accordance with GA 214 Level 5, apply a thin skim coat of joint compound to the entire gypsum board surface, after the two-coat joint and fastener treatment is complete and dry.

3.4 SEALING

Seal openings around pipes, fixtures, and other items projecting through gypsum board and cementitious backer units as specified in Section 07 92 00 JOINT SEALANTS. Apply material with exposed surface flush with gypsum board.

3.5 PATCHING

Patch surface defects in gypsum board to a smooth, uniform appearance, ready to receive finishes.

--- End of Section ---
SECTION 09 30 13

CERAMIC TILING

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ASTM INTERNATIONAL (ASTM)

ASTM C648 (2004; R 2009) Breaking Strength of Ceramic Tile

MARBLE INSTITUTE OF AMERICA (MIA)

TILE COUNCIL OF NORTH AMERICA (TCNA)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Detail Drawings
SD-03 Product Data
 Tile
 Setting-Bed
 Mortar, Grout, and Adhesive
 Tile
SD-04 Samples
 Tile
 Transition Strips
 Grout
SD-07 Certificates
 Tile
 Mortar, Grout, and Adhesive
SD-08 Manufacturer's Instructions
 Maintenance Instructions
SD-10 Operation and Maintenance Data
 Installation
SD-11 Closeout Submittals
 Tile

1.3 QUALITY ASSURANCE

Installers to be from a company specializing in performing this type of work and have a minimum of two years experience. Each type and color of tile to be provided from a single source. Each type and color of mortar, adhesive, and grout to be provided from the same source.

1.4 DELIVERY, STORAGE, AND HANDLING

Ship tiles in sealed packages and clearly marked with the grade, type of tile, producer identification, and country of origin. Deliver materials to the project site in manufacturer's original unopened containers with seals unbroken and labels and hallmarks intact. Protect materials from weather, and store them under cover in accordance with manufacturer's printed instructions.
1.5 ENVIRONMENTAL REQUIREMENTS

Do not perform ceramic tile work unless the substrate and ambient temperature is at least 50 degrees F and rising. Maintain temperature above 50 degrees F while the work is being performed and for at least 7 days after completion of the work. When temporary heaters are used, ventilate the area to the outside to avoid carbon dioxide damage to new tilework.

1.6 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a 1-year period.

1.7 EXTRA MATERIALS

Supply an extra 2 percent of each type tile used in clean and marked cartons.

PART 2 PRODUCTS

2.1 TILE

Furnish tiles that comply with ANSI A137.1 and are standard grade tiles. Provide a minimum breaking strength of 125 lbs. for wall tile and 250 lbs. for floor tile in accordance with ASTM C648. Provide exterior building tile for cold climate projects that is approved by the manufacturer for exterior use when tested in accordance with ASTM C1026. Provide floor tiles with a wet dynamic coefficient of friction (DCOF) value of 0.42 or greater when tested in accordance with ANSI A137.1 requirements. Provide glazed floor tile with a Class IV-Commercial-Heavy Commercial classification as rated by the manufacturer when tested in accordance with ASTM C1027 for visible abrasion resistance as related to foot traffic. For materials like tile, and transition strips submit samples of sufficient size to show color range, pattern, type and joints. Submit manufacturer's catalog data.

2.1.1 Porcelain Tile

Furnish unglazed and glazed, porcelain tile, bullnose base and trim pieces with color extending uniformly through the body of the tile. Provide nominal tile size(s) of 12 by 12, 6.5" X 6.5" 12 inch and 5/16" inch thick. Provide a 0.50 percent maximum water absorption in accordance with ASTM C373.

2.1.2 Mosaic Tile

Furnish unglazed mosaic tile and trim composed of porcelain. Provide nominal tile size(s) of 1 by 1 inch. Provide porcelain mosaics with a water absorption up to 0.50 percent when tested in accordance with ASTM C373.

2.2 SETTING-BED

Submit manufacturer's catalog data. Compose the setting-bed of the following materials:

2.2.1 Portland Cement

Conform to ASTM C150/C150M for cement, Type I, white for wall mortar and gray for other uses.
2.3 WATER

Provide potable water.

2.4 MORTAR, GROUT, AND ADHESIVE

Submit certificates indicating conformance with specified requirements. Submit manufacturer's catalog data. Conform to the following for mortar, grout, adhesive, and sealant:

2.4.1 Dry-Set Portland Cement Mortar

TCNA Hdbk.

2.4.2 Latex-Portland Cement Mortar

TCNA Hdbk.

2.4.3 Ceramic Tile Grout

TCNA Hdbk; petroleum-free and plastic-free sand portland cement grout dry-set grout latex-portland cement grout or commercial portland cement grout.

2.4.4 Sealants

Sealants Comply with applicable regulations regarding toxic and hazardous materials and as specified. Grout sealant must not change the color or alter the appearance of the grout.

2.4.5 Cementitious Backer Board

ASTM C1396/C1396M

2.5 TRANSITION STRIPS

Provide clear anodized aluminum transitions between tile and carpet or resilient flooring. Provide types as recommended by flooring manufacturer for both edges and transitions of flooring materials specified and marble transitions appropriate for conditions. Categorize marble Group A as classified by MIA Design Manual. Provide a fine sand-rubbed finish marble, white, gray or beige. Provide minimum 12.0 marble abrasion when tested in accordance with ASTM C241/C241M

2.6 COLOR, TEXTURE, AND PATTERN

Provide color, pattern and texture as selected by the Contracting Officer.

PART 3 EXECUTION

3.1 PREPARATORY WORK AND WORKMANSHIP

Inspect surface to receive tile in conformance to the requirements of TCNA Hdbk for surface conditions for the type setting bed specified and for workmanship. Provide variations of tiled surfaces that fall within maximum values shown below:
3.2 GENERAL INSTALLATION REQUIREMENTS

Do not start tile work until roughing in for mechanical and electrical work has been completed and tested, and built-in items requiring membrane waterproofing have been installed and tested. Close space, in which tile is being set, to traffic and other work. Keep closed until tile is firmly set. Do not start floor tile installation in spaces requiring wall tile until after wall tile has been installed. Apply tile in colors and patterns indicated in the area shown on the drawings. Install tile with the respective surfaces in true even planes to the elevations and grades shown. Provide special shapes as required for sills, jambs, recesses, offsets, external corners, and other conditions to provide a complete and neatly finished installation. Solidly back tile bases and coves with mortar. Do not walk or work on newly tiled floors without using kneeling boards or equivalent protection of the tiled surface. Keep traffic off horizontal portland cement mortar installations for at least 72 hours. Keep all traffic off epoxy installed floors for at least 40 hours after grouting, and heavy traffic off for at least 7 days, unless otherwise specifically authorized by manufacturer. Dimension and draw detail drawings at a minimum scale of 1/4 inch = 1 foot. Include drawings of pattern at inside corners, outside corners, termination points and location of all equipment items such as thermostats, switch plates, mirrors and toilet accessories mounted on surface. Submit drawings showing ceramic tile pattern elevations and floor plans. Submit manufacturer's preprinted installation instructions.

3.3 INSTALLATION OF WALL TILE

Install wall tile in accordance with the TCNA Hdbk, and with grout joints as recommended by the manufacturer for the type of tile. Install thinner wall tile flush with thicker wall tile applied on same wall and provide installation materials as recommended by the tile and setting materials manufacturer's to achieve flush installation.

3.3.1 Workable or Cured Mortar Bed

Install tile over workable mortar bed or a cured mortar bed at the option of the Contractor. Install a 4 mil polyethylene membrane, metal lath, and scratch coat. Conform to TCNA Hdbk for workable mortar bed, materials, and installation of tile. Conform to TCNA Hdbk for cured mortar bed and materials.

3.3.2 Dry-Set Mortar and Latex-Portland Cement Mortar

Use Dry-set or Latex-Portland Cement to install tile in accordance with TCNA Hdbk. Use Latex Portland Cement when installing porcelain ceramic tile.
3.3.3 Ceramic Tile Grout

Prepare and install ceramic tile grout in accordance with TCNA Hdbk. Provide and apply manufacturer's standard product for sealing grout joints in accordance with manufacturer's recommendations.

3.4 INSTALLATION OF FLOOR TILE

Install floor tile in accordance with TCNA Hdbk and with grout joints as recommended by the manufacturer for the type of tile. Install shower receptors in accordance with TCNA Hdbk method B414 B415.

3.4.1 Dry-Set and Latex-Portland Cement

Use dry-set or Latex-Portland cement mortar to install tile directly over properly cured, plane, clean concrete slabs in accordance with TCNA Hdbk. Use Latex Portland cement when installing porcelain ceramic tile.

3.4.2 Ceramic Tile Grout

Prepare and install ceramic tile grout in accordance with TCNA Hdbk. Provide and apply manufacturer's standard product for sealing grout joints in accordance with manufacturer's recommendations.

3.4.3 Concrete Fill

Provide a 3500 psi concrete fill mix to dry as consistency as practicable. Spread, tamp, and screed concrete fill to a true plane, and pitch to drains or levels as shown. Thoroughly damp concrete fill before applying setting-bed material. Reinforce concrete fill with one layer of reinforcement, with the uncut edges lapped the width of one mesh and the cut ends and edges lapped a minimum 2 inch. Tie laps together with 18 gauge wire every 10 inch along the finished edges and every 6 inch along the cut ends and edges. Provide reinforcement with support and secure in the centers of concrete fills. Provide a continuous mesh; except where expansion joints occur, cut mesh and discontinue across such joints. Provide reinforced concrete fill under the setting-bed where the distance between the under-floor surface and the finished tiles floor surface is a minimum of 2 inches, and of the same thickness that the mortar setting-bed over the concrete fill with the thickness required in the specified TCNA Hdbk method.

3.5 INSTALLATION OF TRANSITION STRIPS

Install transition strips where indicated, in a manner similar to that of the ceramic tile floor and as recommended by the manufacturer. Provide thresholds full width of the opening. Install head joints at ends not exceeding 1/4 inch in width and grouted full.

3.6 EXPANSION JOINTS

Form and seal joints as specified in Section 07 92 00 JOINT SEALANTS.

3.6.1 Walls

Provide expansion joints at control joints in backing material. Wherever backing material changes, install an expansion joint to separate the different materials.
3.6.2 Floors

Provide expansion joints over construction joints, control joints, and expansion joints in concrete slabs. Provide expansion joints where tile abuts restraining surfaces such as perimeter walls, curbs and columns and at intervals of 24 to 36 feet each way in large interior floor areas and 12 to 16 feet each way in large exterior areas or areas exposed to direct sunlight or moisture. Extend expansion joints through setting-beds and fill.

3.7 CLEANING AND PROTECTING

Upon completion, thoroughly clean tile surfaces in accordance with manufacturer's approved cleaning instructions. Do not use acid for cleaning glazed tile. Clean floor tile with resinous grout or with factory mixed grout in accordance with printed instructions of the grout manufacturer. After the grout has set, provide a protective coat of a noncorrosive soap or other approved method of protection for tile wall surfaces. Cover tiled floor areas with building paper before foot traffic is permitted over the finished tile floors. Provide board walkways on tiled floors that are to be continuously used as passageways by workmen. Replace damaged or defective tiles. Submit copy of manufacturer's printed maintenance instructions.

-- End of Section --
SECTION 09 51 00

ACOUSTICAL CEILINGS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM A1008/A1008M (2016) Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardened

ASTM A653/A653M (2017) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM C423 (2009a) Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method

ASTM E1264 (2014) Acoustical Ceiling Products

1.2 SYSTEM DESCRIPTION

Provide sound controlling units mechanically mounted on a ceiling suspension system for acoustical treatment. The unit size, texture, finish, and color must be as specified. The location and extent of acoustical treatment shall be as shown on the approved detail drawings. Submit drawings showing suspension system, method of anchoring and fastening, details, and reflected ceiling plan. Basis of design: Acoustical Ceiling System. ACT1. Armstrong World Industries, Inc. Ultima Beveled Regular #1911, 24" x 24" x 3/4" thick. Product shall have the following properties: NRC.70, CAC 35. Panels shall have the following characteristics: Class A Fire Rating, .09 Light Reflectance, Type III, Form 2, Pattern E; Humigard Plus, Bio Block Plus, Certified Low VOC Emissions, 62% Recycled Content. Panels shall also be washable, scratch, impact and soil resistant. Acoustical panels shall provide resistance to sagging in high humidity conditions up to, but not including standing water and outdoor applications. Panels shall contain BioBlock Plus anti-microbial treatment and provide guaranteed resistance against growth of mold/mildew and Gram-positive and Gram-negative odor /stain-causing bacteria for 30 years. Ceiling system shall be installed with A15/16" Grid to maintain 30 year performance Guarantee and Warranty. Color: Grid and Ceiling Tiles shall be White.

1.2.1 Ceiling Attenuation Class and Test

Provide a ceiling system with an attenuation class (CAC) of 35.

1.2.2 Ceiling Sound Absorption

Determine the Noise Reduction Coefficient (NRC) in accordance with ASTM C423 Test Method.

1.2.3 Light Reflectance

Determine light reflectance factor in accordance with ASTM E1477 Test Method.

1.2.4 Other Submittals Requirements

The following shall be submitted:

a. Manufacturer's data indicating percentage of recycle material in acoustic ceiling tiles to verify affirmative procurement compliance.

b. Total weight and volume quantities of acoustic ceiling tiles with recycle material.

c. Manufacturer's catalog showing UL classification of fire-rated ceilings giving materials, construction details, types of floor and roof constructions to be protected, and UL design number and fire protection time rating for each required floor or roof construction and acoustic ceiling assembly.

d. Reports by an independent testing laboratory attesting that acoustical ceiling systems meet specified fire endurance and sound transmission
requirements. Data attesting to conformance of the proposed system to Underwriters Laboratories requirements for the fire endurance rating listed in UL Fire Resistance may be submitted in lieu of test reports.

e. Certificate attesting that the mineral based acoustical units furnished for the project contain recycled material and showing an estimated percent of such material.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
Approved Detail Drawings
SD-03 Product Data
SD-04 Samples
Acoustical Units
Acoustic Ceiling Tiles
SD-06 Test Reports
Ceiling Attenuation Class and Test
SD-07 Certificates
Acoustic Ceiling Tiles

1.4 DELIVERY, STORAGE. AND HANDLING

Deliver materials to the site in the manufacturer's original unopened containers with brand name and type clearly marked. Carefully handle and store materials in dry, watertight enclosures. Immediately before installation, store acoustical units for not less than 24 hours at the same temperature and relative humidity as the space where they will be installed in order to assure proper temperature and moisture acclimation.

1.5 ENVIRONMENTAL REQUIREMENTS

Maintain a uniform temperature of not less than 60 degrees F nor more than 85 degrees F and a relative humidity of not more than 70 percent for 24 hours before, during, and 24 hours after installation of acoustical units.

1.6 SCHEDULING

Complete and dry interior finish work such as plastering, concrete and terrazzo work before ceiling installation. Complete mechanical, electrical, and other work above the ceiling line; install and start operating heating, ventilating, and air conditioning systems in order to maintain temperature and humidity requirements.

1.7 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a one year period. Include an agreement to repair or replace acoustical panels that fail within the warranty period in the standard performance guarantee or warranty. Failures include, but are not limited
to, sagging and warping of panels; rusting and manufacturers defects of grid system.

1.8 EXTRA MATERIALS

Furnish spare tiles, from the same lot as those installed, of each color at the rate of 5 tiles for each 1000 tiles installed.

PART 2 PRODUCTS

2.1 ACOUSTICAL UNITS

Submit two samples of each type of acoustical unit and each type of suspension grid tee section showing texture, finish, and color. Conform acoustical units to ASTM E1264, Class A, and the following requirements:

2.1.1 Affirmative Procurement

Mineral Wool, Cellulose, and Laminated Paperboard used in acoustic ceiling tiles are materials listed in the EPA's Comprehensive Procurement Guidelines (CPG) (http://www.epa.gov/cpg/). EPA's recommended Recovered Materials Content Levels for Mineral Wool, Cellulose, Structural Fiberboard and Laminated Paperboard are:

<table>
<thead>
<tr>
<th>Product</th>
<th>Material</th>
<th>Percent of Post Consumer Materials</th>
<th>Percent of Total Recovered Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminate Paperboard</td>
<td>Post Consumer Paper</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Rock Wool</td>
<td>Slag</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Cellulose</td>
<td>Post Consumer Paper</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

a. The recommended recovered materials content levels are based on the weight (not volume) of materials in the insulating core only.

b. Submit recycled material content data for acoustic ceiling tiles indicating compliance with affirmative procurement.

c. Submit total weight and volume quantities of acoustic ceiling tiles with recycle material.

2.1.2 Units for Exposed-Grid System

2.1.2.1 Type

III (non-asbestos mineral fiber with painted finish)

2.1.2.2 Flame Spread

Class A, 25 or less

2.1.2.3 Pattern

E
2.1.2.4 Minimum NRC
1.70 in all areas; when tested on mounting Type E-400 of ASTM E795.

2.1.2.5 Minimum Light Reflectance Coefficient
LR-1, 0.90 or greater

2.1.2.6 Nominal Size
24 by 24 inch

2.1.2.7 Edge Detail
Beveled Tegular.

2.1.2.8 Finish
Factory-applied standard finish, color white.

2.1.2.9 Minimum CAC
35

2.2 SUSPENSION SYSTEM

Provide standard exposed-grid suspension system conforming to ASTM C635/C635M for heavy-duty systems. Provide surfaces exposed to view of aluminum or steel with a factory-applied white color baked-enamel finish. Provide wall molding having a flange of not less than 15/16 inch. Provide inside and outside corner caps standard corners. Suspended ceiling framing system must have the capability to support the finished ceiling, light fixtures, air diffusers, and accessories, as shown. Provide a suspension system with a maximum deflection of 1/360 of the span length.

2.3 HANGERS

Provide hangers and attachment capable of supporting a minimum 300 pound ultimate vertical load without failure of supporting material or attachment.

2.3.1 Wires
Conform wires to ASTM A641/A641M, Class 1, 0.08 inch (12 gauge).

2.3.2 Straps
Provide straps of 1 by 3/16 inch galvanized steel conforming to ASTM A653/A653M, with a light commercial zinc coating or ASTM A1008/A1008M with an electroplated zinc coating conforming to ASTM B633, Type RS.

2.3.3 Rods
Provide 3/16 inch diameter threaded steel rods, zinc or cadmium coated.

2.4 FINISHES

Use manufacturer's standard textures, patterns and finishes as specified for acoustical units and suspension system members. Treat ceiling suspension system components to inhibit corrosion.
PART 3 EXECUTION

3.1 INSTALLATION

Examine surfaces to receive directly attached acoustical units for unevenness, irregularities, and dampness that would affect quality and execution of the work. Rid areas, where acoustical units will be cemented, of oils, form residue, or other materials that reduce bonding capabilities of the adhesive. Complete and dry interior finish work such as plastering, concrete, and terrazzo work before installation. Complete and approve mechanical, electrical, and other work above the ceiling line prior to the start of acoustical ceiling installation. Provide acoustical work complete with necessary fastenings, clips, and other accessories required for a complete installation. Do not expose mechanical fastenings in the finished work. Lay out hangers for each individual room or space. Provide hangers to support framing around beams, ducts, columns, grilles, and other penetrations through ceilings. Keep main runners and carrying channels clear of abutting walls and partitions. Provide at least two main runners for each ceiling span. Wherever required to bypass an object with the hanger wires, install a subsuspension system so that all hanger wires will be plumb.

3.1.1 Suspension System

Install suspension system in accordance with ASTM C636/C636M and as specified herein. Do not suspend hanger wires or other loads from underside of steel decking.

3.1.1.1 Plumb Hangers

Install hangers plumb and not pressing against insulation covering ducts and pipes. Where lighting fixtures are supported from the suspended ceiling system, provide hangers at a minimum of four hangers per fixture and located not more than 6 inch from each corner of each fixture.

3.1.1.2 Splayed Hangers

Where hangers must be splayed (sloped or slanted) around obstructions, offset the resulting horizontal force by bracing, countersplaying, or other acceptable means.

3.1.2 Wall Molding

Provide wall molding where ceilings abut vertical surfaces. Miter corners where wall moldings intersect or install corner caps. Secure wall molding not more than 3 inch from ends of each length and not more than 16 inch on centers between end fastenings. Provide wall molding springs at each acoustical unit in semi-exposed or concealed systems.

3.1.3 Acoustical Units

Install acoustical units in accordance with the approved installation instructions of the manufacturer. Ensure that edges of acoustical units are in close contact with metal supports, with each other, and in true alignment. Arrange acoustical units so that units less than one-half width are minimized. Hold units in exposed-grid system in place with manufacturer's standard hold-down clips, if units weigh less than 1 psf or if required for fire resistance rating.
3.1.4 Caulking

Seal all joints around pipes, ducts or electrical outlets penetrating the ceiling. Apply a continuous ribbon of acoustical sealant on vertical web of wall or edge moldings.

3.2 CLEANING

Following installation, clean dirty or discolored surfaces of acoustical units and leave them free from defects. Remove units that are damaged or improperly installed and provide new units as directed.

-- End of Section --
SECTION 09 65 00

RESILIENT FLOORING

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D4078 (2002; R 2015) Water Emulsion Floor Polish
ASTM F1482 (2015) Installation and Preparation of Panel Type Underlayments to Receive Resilient Flooring
ASTM F1869 (2016) Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride
ASTM F710 (2017) Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring

U.S. GREEN BUILDING COUNCIL (USGBC)

1.2 SYSTEM DESCRIPTION

1.2.1 Submittal Requirements

The following shall be submitted in accordance with LEED BD+C:

a. documentation indicating percentage of post-industrial and post-consumer recycled content per unit of product. Indicate relative dollar value of recycled content products to total dollar value of products included in project.
1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
- Resilient Flooring and Accessories; G

SD-03 Product Data
- Resilient Flooring and Accessories; G
- Adhesives; (LEED BD+C)
- Vinyl Composition Tile

Wall Base

SD-04 Samples
- Resilient Flooring and Accessories; G
- Moisture, Alkalinity and Bond Tests; G

SD-08 Manufacturer's Instructions
- Surface Preparation; G
- Installation; G

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the building site in original unopened containers bearing the manufacturer's name, style name, pattern color name and number, production run, project identification, and handling instructions. Store materials in a clean, dry, secure, and well-ventilated area free from strong contaminant sources and residues with ambient air temperature maintained above 68 degrees F and below 85 degrees F, stacked according to manufacturer's recommendations. Remove resilient flooring products from packaging to allow ventilation prior to installation. Protect materials from the direct flow of heat from hot-air registers, radiators and other heating fixtures and appliances. Observe ventilation and safety procedures specified in the MSDS.

1.5 ENVIRONMENTAL REQUIREMENTS

Maintain areas to receive resilient flooring at a temperature above 68 degrees F and below 85 degrees F for 3 days before application, during application and 2 days after application, unless otherwise directed by the flooring manufacturer for the flooring being installed. Maintain a minimum temperature of 55 degrees F thereafter. Provide adequate ventilation to remove moisture from area and to comply with regulations limiting concentrations of hazardous vapors.

1.6 SCHEDULING

Schedule resilient flooring application after the completion of other work which would damage the finished surface of the flooring.
1.7 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a one year period.

1.8 EXTRA MATERIALS

Provide extra flooring material of each color and pattern at the rate of 5 tiles for each 1000 tiles installed. Provide extra wall base material composed of 20 linear feet of each type, color and pattern. Package all extra materials in original properly marked containers bearing the manufacturer's name, brand name, pattern color name and number, production run, and handling instructions. Provide extra materials from the same lot as those installed. Leave extra stock at the site in location assigned by Contracting Officer.

PART 2 PRODUCTS

2.1 VINYL COMPOSITION TILE

Conform to ASTM F1066 Class 2, (through pattern tile), Composition 1, asbestos-free, 12 inch square and 1/8 inch thick. Provide color and pattern uniformly distributed throughout the thickness of the tile. Tile shall contain a minimum of 90 percent recycled material.

2.2 WALL BASE

Conform to ASTM F1861, Type TV (thermoplastic vinyl), Style B (coved - installed with resilient flooring. Provide 4 inch high and a minimum 1/8 inch thick wall base. Provide preformed corners in matching height, shape, and color.

2.3 MOULDING

Provide tapered mouldings of vinyl and types as recommended by flooring manufacturer for both edges and transitions of flooring materials specified. Provide vertical lip on moulding of maximum 1/4 inch. Provide bevel change in level between 1/4 and 1/2 inch with a slope no greater than 1:2.

2.4 ADHESIVES

Provide adhesives for flooring, base and accessories as recommended by the manufacturer and comply with local indoor air quality standards. VOC content shall be less than 50 grams/L. Submit manufacturer's descriptive data, documentation stating physical characteristics, and mildew and germicidal characteristics.

2.5 SURFACE PREPARATION MATERIALS

Provide surface preparation materials, such as floor crack fillers as recommended by the flooring manufacturer for the subfloor conditions.

2.6 POLISH/FINISH

Provide polish finish as recommended by the manufacturer and conform to ASTM D4078 for polish.
2.7 CAULKING AND SEALANTS

Provide caulking and sealants in accordance with Section 07 92 00 JOINT SEALANTS.

2.8 MANUFACTURER'S COLOR, PATTERN AND TEXTURE

Provide color, pattern and texture for resilient flooring and accessories as indicated on the drawings. Color listed is not intended to limit the selection of equal colors from other manufacturers. Provide flooring in any one continuous area or replacement of damaged flooring in continuous area from same production run with same shade and pattern.

PART 3 EXECUTION

3.1 EXAMINATION

Examine and verify that site conditions are in agreement with the design package. Report all conditions that will prevent a proper installation. Do not take any corrective action without written permission from the Government. Work will proceed only when conditions have been corrected and accepted by the installer. Submit manufacturer's printed installation instructions for all flooring materials and accessories, including preparation of substrate, seaming techniques, and recommended adhesives.

3.2 SURFACE PREPARATION

Provide a smooth, true, level plane for surface preparation of the flooring, except where indicated as sloped. Floor to be flat to within 3/16 inch in 10 feet. Prepare subfloor in accordance with flooring manufacturer's recommended instructions. Prepare the surfaces of lightweight concrete slabs (as defined by the flooring manufacturer) as recommended by the flooring manufacturer. Comply with ASTM F710 for concrete subfloor preparation. Floor fills or toppings may be required as recommended by the flooring manufacturer. Install underlays, when required by the flooring manufacturer, in accordance with manufacturer's recommended printed installation instructions. Comply with ASTM F1482 for panel type underlayments. Before any work under this section is begun, correct all defects such as rough or scaling concrete, chalk and dust, cracks, low spots, high spots, and uneven surfaces. Repair all damaged portions of concrete slabs as recommended by the flooring manufacturer. Remove concrete curing and sealer compounds from the slabs, other than the type that does not adversely affect adhesion. Remove paint, varnish, oils, release agents, sealers, waxes, and adhesives, as required by the flooring product in accordance with manufacturer's printed installation instructions.

3.3 MOISTURE, ALKALINITY AND BOND TESTS

Determine the suitability of the concrete subfloor for receiving the resilient flooring with regard to moisture content and pH level by moisture and alkalinity tests. Conduct moisture testing in accordance with ASTM F1869 or ASTM F2170, unless otherwise recommended by the flooring manufacturer. Conduct alkalinity testing as recommended by the flooring manufacturer. Determine the compatibility of the resilient flooring adhesives to the concrete floors by a bond test in accordance with the flooring manufacturer's recommendations. Submit copy of test reports for moisture and alkalinity content of concrete slab, and bond test stating date of test, person conducting the test, and the area tested.
3.4 PLACING MOULDING

Provide moulding where flooring termination is higher than the adjacent finished flooring and at transitions between different flooring materials. When required, locate moulding under door centerline. Moulding is not required at doorways where thresholds are provided. Secure moulding with adhesive as recommended by the manufacturer. Prepare and apply adhesives in accordance with manufacturer's printed directions.

3.5 PLACING WALL BASE

Install wall base in accordance with manufacturer's printed installation instructions. Prepare and apply adhesives in accordance with manufacturer's printed directions. Tighten base joints and make even with adjacent resilient flooring. Fill voids along the top edge of base at masonry walls with caulk. Roll entire vertical surface of base with hand roller, and press toe of base with a straight piece of wood to ensure proper alignment. Avoid excess adhesive in corners.

3.6 PLACING INTEGRAL COVED BASE

Install integral cove base in accordance with manufacturer's printed installation instructions. Prepare and apply adhesives in accordance with manufacturer's printed directions. Shape integral coved base by extending the flooring material 6 inch onto the wall surface. Support cove by a filler. Provide a cap strip at the top of the base. Fill voids along the top edge of base at masonry walls with caulk.

3.7 CLEANING

Immediately upon completion of installation of flooring in a room or an area, dry/clean the flooring and adjacent surfaces to remove all surplus adhesive. Clean flooring as recommended in accordance with manufacturer's printed maintenance instructions and within the recommended time frame. As required by the manufacturer, apply the recommended number of coats and type of polish and/or finish in accordance with manufacturer's written instructions.

3.8 PROTECTION

From the time of installation until acceptance, protect flooring from damage as recommended by the flooring manufacturer. Remove and replace flooring which becomes damaged, loose, broken, or curled and wall base which is not tight to wall or securely adhered.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D4259 (1988; R 2012) Standard Practice for Abrading Concrete

A ST M D 6 9 6
Coefficient of Linear Thermal Expansion of
Plastics Between -30 degrees C and 30
degrees C With a Vitreous Silica
Dilatometer

1.2 ADMINISTRATIVE REQUIREMENTS

1.2.1 Product Data

Within 30 days of contract award, submit manufacturer's catalog data for the
following items:

a. Epoxy-Resin Binder/Matrix
b. Cured Epoxy Binder
c. Aggregate
d. Surface Sealing Coat

1.2.2 Design Mix Data

Within 30 days of contract award, submit design mix data for the following
items, including a complete list of ingredients and admixtures:

a. Epoxy-Resin Binder/Matrix
b. Cured Epoxy Binder
c. Surface Sealing Coat

Ensure applicable test reports verify the mix has been successfully tested
and meets design requirements.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation;
submittals not having a "G" designation are for information only. When
used, a designation following the "G" designation identifies the office
that reviews the submittal for the Government. Submit the following in
accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Installation Drawings; G

SD-03 Product Data

Manufacturer's Catalog Data; G

SD-04 Samples

Hardboard Mounted Epoxy Flooring; G

Floor Topping; G

SD-05 Design Data
1.4 DELIVERY, STORAGE, AND HANDLING

Protect materials from weather, soil, and damage during delivery, storage, and construction. Deliver materials in original packages, containers, or bundles bearing brand name and name of material.

Maintain materials used in the installation of floor topping at a temperature between 65 and 85 degrees F.

1.5 QUALITY CONTROL

Prior to commencement of work, submit referenced standards certificates for the following, showing conformance with the referenced standards contained in this section:

a. Epoxy-Resin Binder/Matrix
b. Cured Epoxy Binder
c. Aggregate
d. Surface Sealing Coat

1.5.1 Qualifications

Submit a listing of product installations for heavy duty epoxy flooring including identification of at least 5 units, similar to those proposed for use, that have been in successful service for a minimum period of 5 years. Identify purchaser, address of installation, service organization, and date of installation.

Ensure floor system applicators are experienced in the application of troweled aggregate thin-set floor topping.

1.5.2 Sampling

Submit hardboard mounted epoxy flooring samples not less than 12-inch square for each required color.

Provide panels showing nominal thickness of finished toppings, color, and texture of finished surfaces. Finished floor toppings and the approved samples are to match in color and texture.

1.6 WARRANTY

Submit a 2 year written warranty for all materials and installation work.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Submit installation drawings for heavy duty epoxy flooring systems clearly designating the areas of application and the installation plan. Include in
the installation plan, methods to control sand and dust if sand blasting is required.

2.2 MATERIALS

2.2.1 Mixes

2.2.1.1 Epoxy-Resin Binder/Matrix

Provide a clear two-component compatible system epoxy resin binder consisting of: (1) a liquid blend of a biphenyl-based epoxy resin and an aliphatic polyglyceride ether, and (2) a liquid blend of two modified amine curing agents, which individually cures the epoxy resin at room temperature to a glossy smooth film. Ensure the two components and the cured epoxy binder have the following physical properties:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>TEST METHOD</th>
<th>REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPONENT A (EPOXY RESIN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity (kinematic), at 77 degrees F, centipoises</td>
<td>ASTM D445</td>
<td>3000 to 5000</td>
</tr>
<tr>
<td>Weight per epoxide, grams</td>
<td>ASTM D1652</td>
<td>205 to 225</td>
</tr>
<tr>
<td>Color (Gardner Color Scale), maximum</td>
<td>ASTM D1544</td>
<td>5</td>
</tr>
<tr>
<td>Weight per gallon, pounds</td>
<td>ASTM D1475</td>
<td>9.46 - 9.56</td>
</tr>
<tr>
<td>COMPONENT B (CURING AGENT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity (kinematic), at 77 degrees F, centistokes</td>
<td>ASTM D445</td>
<td>75 to 125</td>
</tr>
<tr>
<td>Weight per gallon, pounds</td>
<td>ASTM D1475</td>
<td>7.50 to 7.60</td>
</tr>
<tr>
<td>Color (Gardner Color Scale), maximum</td>
<td>ASTM D1544</td>
<td>8</td>
</tr>
</tbody>
</table>

2.2.1.2 Cured Epoxy Binder

Provide a cured epoxy binder with the following properties:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>TEST METHOD</th>
<th>REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength, psi* at test temperature: 77 degrees F</td>
<td>ASTM D638</td>
<td>4500 to 6500</td>
</tr>
<tr>
<td>Tensile elongation, percent* at test temperature: 77 degrees F</td>
<td>ASTM D638</td>
<td>20 to 40</td>
</tr>
<tr>
<td>PROPERTY</td>
<td>TEST METHOD</td>
<td>REQUIREMENT</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Water absorption, percent 24 hours at 77 degrees F, maximum</td>
<td>ASTM D570</td>
<td>0.40</td>
</tr>
<tr>
<td>Hardness, Shore D</td>
<td>ASTM D2240</td>
<td>74 to 82</td>
</tr>
<tr>
<td>Linear shrinkage, inch/inch maximum</td>
<td>ASTM C881/C881M</td>
<td>0.006</td>
</tr>
<tr>
<td>Shrinkage, glass bow, inch divergence, maximum</td>
<td>ASTM A990/A990M</td>
<td>0.016</td>
</tr>
<tr>
<td>Coefficient of linear thermal expansion, inch/inch/degree C, maximum</td>
<td>ASTM D696</td>
<td>200 X 10^-6</td>
</tr>
<tr>
<td>Gel time/peak exotherm at 77 degrees F, 100 gm mass in 4-ounce metal container</td>
<td>ASTM D2471</td>
<td>20 to 40 minutes at 300 degrees F, maximum</td>
</tr>
</tbody>
</table>

*1/8 inch thick castings

**1/8 by 1 by 3 inch castings, aged in forced draft oven

2.2.1.3 Aggregate

Provide aggregate recommended by the resinous flooring manufacturer and approved by the Contracting Officer. Deliver aggregate to the site in three separate package gradations for blending. Gradations are:

<table>
<thead>
<tr>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIEVE SIZE</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>GRADUATION NO. 1</td>
</tr>
<tr>
<td>Retained on No. 6</td>
</tr>
<tr>
<td>Passing No. 6, retained on No. 8</td>
</tr>
<tr>
<td>Passing No. 8, retained on No. 12</td>
</tr>
<tr>
<td>Passing No. 20</td>
</tr>
<tr>
<td>GRADUATION NO. 2</td>
</tr>
<tr>
<td>Retained on No. 16</td>
</tr>
</tbody>
</table>
2.2.1.4 Surface Sealing Coat

Provide nonumbering aliphatic or aromatic moisture-curing polyurethane surface sealer into which has been incorporated a flattening agent. Add flattening agent not more than 24 hours prior to actual application of the coating. Ensure cured coating with flattening agent yields 60-degree specular gloss of 10 to 20 when tested in accordance with ASTM D523.

2.3 MANUFACTURERS

2.3.1 Products

Subject to compliance with requirements, provide products by one of the following manufacturers:

1. Dex-O-Tex, Division of Crossfield Products Corp., - Product - Décor Floor.
3. The Valspar Corp.; Quartzite 6000.
4. Tnemec Company, Inc., Stratashield Series 222 Deco-Tread System Tnemec, P.O. Box 155770, North Kansas City, MO 64116 (1-800-TNEMEC-1)

PART 3 EXECUTION

3.1 PREPARATION

Prior to applying resinous flooring material, inspect substrate and immediately report any unsatisfactory conditions that exist and repair.

3.1.1 Safety Precautions

Prior to application in confined spaces of toppings and coatings containing
flamable or toxic properties, institute safety precautions recommended by the manufacturer of the product.

Erect "NO SMOKING" signs, and prohibit smoking or use of spark- or flame-producing devices within 50 feet of any mixing or placing operation involving flammable materials.

Provide personnel required to handle, mix, or apply toppings containing toxic or flammable properties with such items of personal protective equipment and apparel for eye, skin, and respiratory protection as are recommended by the manufacturer of the product. Ensure all personnel are trained in the appropriate use and wearing of personal protection equipment.

3.1.2 Protection of Adjacent Surfaces

In addition to the protection of adjacent surfaces during installation, provide areas used to store and mix materials with a protective covering under the materials. After application of the sealer coats, protect finished flooring during the remainder of the construction period. In areas of expected minimum or moderate traffic, cover floors with 70-pound kraft paper, with strips taped together and edges secured to prevent roll-up. Place vegetable fiberboard, plywood, or other suitable material that does not mar the flooring over the paper to protect areas used as passages by workmen and areas subject to floor damage because of subsequent building operations. Upon completion of construction, remove the protection, clean flooring and, where necessary, repair, reseal, or both, at no additional cost to the Government.

3.1.3 Concrete Subfloor

3.1.3.1 New Concrete Floors

Do not commence installation of floor topping until concrete has cured a minimum of 28 calendar days. Verify concrete floor is straight, properly sloped, and has rough type finish. Ensure concrete is moist cured with burlap or polyethylene. Prior to applying the prime coat, clean concrete surface by an approved method.

3.1.3.2 Existing Concrete Floors

Clean existing concrete floors, with hard troweled or contaminated areas in conformance with ASTM D4259, and ensure concrete is free of all paint, sealers, curing agents, oil, grease, moisture, dirt or any other contaminants. Remove any loose or corroded segments of existing concrete and patch with a grouting compound as recommended by the resinous flooring manufacturer. Fill all cracks with an elastomeric jointing compound compatible with the resinous flooring system used.

3.1.4 Mixing Of Materials

Select job mix proportions on the trial batch proportions used to prepare the floor topping samples as submitted and approved.

Use mechanical equipment for mixing of materials in accordance with the manufacturer's instructions.

Use rotating paddle-type masonry mortar mixers for preblending the three sizes and color pigment, if any, of the walnut shell aggregate and addition of the mixed epoxy resin binder. Ensure mixing times are as recommended by
3.2 APPLICATION

3.2.1 Areas of Application

Anchor plates set with the top surface at or above the finished epoxy floor level do not require coverage with this flooring material. Extend flooring under equipment, except when the equipment base is indicated to be flush against the structural floor. Cover and/or mask surfaces not to receive the epoxy floor topping, such as equipment or cabinets installed prior to surface-preparation efforts and adjacent to the flooring installation.

3.2.2 Application of Prime Coat and Troweling

Combine the epoxy binder components A and B in the proportions specified by the manufacturer to form a clear compatible system immediately on mixing. Cure combined components to a clear film possessing a glossy, non-greasy surface at relative humidities less than 80 percent, having the following properties after curing 24 hours at 77 degrees F, followed by 24 hours at 125 degrees F:

Ensure prepared subfloor surface is dry and at a temperature of not less than 60 degrees F when application of the floor topping is initiated. Immediately prior to application of the prime/scratch coat on the prepared surface, remove dust or other loose particles by blowing with compressed air or vacuum cleaned. Use only an air compressor equipped with an efficient oil-water trap to prevent oil contamination or wetting of surface.

Apply a thin roller coat of the epoxy binder specified to the prepared subfloor as a prime coat. As an aid to placing, compacting, and finishing the floor topping, form a scratch coat by sprinkling a minimum quantity of the walnut shell aggregate on the prime coat surface immediately following the prime coat application. Prior to application of the prime/scratch coat, fill cracks in the concrete, and make provisions to keep control or expansion joints open.

Place the floor topping prior to final gelling of the prime/scratch coat. Immediately after the materials are mixed as specified, dump the mixture in the placement area and spread to prolong troweling life. Screed or rough trowel placed materials to the specified thickness and then compact by the use of a smooth roller prior to finish troweling to a nominal thickness of 3/16-inch plus or minus 1/16-inch. Ensure all finished surfaces are free of ridges, hollows (bird-baths), trowel marks, and smoothness varies no more than 1/8-inch when tested with an 8-foot straightedge. Make provisions to maintain the work areas in a relatively dust-free environment during curing of the topping.

3.2.3 Sealer Coat

After the floor topping has set firmly (approximately 6 to 16 hours depending on subfloor temperature) in a relatively dust-free environment, apply two thin coats of the sealer coat, by means of brush, roller, squeegee, or notched trowel to provide a pore-free, easy-to-clean surface. At the time of sealer application, ensure the surface is dust-free.
Depending on relative humidity, allow the applied sealer to cure to a
tack-free condition in 2 to 4 hours. Do not apply second coat until after
the initial coat has cured to a tack-free, hard film. Maintain topping
areas in a relatively dust-free environment during curing of the sealer
coats.

3.2.4 Integral Cove Base

Provide a 4-inch high cove base to all wall surfaces as indicated on the
drawings. Install so as to provide a 1/2-inch radius at the juncture of
the floor and the wall.

3.3 FIELD QUALITY CONTROL

3.3.1 Repairing

Remove and replace damaged or unacceptable portions of completed work with
new work to match adjacent surfaces at no additional cost to the Government.

3.4 ADJUSTING AND CLEANING

Clean surfaces of the new work, and adjacent surfaces soiled as a result of
the work. Remove all equipment, surplus materials, and rubbish associated
with the work from the site.

-- End of Section --
SECTION 09 68 00

CARPETING

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ASSOCIATION OF TEXTILE CHEMISTS AND COLORISTS (AATCC)

AATCC 107 (2013) Colorfastness to Water
AATCC 134 (2016) Electrostatic Propensity of Carpets
AATCC 16 (2004; E 2008; E 2010) Colorfastness to Light
AATCC 165 (2013) Colorfastness to Crocking: Textile Floor Coverings – Crockmeter Method
AATCC 174 (2016) Antimicrobial Activity Assessment of New Carpets

ASTM INTERNATIONAL (ASTM)

ASTM D3278 (1996; R 2011) Flash Point of Liquids by Small Scale Closed-Cup Apparatus
ASTM D5793 (2013) Binding Sites Per Unit Length or Width of Pile Yarn Floor Coverings
ASTM D5848 (2010; E 2010) Mass Per Unit Area of Pile Yarn Floor Coverings

CARPET AND RUG INSTITUTE (CRI)

CRI CIS (2011) Carpet Installation Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

Coverings - Determination of Dimensional Changes Due to the Effects of Varied Water and Heat Conditions

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

16 CFR 1630 Standard for the Surface Flammability of Carpets and Rugs (FF 1-70)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data
 Carpet; G
 Physical Characteristics
SD-04 Samples
 Carpet; G
SD-06 Test Reports
 Moisture and Alkalinity Tests; G
SD-07 Certificates
 Carpet
 Regulatory Requirements
SD-08 Manufacturer's Instructions
 Surface Preparation
 Installation
SD-10 Operation and Maintenance Data
 Carpet; G
 Cleaning and Protection; G

1.3 QUALITY ASSURANCE

Provide the Carpet and Rug Institute (CRI) Indoor Air Quality (IAQ) label for carpet, and adhesives or demonstrate compliance with testing criteria and frequencies through independent laboratory test results. Carpet, and adhesives bearing the label indicate that the carpet has been tested and meets the Regulatory Requirements and criteria of the CRI IAQ Carpet Testing Program, and minimizes the impact on indoor air quality. Submit certificates, showing conformance with the referenced standards contained in this section, for the following: Carpet.
1.4 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the site in the manufacturer's original wrappings and packages clearly labeled with the manufacturer's name, brand name, size, dye lot number, and related information. Remove materials from packaging and store them in a clean, dry, well ventilated area protected from damage, soiling, and moisture, and maintain at a temperature above 60 degrees F for 2 days prior to installation. Do not store carpet near materials that may off gas or emit harmful fumes, such as kerosene heaters, fresh paint, or adhesives.

1.5 AMBIENT CONDITIONS

Maintain areas in which carpeting is to be installed at a temperature above 60 degrees F and below 90 degrees F for 2 days before installation, during installation, and for 2 days after installation. Provide temporary ventilation during work of this section. Maintain a minimum temperature of 55 degrees F thereafter for the duration of the contract.

1.6 WARRANTY

Provide manufacturer's standard performance guarantees or warranties including minimum ten year wear warranty, two year material and workmanship and ten year tuft bind and delamination.

PART 2 PRODUCTS

2.1 CARPET CPT1

Furnish first quality carpet; free of visual blemishes, streaks, poorly dyed areas, fuzzing of pile yarn, spots or stains, and other physical and manufacturing defects. Provide carpet materials and treatments as reasonably nonallergenic and free of other recognized health hazards. Provide a static control construction on all grade carpets which gives adequate durability and performance. Submit manufacturer's catalog data and printed documentation stating physical characteristics, durability, resistance to fading, and flame resistance characteristics for each type of carpet material and installation accessory. Submit manufacturer's catalog data for 1) Carpet. Also, submit samples of the following:

a. Carpet: Two "Production Quality" samples 18 by 18 inches of each carpet proposed for use, showing quality, pattern, and color specified

2.1.1 Physical Characteristics for Modular Tile Carpet

2.1.1.1 Carpet Construction

Tufted

2.1.1.2 Type

Modular tile 19.7" by 19.7" inch square with 0.15 percent growth/shrink rate in accordance with ISO 2551.

2.1.1.3 Pile Type

Multilevel loop
2.1.1.4 Pile Fiber

Commercial 100 percent branded (federally registered trademark) nylon continuous filament.

2.1.1.5 Gauge or Pitch

Minimum 1/10 inch in accordance with ASTM D5793

2.1.1.6 Stitches or Rows/Wires

Minimum 9 per square inch

2.1.1.7 Surface Pile Weight

Minimum 17 ounces per square yard. This does not include weight of backings. Determine weight in accordance with ASTM D5848.

2.1.1.8 Pile Thickness

Minimum 0.71 inch in accordance with ASTM D6859

2.1.1.9 Pile Density

Minimum 8620

2.1.1.10 Dye Method

Solution dyed

2.1.1.11 Backing Materials

Provide primary backing materials like synthetic material. Provide secondary backing to suit project requirements of those customarily used and accepted by the trade for each type of carpet.

2.2 PERFORMANCE REQUIREMENTS

2.2.1 Static Control

Provide static control to permanently regulate static buildup to less than 3.5 kV when tested at 20 percent relative humidity and 70 degrees F in accordance with AATCC 134.

2.2.2 Flammability and Critical Radiant Flux Requirements

Comply with 16 CFR 1630. Provide carpet in corridors and exits with a minimum average critical radiant flux of 0.45 watts per square centimeter when tested in accordance with ASTM E648.

2.2.3 Tuft Bind

Comply with ASTM D1335 for tuft bind force required to pull a tuft or loop free from carpet backing with a minimum 8 pound average force for modular carpet tile.

2.2.4 Colorfastness to Crocking

Comply dry and wet crocking with AATCC 165 and with a Class 4 minimum
rating on the AATCC Color Transference Chart for all colors.

2.2.5 Colorfastness to Light

Comply colorfastness to light with AATCC 16, Test Option E "Water-Cooled Xenon-Arc Lamp, Continuous Light" and with a minimum 4 grey scale rating after 40 hours.

2.2.6 Colorfastness to Water

Comply colorfastness to water with AATCC 107 and with a minimum 4.0 gray scale rating and a minimum 4.0 transfer scale rating.

2.2.7 Delamination Strength

Provide delamination strength for tufted carpet with a secondary back of minimum 2.5 lbs/inch.

2.2.8 Antimicrobial

Nontoxic antimicrobial treatment in accordance with AATCC 174 Part I (qualitative), guaranteed by the carpet manufacturer to last the life of the carpet.

2.3 ADHESIVES AND CONCRETE PRIMER

Comply with applicable regulations regarding toxic and hazardous materials. Provide release adhesive for modular tile carpet as recommended by the carpet manufacturer. Provide adhesives flashpoint of minimum 140 degrees F in accordance with ASTM D3278.

2.4 COLOR, TEXTURE, AND PATTERN

Provide color, texture, and patternas selected by the Contracting Officer.

PART 3 EXECUTION

3.1 SURFACE PREPARATION

Do not install carpet on surfaces that are unsuitable and will prevent a proper installation. Prepare subfloor in accordance with flooring manufacturer's recommended instructions. Repair holes, cracks, depressions, or rough areas using material recommended by the carpet or adhesive manufacturer. Free floor of any foreign materials and sweep clean. Before beginning work, test subfloor with glue and carpet to determine "open time" and bond. Submit three copies of the manufacturer's printed installation instructions for the carpet, including preparation of substrate, seaming techniques, and recommended adhesives and tapes.

3.2 MOISTURE AND ALKALINITY TESTS

Test concrete slab for moisture content and excessive alkalinity in accordance with CRI CIS. Submit three copies of test reports of moisture and alkalinity content of concrete slab stating date of test, person conducting the test, and the area tested.

3.3 PREPARATION OF CONCRETE SUBFLOOR

Prepare the concrete surfaces in accordance with the carpet manufacturer's
instructions. Match carpet, when required, and adhesives to prevent off-gassing to a type of curing compounds, leveling agents, and concrete sealer.

3.4 INSTALLATION

Isolate area of installation from rest of building. Perform all work by manufacturer's approved installers. Conduct installation in accordance with the manufacturer's printed instructions and CRI CIS. Follow ventilation, personal protection, and other safety precautions recommended by the adhesive manufacturer. Continue ventilation during installation and for at least 72 hours following installation. Do not permit traffic or movement of furniture or equipment in carpeted area for 24 hours after installation. Complete other work which would damage the carpet prior to installation of carpet.

3.4.1 Modular Tile Installation

Install modular tiles with releasable adhesive and snug joints.

3.5 CLEANING AND PROTECTION

Submit three copies of carpet manufacturer's maintenance instructions describing recommended type of cleaning equipment and material, spotting and cleaning methods, and cleaning cycles.

3.5.1 Cleaning

As specified in Section 01 78 00 CLOSEOUT SUBMITTALS. After installation of the carpet, remove debris, scraps, and other foreign matter. Remove soiled spots and adhesive from the face of the carpet with appropriate spot remover. Cut off and remove protruding face yarn. Vacuum carpet clean with a high-efficiency particulate air (HEPA) filtration vacuum.

3.5.2 Protection

Protect the installed carpet from soiling and damage with heavy, reinforced, nonstaining kraft paper, plywood, or hardboard sheets. Lap and secure edges of kraft paper protection to provide a continuous cover. Restrict traffic for at least 48 hours. Remove protective covering when directed by the Contracting Officer.

3.6 MAINTENANCE

3.6.1 Extra Materials

Provide extra material from same dye lot consisting of uncut carpet tiles for future maintenance. Provide a minimum of 5 percent of total square yards of each carpet type, pattern, and color.

-- End of Section --
SECTION 09 77 20

DECORATIVE FIBERGLASS REINFORCED WALL PANELS

PART 1 GENERAL

1.1 SUMMARY

A. Section Includes: Prefinished polyester glass reinforced plastic sheets and adhered to unfinished CMU.
 1. Aluminum trim.

B. Products Not Furnished or Installed under This Section:
 1. CMU.
 2. Epoxy Base.

1.2 1.2 RELATED SECTIONS

A. Section 04 20 00 - Unit Masonry.
B. Section 09 67 23.13 - Standard Resinous Flooring.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data
Submit sufficient manufacturer's data to indicate compliance with these specifications, including:
1. Preparation instructions and recommendations.
2. Storage and handling requirements and recommendations.
3. Installation methods.

SD-02 Shop Drawings
Submit elevations of each wall showing location of paneling and trim members with respect to all discontinuities in the wall elevation.

SD-04 Samples
Submit manufacturer's standard color pattern selection samples representing manufacturer's full range of available colors and patterns.

Samples for Verification
Submit appropriate section of panel for each finish selected indicating the color, texture, and pattern required.
1. Submit complete with specified applied finish.
2. For selected patterns show complete pattern repeat.
3. Exposed Molding and Trim: Provide samples of each type, finish, and
color.

SD-08 Manufacturer's Instructions

Manufacturers Material Safety Data Sheets (MSDS) for adhesives, sealants and other pertinent materials prior to their delivery to the site

1.4 QUALITY ASSURANCE

A. Conform to building code requirements for interior finish for moke and flame spread requirements as tested in accordance with:
 1. ASTM E 84 (Method of test for surface burning characteristics of building Materials)
 a. Wall Required Rating - Class A.

B. Sanitary Standards: System components and finishes to comply with:
 1. United States Department of Agriculture (USDA) requirements for food preparation facilities, incidental contact.
 3. Canadian Food Inspection Agency (CFIA) requirements.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver materials factory packaged on strong pallets.
B. Store panels and trim lying flat, under cover and protected from the elements. Allow panels to acclimate to room temperature (range of 60 to 75°F) for 48 hours prior to installation.

1.6 PROJECT CONDITIONS

1.6.1 Environmental Requirements

A. Environmental Limitations: Building are to be fully enclosed prior to installation with sufficient heat (70°F) and ventilation consistent with good working conditions for finish work
B. During installation and for not less than 48 hours before, maintain an ambient temperature and relative humidity within limits required by type of adhesive used and recommendation of adhesive manufacturer.
 1. Provide ventilation to disperse fumes during application of adhesive as recommended by the adhesive manufacturer.

1.7 WARRANTY

A. Furnish one year guarantee against defects in material and workmanship.

PART 2 PRODUCTS

2.1 ACCEPTABLE MANUFACTURER

A. Marlite; 1 Marlite Drive, Dover, OH 44622. 800-377-1221
 FAX (330) 343-4668 Email: info@marlite.com www.marlite.com, or approved equivalent.
B. Product:
 1. Standard FRP
2.2 PANELS

A. Fiberglass reinforced thermosetting polyester resin panel sheets complying with ASTM D 5319.

1. Coating: Multi-layer print, primer and finish coats or applied over-layer.

2. Dimensions:
 a. Thickness - 0.090 " (2.29mm) nominal
 b. Width - 4'-0" (1.22m) nominal
 c. Length - 8'-0" (2.4m) nominal

3. Tolerance:
 a. Length and Width: +/-1/8 " (3.175mm)
 b. Square - Not to exceed 1/8 " for 8 foot (2.4m) panels or 5/32 " (3.96mm) for 10 foot (2.4m) panels

B. Properties: Resistant to rot, corrosion, staining, denting, peeling, and splintering.

1. Flexural Strength - 1.0 x 104 psi per ASTM D 790.
 (7.0 kilogram-force/square millimeter)
2. Flexural Modulus - 3.1 x 105 psi per ASTM D 790. (217.9 kilogram-force/square millimeter)
3. Tensile Strength - 7.0 x 103 psi per ASTM D 638. (4.9 kilogram-force/square millimeter)
4. Tensile Modulus - 1.6 x 105 psi per ASTM D 638. (112.5 kilogram-force/square millimeter)
5. Water Absorption - 0.72% per ASTM D 570.
6. Barcol Hardness (scratch resistance) of 35 55 as per ASTM D 2583.
7. Izod Impact Strength of 72 ft. lbs./in ASTM D 256

C. Back Surface: Smooth. Imperfections which do not affect functional properties are not cause for rejection.

D. Front Finish: As selected by the Contracting Officer from manufacturer's.

Standard Finishes.

 a. Color: As selected by the Contracting Officer from manufacturer's standard colors.
 b. Surface
 c. Fire Rating
 d. Size:
 1) Marlite FRP
 a) 48" x 96" x .090" (3mm) nom.

2.3 MOLDINGS

Aluminum Trim: Heavy weight extruded aluminum 6063-T5 alloy prefinished at the factory.

1. Profiles:
 a. F 550 Inside Corner, 8' length
 b. F 561 Outside Corner, 8' length
 c. F 565 Division, 8' length
 d. F 570 Edge, 8' length
 e. Color: Brite Anodized
2.4 ACCESSORIES

A. Fasteners: Non-staining nylon drive rivets.
 1. Match panel colors.
 2. Length to suit project conditions.

B. Adhesive: Either of the following construction adhesives complying with ASTM C 557.
 1. Marlite C-551 FRP Adhesive - Water- resistant, non-flammable adhesive.

C. Sealant:
 1. Marlite Brand - Color Match Sealant.

2.5 SAMPLES

Provide Samples for Verification for FRP panels, trim and accessories.

2.6 MATERIAL SAFETY DATA SHEETS

Provide Manufacturers Material Safety Data Sheets (MSDS) for adhesive and sealants.

PART 3 EXECUTION

3.1 PREPARATION

A. Examine backup surfaces to determine that corners are plumb and straight, surfaces are smooth, uniform, clean and free from foreign matter, nails countersunk, joints and cracks filled flush and smooth with the adjoining surface.
 1. Verify that stud spacing does not exceed 24" (61cm) on-center.

B. Repair defects prior to installation.
 1. Level wall surfaces to panel manufacturer's requirements. Remove protrusions and fill indentations.

3.2 INSTALLATION

A. Comply with manufacturer's recommended procedures and installation sequence.

B. Cut sheets to meet supports allowing 1/8" (3 mm) clearance for every 8 foot (2.4m) of panel.
 1. Cut and drill with carbide tipped saw blades or drill bits, or cut with shears.
 2. Pre-drill fastener holes 1/8" (3mm) oversize with high speed drill bit.
 a. Space at 8" (200mm) maximum on center at perimeter, approximately 1" from panel edge.
 b. Space in field in rows 16' (40.64cm) on center, with fasteners spaced at 12" (30.48 cm) maximum on center.

C. Apply panels to board substrate, above base, vertically oriented with seams plumb and pattern aligned with adjoining panels.
 1. Install panels with manufacturer's recommended gap for panel field and corner joints.
 a. Adhesive trowel and application method to conform to adhesive manufacturer's recommendations.
 b. Drive fasteners for snug fit. Do not over-tighten.

D. Apply panel moldings to all panel edges using silicone sealant.
providing for required clearances.
1. All moldings must provide for a minimum 1/8 " (3mm) of panel expansion at joints and edges, to insure proper installation.
2. Apply sealant to all moldings, channels and joints between the system and different materials to assure watertight installation.

3.3 CLEANING

A. Remove excess sealant from panels and moldings. Wipe panel down using a damp cloth and mild soap solution or cleaner.
B. Refer to manufacturer's specific cleaning recommendations Do not use abrasive cleaners.

-- End of Section --
SECTION 09 90 00

PAINTS AND COATINGS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONFERENCE OF GOVERNMENTAL INDUSTRIAL HYGIENISTS (ACGIH)

ACGIH 0100 (2015; Suppl 2002-2016) Documentation of the Threshold Limit Values and Biological Exposure Indices

ASTM INTERNATIONAL (ASTM)

ASTM D4263 (1983; R 2012) Indicating Moisture in Concrete by the Plastic Sheet Method

ASTM F1869 (2016) Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride

MASTER PAINTERS INSTITUTE (MPI)

MPI 10 (2012) Latex, Exterior Flat (MPI Gloss Level 1)

MPI 107 (2012) Primer, Rust-Inhibitive, Water Based

MPI 134 (2012) Primer, Galvanized, Water Based

MPI 23 (2012) Primer, Metal, Surface Tolerant

MPI 4 (2012) Interior/Exterior Latex Block Filler

MPI 44 (2012) Latex, Interior, (MPI Gloss Level 2)

MPI 50 (2012) Primer Sealer, Latex, Interior

MPI 79 (2012) Primer, Alkyd, Anti-Corrosive for Metal

MPI 94 (2012) Alkyd, Exterior, Semi-Gloss (MPI Gloss Level 5)

MPI 95 (2012) Primer, Quick Dry, for Aluminum

SCIENTIFIC CERTIFICATION SYSTEMS (SCS)

SCS Scientific Certification Systems (SCS) Indoor Advantage

SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC 7/NACE No.4 (2007; E 2004) Brush-Off Blast Cleaning

SSPC PA 1 (2016) Shop, Field, and Maintenance Coating of Metals

SSPC SP 1 (2015) Solvent Cleaning

SSPC SP 10/NACE No. 2 (2007) Near-White Blast Cleaning

SSPC SP 3 (1982; E 2004) Power Tool Cleaning

SSPC SP 6/NACE No.3 (2007) Commercial Blast Cleaning

U.S. ARMY CORPS OF ENGINEERS (USACE)

SECTION 09 90 00 Page 2
U.S. GENERAL SERVICES ADMINISTRATION (GSA)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910.1000 Air Contaminants

UL ENVIRONMENT (ULE)

ULE Greenguard UL Greenguard Certification Program

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

The current MPI, "Approved Product List" which lists paint by brand, label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use a subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI Approved Products List is acceptable.

SD-03 Product Data

Certification

Materials;

Submit documentation indicating percentage of post-industrial and post-consumer recycled content per unit of product. Indicate relative dollar value of recycled content products to total dollar value of products included in project.

Coating; G

Manufacturer's Technical Data Sheets;

Indicate VOC content.

SD-04 Samples

Color; G

SD-07 Certificates

Applicator's qualifications

Qualification Testing laboratory for coatings; G

SD-08 Manufacturer's Instructions

Application instructions
Mixing

Detailed mixing instructions, minimum and maximum application temperature and humidity, potlife, and curing and drying times between coats.

Manufacturer's Material Safety Data Sheets

Submit manufacturer's Material Safety Data Sheets for coatings, solvents, and other potentially hazardous materials, as defined in FED-STD-313.

SD-10 Operation and Maintenance Data

Coatings; G

1.3 APPLICATOR'S QUALIFICATIONS

1.3.1 Contractor Qualification

Submit the name, address, telephone number, FAX number, and e-mail address of the contractor that will be performing all surface preparation and coating application. Submit evidence that key personnel have successfully performed surface preparation and application of coatings on a minimum of three similar projects within the past three years. List information by individual and include the following:

a. Name of individual and proposed position for this work.

b. Information about each previous assignment including:

Position or responsibility

Employer (if other than the Contractor)

Name of facility owner

Mailing address, telephone number, and telex number (if non-US) of facility owner

Name of individual in facility owner's organization who can be contacted as a reference

Location, size and description of structure

Dates work was carried out

Description of work carried out on structure

1.4 QUALITY ASSURANCE

1.4.1 Field Samples and Tests

The Contracting Officer may choose up to two coatings that have been delivered to the site to be tested at no cost to the Government. Take samples of each chosen product as specified in the paragraph "Sampling Procedures." Test each chosen product as specified in the paragraph "Testing Procedure." Products which do not conform, shall be removed from
the job site and replaced with new products that conform to the referenced specification. Testing of replacement products that failed initial testing shall be at no cost to the Government.

1.4.1.1 Sampling Procedure

The Contracting Officer will select paint at random from the products that have been delivered to the job site for sample testing. The Contractor shall provide one quart samples of the selected paint materials. The samples shall be taken in the presence of the Contracting Officer, and labeled, identifying each sample. Provide labels in accordance with the paragraph "Packaging, Labeling, and Storage" of this specification.

1.4.1.2 Testing Procedure

Provide Batch Quality Conformance Testing for specified products, as defined by and performed by MPI. As an alternative to Batch Quality Conformance Testing, the Contractor may provide Qualification Testing for specified products above to the appropriate MPI product specification, using the third-party laboratory approved under the paragraph "Qualification Testing" laboratory for coatings. The qualification testing lab report shall include the backup data and summary of the test results. The summary shall list all of the reference specification requirements and the result of each test. The summary shall clearly indicate whether the tested paint meets each test requirement. Note that Qualification Testing may take 4 to 6 weeks to perform, due to the extent of testing required.

Submit name, address, telephone number, FAX number, and e-mail address of the independent third party laboratory selected to perform testing of coating samples for compliance with specification requirements. Submit documentation that laboratory is regularly engaged in testing of paint samples for conformance with specifications, and that employees performing testing are qualified. If the Contractor chooses MPI to perform the Batch Quality Conformance testing, the above submittal information is not required, only a letter is required from the Contractor stating that MPI will perform the testing.

1.4.2 Sustainable Design Certification

Product shall be third party certified in accordance with ULE Greenguard Gold, SCS Scientific Certification Systems Indoor Advantage Gold or equal. Certification shall be performed annually and shall be current.

1.5 REGULATORY REQUIREMENTS

1.5.1 Environmental Protection

In addition to requirements specified elsewhere for environmental protection, provide coating materials that conform to the restrictions of the local Air Pollution Control District and regional jurisdiction. Notify Contracting Officer of any paint specified herein which fails to conform.

1.5.2 Lead Content

Do not use coatings having a lead content over 0.06 percent by weight of nonvolatile content.
1.5.3 Chromate Content
Do not use coatings containing zinc-chromate or strontium-chromate.

1.5.4 Asbestos Content
Materials shall not contain asbestos.

1.5.5 Mercury Content
Materials shall not contain mercury or mercury compounds.

1.5.6 Silica
Abrasive blast media shall not contain free crystalline silica.

1.5.7 Human Carcinogens
Materials shall not contain ACGIH 0100 confirmed human carcinogens (A1) or suspected human carcinogens (A2).

1.6 PACKAGING, LABELING, AND STORAGE

Paints shall be in sealed containers that legibly show the contract specification number, designation name, formula or specification number, batch number, color, quantity, date of manufacture, manufacturer's formulation number, manufacturer's directions including any warnings and special precautions, and name and address of manufacturer. Pigmented paints shall be furnished in containers not larger than 5 gallons. Paints and thinners shall be stored in accordance with the manufacturer's written directions, and as a minimum, stored off the ground, under cover, with sufficient ventilation to prevent the buildup of flammable vapors, and at temperatures between 40 to 95 degrees F. Do not store paint, polyurethane, varnish, or wood stain products in occupied spaces.

1.7 SAFETY AND HEALTH

Apply coating materials using safety methods and equipment in accordance with the following:

Work shall comply with applicable Federal, State, and local laws and regulations, and with the ACCIDENT PREVENTION PLAN, including the Activity Hazard Analysis as specified in Section 01 35 26 GOVERNMENT SAFETY REQUIREMENTS and in Appendix A of EM 385-1-1. The Activity Hazard Analysis shall include analyses of the potential impact of painting operations on painting personnel and on others involved in and adjacent to the work zone.

1.7.1 Safety Methods Used During Coating Application

Comply with the requirements of SSPC PA Guide 3.

1.7.2 Toxic Materials

To protect personnel from overexposure to toxic materials, conform to the most stringent guidance of:

a. The applicable manufacturer's Material Safety Data Sheets (MSDS) or local regulation.
b. 29 CFR 1910.1000.

c. ACGIH 0100, threshold limit values.

1.8 ENVIRONMENTAL CONDITIONS

Comply, at minimum, with manufacturer recommendations for space ventilation during and after installation.

1.8.1 Coatings

Do not apply coating when air or substrate conditions are:

a. Less than 5 degrees F above dew point;

b. Below 50 degrees F or over 95 degrees F, unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations.

1.8.2 Post-Application

Vacate space for as long as possible after application. Wait a minimum of 48 hours before occupying freshly painted rooms. Maintain one of the following ventilation conditions during the curing period, or for 72 hours after application:

a. Supply 100 percent outside air 24 hours a day.

b. Supply airflow at a rate of 6 air changes per hour, when outside temperatures are between 55 degrees F and 85 degrees F and humidity is between 30 percent and 60 percent.

c. Supply airflow at a rate of 1.5 air changes per hour, when outside air conditions are not within the range stipulated above.

1.9 SCHEDULING

Allow paint, polyurethane, varnish, and wood stain installations to cure prior to the installation of materials that adsorb VOCs.

1.10 COLOR SELECTION

Colors of finish coats shall be as indicated or specified. Where not indicated or specified, colors shall be selected by the Contracting Officer. Manufacturers' names and color identification are used for the purpose of color identification only. Named products are acceptable for use only if they conform to specified requirements. Products of other manufacturers are acceptable if the colors approximate colors indicated and the product conforms to specified requirements.

Tint each coat progressively darker to enable confirmation of the number of coats.

Color, texture, and pattern of wall coating systems shall be as indicated.
1.11 LOCATION AND SURFACE TYPE TO BE PAINTED

1.11.1 Painting Included

Where a space or surface is indicated to be painted, include the following unless indicated otherwise.

a. Surfaces behind portable objects and surface mounted articles readily detachable by removal of fasteners, such as screws and bolts.

b. New factory finished surfaces that require identification or color coding and factory finished surfaces that are damaged during performance of the work.

c. Existing coated surfaces that are damaged during performance of the work.

1.11.1.1 Exterior Painting

Includes new surfaces of the building and appurtenances. Also included are existing coated surfaces made bare by cleaning operations.

1.11.1.2 Interior Painting

Includes new surfaces. Where a space or surface is indicated to be painted, include the following items, unless indicated otherwise.

1.11.2 Painting Excluded

Do not paint the following unless indicated otherwise.

a. Surfaces concealed and made inaccessible by panelboards, fixed ductwork, machinery, and equipment fixed in place.

b. Surfaces in concealed spaces. Concealed spaces are defined as enclosed spaces above suspended ceilings, furred spaces, attic spaces, crawl spaces, elevator shafts and chases.

c. Steel to be embedded in concrete.

d. Copper, stainless steel, aluminum, brass, and lead except existing coated surfaces.

e. Hardware, fittings, and other factory finished items.

1.11.3 Mechanical and Electrical Painting

Includes field coating of interior new surfaces.

a. Where a space or surface is indicated to be painted, include the following items unless indicated otherwise.

 (1) Exposed piping, conduit;

b. Do not paint the following, unless indicated otherwise:

 (1) New zinc-coated, aluminum, and copper surfaces under insulation

 (2) New aluminum jacket on piping
(3) New interior ferrous piping under insulation.

1.11.4 Exterior Painting of Site Work Items

Field coat the following items:

New Surfaces

a. Doors and Frames
b. Handrails

1.11.5 Definitions and Abbreviations

1.11.5.1 Qualification Testing

Qualification testing is the performance of all test requirements listed in the product specification. This testing is accomplished by MPI to qualify each product for the MPI Approved Product List, and may also be accomplished by Contractor's third party testing lab if an alternative to Batch Quality Conformance Testing by MPI is desired.

1.11.5.2 Batch Quality Conformance Testing

Batch quality conformance testing determines that the product provided is the same as the product qualified to the appropriate product specification. This testing shall only be accomplished by MPI testing lab.

1.11.5.3 Coating

A film or thin layer applied to a base material called a substrate. A coating may be a metal, alloy, paint, or solid/liquid suspensions on various substrates (metals, plastics, wood, paper, leather, cloth, etc.). They may be applied by electrolysis, vapor deposition, vacuum, or mechanical means such as brushing, spraying, calendaring, and roller coating. A coating may be applied for aesthetic or protective purposes or both. The term "coating" as used herein includes emulsions, enamels, stains, varnishes, sealers, epoxies, and other coatings, whether used as primer, intermediate, or finish coat. The terms paint and coating are used interchangeably.

1.11.5.4 DFT or dft

Dry film thickness, the film thickness of the fully cured, dry paint or coating.

1.11.5.5 DSD

Degree of Surface Degradation, the MPI system of defining degree of surface degradation. Five (5) levels are generically defined under the Assessment sections in the MPI Maintenance Repainting Manual.

1.11.5.6 EPP

Environmentally Preferred Products, a standard for determining environmental preferability in support of Executive Order 13101.
1.11.5.7 EXT

MPI short term designation for an exterior coating system.

1.11.5.8 INT

MPI short term designation for an interior coating system.

1.11.5.9 micron / microns

The metric measurement for 0.001 mm or one/thousandth of a millimeter.

1.11.5.10 mil / mils

The English measurement for 0.001 in or one/thousandth of an inch, equal to 25.4 microns or 0.0254 mm.

1.11.5.11 mm

The metric measurement for millimeter, 0.001 meter or one/thousandth of a meter.

1.11.5.12 MPI Gloss Levels

MPI system of defining gloss. Seven (7) gloss levels (G1 to G7) are generically defined under the Evaluation sections of the MPI Manuals. Traditionally, Flat refers to G1/G2, Eggshell refers to G3, Semigloss refers to G5, and Gloss refers to G6.

Gloss levels are defined by MPI as follows:

<table>
<thead>
<tr>
<th>Gloss Level</th>
<th>Description</th>
<th>Units at 60 degrees</th>
<th>Units at 85 degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Matte or Flat</td>
<td>0 to 5</td>
<td>10 max</td>
</tr>
<tr>
<td>G2</td>
<td>Velvet</td>
<td>0 to 10</td>
<td>10 to 35</td>
</tr>
<tr>
<td>G3</td>
<td>Eggshell</td>
<td>10 to 25</td>
<td>10 to 35</td>
</tr>
<tr>
<td>G4</td>
<td>Satin</td>
<td>20 to 35</td>
<td>35 min</td>
</tr>
<tr>
<td>G5</td>
<td>Semi-Gloss</td>
<td>35 to 70</td>
<td></td>
</tr>
<tr>
<td>G6</td>
<td>Gloss</td>
<td>70 to 85</td>
<td></td>
</tr>
<tr>
<td>G7</td>
<td>High Gloss</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gloss is tested in accordance with ASTM D523. Historically, the Government has used Flat (G1 / G2), Eggshell (G3), Semi-Gloss (G5), and Gloss (G6).

1.11.5.13 MPI System Number

The MPI coating system number in each Division found in either the MPI Architectural Painting Specification Manual or the Maintenance Repainting Manual and defined as an exterior (EXT/REX) or interior system (INT/RIN). The Division number follows the CSI Master Format.

1.11.5.14 Paint

See Coating definition.

1.11.5.15 REX

MPI short term designation for an exterior coating system used in
repainting projects or over existing coating systems.

1.11.5.16 RIN

MPI short term designation for an interior coating system used in repainting projects or over existing coating systems.

PART 2 PRODUCTS

2.1 MATERIALS

Conform to the coating specifications and standards referenced in PART 3. Submit manufacturer's technical data sheets for specified coatings and solvents. Minimum 20 percent post-consumer recycled content for light-colored paints and primers. Minimum 50 percent post-consumer recycled content for dark-colored paints and primers.: All consolidated latex paints shall contain a minimum of 100 percent post-consumer recycled content. Comply with applicable regulations regarding toxic and hazardous materials.

PART 3 EXECUTION

3.1 PROTECTION OF AREAS AND SPACES NOT TO BE PAINTED

Prior to surface preparation and coating applications, remove, mask, or otherwise protect, hardware, hardware accessories, machined surfaces, radiator covers, plates, lighting fixtures, public and private property, and other such items not to be coated that are in contact with surfaces to be coated. Following completion of painting, workmen skilled in the trades involved shall reinstall removed items. Restore surfaces contaminated by coating materials, to original condition and repair damaged items.

3.2 SURFACE PREPARATION

Remove dirt, splinters, loose particles, grease, oil, disintegrated coatings, and other foreign matter and substances deleterious to coating performance as specified for each substrate before application of paint or surface treatments. Oil and grease shall be removed prior to mechanical cleaning. Cleaning shall be programmed so that dust and other contaminants will not fall on wet, newly painted surfaces. Exposed ferrous metals such as nail heads on or in contact with surfaces to be painted with water-thinned paints, shall be spot-primed with a suitable corrosion-inhibitive primer capable of preventing flash rusting and compatible with the coating specified for the adjacent areas.

3.2.1 Additional Requirements for Preparation of Surfaces With Existing Coatings

Before application of coatings, perform the following on surfaces covered by soundly-adhered coatings, defined as those which cannot be removed with a putty knife:

a. Test existing finishes for lead before sanding, scraping, or removing. If lead is present, refer to paragraph Toxic Materials.

b. Wipe previously painted surfaces to receive solvent-based coatings, except stucco and similarly rough surfaces clean with a clean, dry cloth saturated with mineral spirits, ASTM D235. Allow surface to dry. Wiping shall immediately precede the application of the first
coat of any coating, unless specified otherwise.

c. Sand existing glossy surfaces to be painted to reduce gloss. Brush, and wipe clean with a damp cloth to remove dust.

d. The requirements specified are minimum. Comply also with the application instructions of the paint manufacturer.

e. Previously painted surfaces damaged during construction shall be thoroughly cleaned of all grease, dirt, dust or other foreign matter.

f. Blistering, cracking, flaking and peeling or other deteriorated coatings shall be removed.

g. Chalk shall be removed so that when tested in accordance with ASTM D4214, the chalk resistance rating is no less than 8.

h. Slick surfaces shall be roughened. Damaged areas such as, but not limited to, nail holes, cracks, chips, and spalls shall be repaired with suitable material to match adjacent undamaged areas.

i. Edges of chipped paint shall be feather edged and sanded smooth.

j. Rusty metal surfaces shall be cleaned as per SSPC requirements. Solvent, mechanical, or chemical cleaning methods shall be used to provide surfaces suitable for painting.

k. New, proposed coatings shall be compatible with existing coatings.

3.2.2 Existing Coated Surfaces with Minor Defects

Sand, spackle, and treat minor defects to render them smooth. Minor defects are defined as scratches, nicks, cracks, gouges, spalls, alligatoring, chalking, and irregularities due to partial peeling of previous coatings.

3.2.3 Removal of Existing Coatings

Remove existing coatings from the following surfaces:

a. Surfaces containing large areas of minor defects;

b. Surfaces containing more than 20 percent peeling area; and

c. Surfaces designated by the Contracting Officer, such as surfaces where rust shows through existing coatings.

3.2.4 Substrate Repair

a. Repair substrate surface damaged during coating removal;

b. Sand edges of adjacent soundly-adhered existing coatings so they are tapered as smooth as practical to areas involved with coating removal; and

c. Clean and prime the substrate as specified.
3.3 PREPARATION OF METAL SURFACES

3.3.1 Existing and New Ferrous Surfaces

a. Ferrous Surfaces including Shop-coated Surfaces and Small Areas That Contain Rust, Mill Scale and Other Foreign Substances: Solvent clean in accordance with SSPC SP 1 to remove oil and grease. Where shop coat is missing or damaged, clean according to SSPC SP 2, Shop-coated ferrous surfaces shall be protected from corrosion by treating and touching up corroded areas immediately upon detection.

3.3.2 Final Ferrous Surface Condition:

For tool cleaned surfaces, the requirements are stated in SSPC SP 2 and SSPC SP 3. As a visual reference, cleaned surfaces shall be similar to photographs in SSPC VIS 3.

For abrasive blast cleaned surfaces, the requirements are stated in SSPC 7/NACE No.4, SSPC SP 6/NACE No.3, and SSPC SP 10/NACE No. 2. As a visual reference, cleaned surfaces shall be similar to photographs in SSPC VIS 1.

3.3.3 Galvanized Surfaces

a. New or Existing Galvanized Surfaces With Only Dirt and Zinc Oxidation Products: Clean with solvent, in accordance with SSPC SP 1. If the galvanized metal has been passivated or stabilized, the coating shall be completely removed by brush-off abrasive blast. New galvanized steel to be coated shall not be "passivated" or "stabilized" If the absence of hexavalent stain inhibitors is not documented, test as described in ASTM D6386, Appendix X2, and remove by one of the methods described therein.

3.3.4 Non-Ferrous Metallic Surfaces

Aluminum and aluminum-alloy, lead, copper, and other nonferrous metal surfaces.

Surface Cleaning: Solvent clean in accordance with SSPC SP 1 and wash with mild non-alkaline detergent to remove dirt and water soluble contaminants.

3.4 PREPARATION OF CONCRETE AND CEMENTITIOUS SURFACE

3.4.1 Concrete and Masonry

a. Curing: Concrete, stucco and masonry surfaces shall be allowed to cure at least 30 days before painting, except concrete slab on grade, which shall be allowed to cure 90 days before painting.

b. Surface Cleaning: Remove the following deleterious substances.

(1) Dirt, Grease, and Oil: Wash new and existing uncoated surfaces with a solution composed of 1/2 cup trisodium phosphate, 1/4 cup household detergent, and 4 quarts of warm water. Then rinse thoroughly with fresh water. Wash existing coated surfaces with a suitable detergent and rinse thoroughly. For large areas, water blasting may be used.

(2) Fungus and Mold: Wash new, existing coated, and existing
uncoated surfaces with a solution composed of 1/2 cup trisodium phosphate, 1/4 cup household detergent, 1 quart 5 percent sodium hypochlorite solution and 3 quarts of warm water. Rinse thoroughly with fresh water.

(3) Paint and Loose Particles: Remove by wire brushing.

(4) Efflorescence: Remove by scraping or wire brushing followed by washing with a 5 to 10 percent by weight aqueous solution of hydrochloric (muriatic) acid. Do not allow acid to remain on the surface for more than five minutes before rinsing with fresh water. Do not acid clean more than 4 square feet of surface, per workman, at one time.

c. Cosmetic Repair of Minor Defects: Repair or fill mortar joints and minor defects, including but not limited to spalls, in accordance with manufacturer's recommendations and prior to coating application.

d. Allowable Moisture Content: Latex coatings may be applied to damp surfaces, but not to surfaces with droplets of water. Do not apply epoxies to damp vertical surfaces as determined by ASTM D4263 or horizontal surfaces that exceed 3 lbs of moisture per 1000 square feet in 24 hours as determined by ASTM F1869. In all cases follow manufacturers recommendations. Allow surfaces to cure a minimum of 30 days before painting.

3.4.2 Gypsum Board, Plaster, and Stucco

a. Surface Cleaning: Plaster and stucco shall be clean and free from loose matter; gypsum board shall be dry. Remove loose dirt and dust by brushing with a soft brush, rubbing with a dry cloth, or vacuum-cleaning prior to application of the first coat material. A damp cloth or sponge may be used if paint will be water-based.

b. Repair of Minor Defects: Prior to painting, repair joints, cracks, holes, surface irregularities, and other minor defects with patching plaster or spackling compound and sand smooth.

c. Allowable Moisture Content: Latex coatings may be applied to damp surfaces, but not surfaces with droplets of water. Do not apply epoxies to damp surfaces as determined by ASTM D4263. New plaster to be coated shall have a maximum moisture content of 8 percent, when measured in accordance with ASTM D4444, Method A, unless otherwise authorized. In addition to moisture content requirements, allow new plaster to age a minimum of 30 days before preparation for painting.

3.5 APPLICATION

3.5.1 Coating Application

Painting practices shall comply with applicable federal, state and local laws enacted to insure compliance with Federal Clean Air Standards. Apply coating materials in accordance with SSPC PA 1. SSPC PA 1 methods are applicable to all substrates, except as modified herein.

At the time of application, paint shall show no signs of deterioration. Uniform suspension of pigments shall be maintained during application.

Unless otherwise specified or recommended by the paint manufacturer, paint
may be applied by brush, roller, or spray. Use trigger operated spray nozzles for water hoses. Rollers for applying paints and enamels shall be of a type designed for the coating to be applied and the surface to be coated. Wear protective clothing and respirators when applying oil-based paints or using spray equipment with any paints.

Paints, except water-thinned types, shall be applied only to surfaces that are completely free of moisture as determined by sight or touch.

Thoroughly work coating materials into joints, crevices, and open spaces. Special attention shall be given to insure that all edges, corners, crevices, welds, and rivets receive a film thickness equal to that of adjacent painted surfaces.

Each coat of paint shall be applied so dry film shall be of uniform thickness and free from runs, drops, ridges, waves, pinholes or other voids, laps, brush marks, and variations in color, texture, and finish. Hiding shall be complete.

Touch up damaged coatings before applying subsequent coats. Interior areas shall be broom clean and dust free before and during the application of coating material.

a. Drying Time: Allow time between coats, as recommended by the coating manufacturer, to permit thorough drying, but not to present topcoat adhesion problems. Provide each coat in specified condition to receive next coat.

b. Primers, and Intermediate Coats: Do not allow primers or intermediate coats to dry more than 30 days, or longer than recommended by manufacturer, before applying subsequent coats. Follow manufacturer's recommendations for surface preparation if primers or intermediate coats are allowed to dry longer than recommended by manufacturers of subsequent coatings. Each coat shall cover surface of preceding coat or surface completely, and there shall be a visually perceptible difference in shades of successive coats.

c. Finished Surfaces: Provide finished surfaces free from runs, drops, ridges, waves, laps, brush marks, and variations in colors.

3.5.2 Mixing and Thinning of Paints

Reduce paints to proper consistency by adding fresh paint, except when thinning is mandatory to suit surface, temperature, weather conditions, application methods, or for the type of paint being used. Obtain written permission from the Contracting Officer to use thinners. The written permission shall include quantities and types of thinners to use.

When thinning is allowed, paints shall be thinned immediately prior to application with not more than 1 pint of suitable thinner per gallon. The use of thinner shall not relieve the Contractor from obtaining complete hiding, full film thickness, or required gloss. Thinning shall not cause the paint to exceed limits on volatile organic compounds. Paints of different manufacturers shall not be mixed.

3.5.3 Coating Systems

a. Systems by Substrates: Apply coatings that conform to the respective specifications listed in the following Tables:
Table

Division 3. Exterior Concrete Paint Table
Division 4. Exterior Concrete Masonry Units Paint Table
Division 5. Exterior Metal, Ferrous and Non-Ferrous Paint Table
Division 3. Interior Concrete Paint Table
Division 4. Interior Concrete Masonry Units Paint Table
Division 5. Interior Metal, Ferrous and Non-Ferrous Paint Table
Division 9: Interior Plaster, Gypsum Board, Textured Surfaces Paint Table

b. Minimum Dry Film Thickness (DFT): Apply paints, primers, varnishes, enamels, undercoats, and other coatings to a minimum dry film thickness of 1.5 mil each coat unless specified otherwise in the Tables. Coating thickness where specified, refers to the minimum dry film thickness.

c. Coatings for Surfaces Not Specified Otherwise: Coat surfaces which have not been specified, the same as surfaces having similar conditions of exposure.

d. Existing Surfaces Damaged During Performance of the Work, Including New Patches In Existing Surfaces: Coat surfaces with the following:

(1) One coat of primer.

(2) One coat of undercoat or intermediate coat.

(3) One topcoat to match adjacent surfaces.

e. Existing Coated Surfaces To Be Painted: Apply coatings conforming to the respective specifications listed in the Tables herein, except that pretreatments, sealers and fillers need not be provided on surfaces where existing coatings are soundly adhered and in good condition. Do not omit undercoats or primers.

3.6 COATING SYSTEMS FOR METAL

Apply coatings of Tables in Division 5 for Exterior and Interior.

a. Apply specified ferrous metal primer on the same day that surface is cleaned, to surfaces that meet all specified surface preparation requirements at time of application.

b. Inaccessible Surfaces: Prior to erection, use one coat of specified primer on metal surfaces that will be inaccessible after erection.

c. Shop-primed Surfaces: Touch up exposed substrates and damaged coatings to protect from rusting prior to applying field primer.

d. Surface Previously Coated with Epoxy or Urethane: Apply MPI 101, 1.5 mils DFT immediately prior to application of epoxy or urethane coatings.

e. Pipes and Tubing: The semitransparent film applied to some pipes and tubing at the mill is not to be considered a shop coat, but shall be overcoated with the specified ferrous-metal primer prior to application of finish coats.
f. Exposed Nails, Screws, Fasteners, and Miscellaneous Ferrous Surfaces.
On surfaces to be coated with water thinned coatings, spot prime
exposed nails and other ferrous metal with latex primer MPI 107.

3.7 COATING SYSTEMS FOR CONCRETE AND CEMENTITIOUS SUBSTRATES

Apply coatings of Tables in Division 3, 4 and 9 for Exterior and Interior.

3.8 INSPECTION AND ACCEPTANCE

In addition to meeting previously specified requirements, demonstrate
mobility of moving components, including swinging and sliding doors,
cabinets, and windows with operable sash, for inspection by the Contracting
Officer. Perform this demonstration after appropriate curing and drying
times of coatings have elapsed and prior to invoicing for final payment.

3.9 WASTE MANAGEMENT

As specified in the Waste Management Plan and as follows. Do not use
kerosene or any such organic solvents to clean up water based paints.
Properly dispose of paints or solvents in designated containers. Close and
seal partially used containers of paint to maintain quality as necessary
for reuse. Store in protected, well-ventilated, fire-safe area at moderate
temperature. Place materials defined as hazardous or toxic waste in
designated containers.

3.10 PAINT TABLES

All DFT's are minimum values. Use only interior paints and coatings that
meet VOC requirements of LEED low emitting materials credit. Acceptable
products are listed in the MPI Green Approved Products list, available at
http://www.specifygreen.com/APL/ProductIdxByMPinum.asp.

3.10.1 EXTERIOR PAINT TABLES

DIVISION 3: EXTERIOR CONCRETE PAINT TABLE

A. New and uncoated existing and Existing, previously painted concrete;
vertical surfaces,
excluding tops of slabs:

1. Latex
 New; MPI EXT 3.1A-G2 (Flat) / Existing; MPI REX 3.1A-G2 (Flat)
 Primer: Intermediate: Topcoat:
 MPI 10 MPI 10 MPI 10
 System DFT: 3.5 mils

DIVISION 4: EXTERIOR CONCRETE MASONRY UNITS PAINT TABLE

A. New and Existing concrete masonry on uncoated surface:

1. Latex
 New; MPI EXT 4.2A-G1 (Flat) / Existing; MPI REX 4.2A-G1 (Flat)
 Block Filler: Primer: Intermediate: Topcoat:
 MPI 4 N/A MPI 10 MPI 10
 System DFT: 11 mils
DIVISION 5: EXTERIOR METAL, FERROUS AND NON-FERROUS PAINT TABLE

STEEL / FERROUS SURFACES

A. New Steel that has been hand or power tool cleaned to SSPC SP 2 or SSPC SP 3

1. Alkyd
 New; MPI EXT 5.1Q-G5 (Semigloss) Existing; MPI REX 5.1D-G5
 Primer: Intermediate: Topcoat:
 MPI 23 MPI 94 MPI 94
 System DFT: 5.25 mils

EXTERIOR GALVANIZED SURFACES

F. New Galvanized surfaces:

1. Waterborne Primer / Waterborne Light Industrial Coating
 MPI EXT 5.3J-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 134 MPI 163 MPI 163
 System DFT: 4.5 mils

EXTERIOR SURFACES, OTHER METALS (NON-FERROUS)

I. Aluminum, aluminum alloy and other miscellaneous non-ferrous metal items not otherwise specified except hot metal surfaces, roof surfaces, and new prefinished equipment. Match surrounding finish:

1. Waterborne Light Industrial Coating

 MPI EXT 5.4G-G5(Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 95 MPI 163 MPI 163
 System DFT: 5 mils

J. Surfaces adjacent to painted surfaces; Mechanical, Electrical, including valves, conduit, hangers, supports, and miscellaneous metal items not otherwise specified except floors, hot metal surfaces, and new prefinished equipment. Match surrounding finish:

1. Alkyd

 MPI EXT 5.1D-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 79 MPI 94 MPI 94
 System DFT: 5.25 mils

3.10.2 INTERIOR PAINT TABLES

DIVISION 3: INTERIOR CONCRETE PAINT TABLE

A. New and uncoated existing and Existing, previously painted Concrete, vertical surfaces, not specified otherwise:

1. Latex
DIVISION 3: INTERIOR CONCRETE PAINT TABLE

New; MPI INT 3.1A-G2 (Flat) / Existing; MPI RIN 3.1A-G2 (Flat)
Primer: Intermediate: Topcoat:
MPI 50 MPI 44 MPI 44
System DFT: 4 mils

DIVISION 4: INTERIOR CONCRETE MASONRY UNITS PAINT TABLE

A. New and uncoated Existing Concrete masonry:

1. High Performance Architectural Latex
 MPI INT 4.2D-G2 (Flat)
 Filler Primer: Intermediate: Topcoat:
 MPI 4 N/A MPI 138 MPI 138
 System DFT: 11 mils

B. Existing, previously painted Concrete masonry:

1. High Performance Architectural Latex
 MPI RIN 4.2K-G2 (Flat)
 Spot Primer: Intermediate: Topcoat:
 MPI 50 MPI 138 MPI 138
 System DFT: 4.5 mils

DIVISION 5: INTERIOR METAL, FERROUS AND NON-FERROUS PAINT TABLE

INTERIOR STEEL / FERROUS SURFACES

A. Metal, Mechanical, Electrical, including valves, conduit, hangers, supports, Surfaces adjacent to painted surfaces (Match surrounding finish), and miscellaneous metal items not otherwise specified except floors, hot metal surfaces, and new prefinished equipment:

DIVISION 9: INTERIOR PLASTER, GYPSUM BOARD, TEXTURED SURFACES PAINT TABLE

A. New and Existing, previously painted Wallboard not otherwise specified:

1. High Performance Architectural Latex - High Traffic Areas
 New; MPI INT 9.2B-G2 (Flat) / Existing; MPI RIN 9.2B-G2 (Flat)
 Primer: Intermediate: Topcoat:
 MPI 50 MPI 138 MPI 138
 System DFT: 4 mils

 -- End of Section --
SECTION 10 14 00.20
INTERIOR SIGNAGE

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

36 CFR 1191 Americans with Disabilities Act (ADA) Accessibility Guidelines for Buildings and Facilities; Architectural Barriers Act (ABA) Accessibility Guidelines

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data
 Installation
 Warranty

SD-04 Samples
 Interior Signage
 Software

SD-10 Operation and Maintenance Data
 Approved Manufacturer's Instructions
 Protection and Cleaning

1.3 EXTRA MATERIALS

Provide additional paper inserts and one copy of the software for user produced signs and inserts after project completion and equipment necessary for removal of signage parts and pieces.
1.4 QUALITY ASSURANCE

1.4.1 Samples

Submit interior signage samples of each of the following sign types showing typical quality, workmanship and color: Standard Room sign, Changeable message strip sign. The samples may be installed in the work, provided each sample is identified and location recorded.

1.5 DELIVERY, STORAGE, AND HANDLING

Materials shall be packaged to prevent damage and deterioration during shipment, handling, storage and installation. Product shall be delivered to the jobsite in manufacturer's original packaging and stored in a clean, dry area in accordance with manufacturer's instructions.

1.6 WARRANTY

Warrant the interior signage for a period of 2 years against defective workmanship and material. Warranties shall be signed by the authorized representative of the manufacturer. Submit warranty accompanied by the document authenticating the signer as an authorized representative of the guarantor. Guarantee that the signage products and the installation are free from any defects in material and workmanship from the date of delivery.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Signs, plaques, directories, and dimensional letters shall be the standard product of a manufacturer regularly engaged in the manufacture of such products that essentially duplicate signs that have been in satisfactory use at least 2 years prior to bid opening. Obtain signage from a single manufacturer with edges and corners of finished letterforms and graphics true and clean.

2.2 ROOM IDENTIFICATION/DIRECTIONAL SIGNAGE SYSTEM

2.2.1 Standard Room Signs

Signs shall consist of acrylic plastic 0.080 inch thickness minimum conforming to ANSI Z97.1 and shall conform to the following:

a. Units shall be frameless. Corners of signs shall be squared and edges polished.

2.2.2 Type of Mounting For Signs

Surface mounted signs shall be mounted with 1/16 inch thick closed cell vinyl foam with adhesive backing. Adhesive shall be transparent, long aging, high tech formulation on two sides of the vinyl foam.

2.2.3 Graphics

Signage graphics for modular signs shall conform to the following:

2.2.3.1 Surface Applied Photopolymer

Integral graphics and Braille achieved by photomechanical stratification
processes. Photopolymer used for ADA compliant graphics shall be of the type that has a minimum durometer reading of 90. Tactile graphics shall be raised 1/32 inch from the first surface of plaque by photomechanical stratification process.

2.2.4 Character Proportions and Heights

Letters and numbers on signs conform to 36 CFR 1191.

2.2.5 Tactile Letters, Symbols and Braille

Raised letters and numbers on signs shall conform to 36 CFR 1191.

2.3 FABRICATION AND MANUFACTURE

2.3.1 Factory Workmanship

Holes for bolts and screws shall be drilled or punched. Drilling and punching shall produce clean, true lines and surfaces. Exposed surfaces of work shall have a smooth finish and exposed riveting shall be flush. Fastenings shall be concealed where practicable.

2.3.2 Dissimilar Materials

Where dissimilar metals are in contact, the surfaces will be protected to prevent galvanic or corrosive action.

2.4 COLOR, FINISH, AND CONTRAST

Color shall be as indicated. Finish of all signs shall be eggshell, matte, or other non-glare finish as required in handicapped-accessible buildings.

2.5 TYPEFACE

ADA-ABA compliant font for Room Signs: Helvetica Regular .

PART 3 EXECUTION

3.1 INSTALLATION

Signs shall be installed plumb and true and in accordance with approved manufacturer's instructions at locations shown on the detail. Submit six copies of operating instructions outlining the step-by-step procedures required for system operation. The instructions shall include simplified diagrams for the system as installed, the manufacturer's name, model number, service manual, parts list, and brief description of all equipment and their basic operating features. Each set shall be permanently bound and shall have a hard cover. The following identification shall be inscribed on the covers: the words "OPERATING AND MAINTENANCE INSTRUCTIONS", name and location of the facility, name of the Contractor, and contract number. Mounting height and mounting location shall conform to 36 CFR 1191. Required blocking shall be installed. Signs on doors or other surfaces shall not be installed until finishes on such surfaces have been installed. Signs installed on glass surfaces shall be installed with matching blank back-up plates in accordance with manufacturer's instructions.
3.1.1 Anchorage

Anchorage shall be in accordance with approved manufacturer's instructions. Anchorage not otherwise specified or shown shall include slotted inserts, expansion shields, and powder-driven fasteners when approved for concrete; toggle bolts and through bolts for masonry; machine carriage bolts for steel; lag bolts and screws for wood. Exposed anchor and fastener materials shall be compatible with metal to which applied and shall have matching color and finish.

 a. Signs mounted to painted gypsum board surfaces shall be removable for painting maintenance.

3.1.2 Protection and Cleaning

Protect the work against damage during construction. Frames, and other sign surfaces shall be cleaned at completion of sign installation in accordance with the manufacturer's approved instructions and the requirements of Section 01 78 23 OPERATION AND MAINTENANCE DATA, Package 1. Submit six copies of maintenance instructions listing routine procedures, repairs, and guides.

 -- End of Section --
SECTION 10 26 13
WALL AND CORNER GUARDS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

SOCIETY OF AUTOMOTIVE ENGINEERS INTERNATIONAL (SAE)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Corner Guards; G
1.3 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the project site in manufacturer's original unopened containers with seals unbroken and labels and trademarks intact. Keep materials dry, protected from weather and damage, and stored under cover. Materials shall be stored at approximately 70 degrees F for at least 48 hours prior to installation.

1.4 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

To the maximum extent possible, corner guards shall be the standard products of a single manufacturer and shall be furnished as detailed. Drawings show general configuration of products required, and items differing in minor details from those shown will be acceptable.

2.1.1 Resilient Material

Provide resilient material consisting of high impact resistant extruded acrylic vinyl, polyvinyl chloride, or injection molded thermal plastic conforming to the following:

2.1.1.1 Minimum Impact Resistance

Minimum impact resistance shall be 18 ft-lbs/sq. inch when tested in accordance with ASTM D256, (Izod impact, ft-lbs per sq inch notched).

2.1.1.2 Fire Rating

Fire rating shall be Class 1 when tested in accordance with ASTM E84, having a maximum flame spread of 25 and a smoke developed rating of 450 or less. Material shall be rated self extinguishing when tested in accordance with ASTM D635. Material shall be labeled and tested by an approved nationally known testing laboratory. Resilient material used for protection on fire rated doors and frames shall be listed by the testing laboratory performing the tests. Resilient material installed on fire rated wood/steel door and frame assemblies shall have been tested on similar type assemblies. Test results of material tested on any other combination of door/frame assembly will not be acceptable.
2.1.1.3 Integral Color

Colored components shall have integral color and shall be matched in accordance with SAE J1545 to within plus or minus 1.0 on the CIE-LCH scales.

2.1.1.4 Chemical and Stain Resistance

Materials shall be resistant to chemicals and stains reagents in accordance with ASTM D543.

2.1.1.5 Fungal and Bacterial Resistance

Materials shall be resistant to fungi and bacteria in accordance with ASTM G21, as applicable.

2.2 CORNER GUARDS

2.2.1 Resilient Corner Guards

Corner guard units shall be surface mounted type, radius formed to profile shown. Corner guards shall extend from floor above wall base to ceiling. Mounting hardware, cushions, and base plates shall be furnished. Assembly shall consist of a snap-on corner guard formed from high impact resistant resilient material, mounted on a continuous aluminum retainer. Extruded aluminum retainer shall conform to ASTM B221, alloy 6063, temper T5 or T6. Flush mounted type guards shall act as a stop for adjacent wall finish material. Factory fabricated end closure caps shall be furnished for top and bottom of surface mounted corner guards. Flush mounted corner guards installed in fire rated wall shall maintain the rating of the wall. Insulating materials that are an integral part of the corner guard system shall be provided by the manufacturer of the corner guard system. Exposed metal portions of fire rated assemblies shall have a paintable surface.

2.3 TRIM, FASTENERS AND ANCHORS

Provide vinyl trim, fasteners and anchors for each specific installation as shown.

2.4 FINISH

Submit three samples indicating color and texture of materials requiring color and finish.

2.4.1 Resilient Material Finish

Finish for resilient material shall be embossed texture with colors in accordance with SAE J1545.

2.5 ADHESIVES

Adhesive for resilient material shall be in accordance with manufacturers recommendations.

2.6 COLOR

Color shall be selected from manufacturers standard colors.
PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Corner Guards

Material shall be mounted at location indicated in accordance with manufacturer's recommendations.

-- End of Section --
SECTION 12 24 13
ROLLER WINDOW SHADES

PART 1 GENERAL

1.1 GENERAL REQUIREMENTS

Provide roller window shades, complete with necessary brackets, fittings, and hardware as indicated. Mount and operate equipment in accordance with manufacturer's instructions. Windows to receive a shade must be completely covered.

a. Submit drawings showing plans, elevations, sections, product details, installation details, operational clearances, and relationship to adjacent work. Include the use of same room designations as indicated on the drawings.

b. Provide manufacturer's data composed of catalog cuts, brochures, product information, and operating and maintenance instructions on each product to be used. Include styles, profiles and features.

c. Furnish samples of each type and color of roller shade fabric and roller shade channel. Shade material shall be minimum 6 by 6 inch in size. Mark face of material to indicate interior faces.

d. Submit fire resistance data, flame spread and smoke contribution data.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ASTM INTERNATIONAL (ASTM)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES

SD-02 Shop Drawings

Installation; G
SD-03 Product Data
Window Shades; G

SD-04 Samples
Window Shades; G

SD-06 Test Reports
Window Shades

SD-08 Manufacturer's Instructions
Window Shades

SD-10 Operation and Maintenance Data
Window Shades

SD-11 Closeout Submittals
Warranty; G

1.4 QUALITY ASSURANCE

1.4.1 Qualifications

1.4.1.1 Manufacturer's Qualifications

Obtain roller shades through one source from a single manufacturer with a
minimum of twenty years experience and minimum of three projects of similar
scope and size in manufacturing products comparable to those specified in
this section.

1.4.1.2 Installer's Qualifications

Installer trained and certified by the manufacturer with a minimum of ten
years experience in installing products comparable to those specified in
this section.

1.4.2 Flammability Requirements

Passes in accordance with NFPA 701 small and large-scale vertical burn.
Materials tested must be identical to products proposed for use.

1.4.3 Anti-Microbial Requirements

'No Growth' per ASTM G21 results for fungi ATCC9642, ATCC 9644, ATCC9645.

1.5 DELIVERY, STORAGE, AND HANDLING

Deliver components to the jobsite in the manufacturer's original packaging
with the brand or company name, item identification, and project reference
clearly marked. Store components in a dry location that is adequately
ventilated and free from dust, water, or other contaminants and has easy
access for inspection and handling. Store materials flat in a clean dry
area with temperature maintained above 50 degrees F. Do not open
containers until needed for installation unless verification inspection is required.

1.6 WARRANTY

Provide 10 year minimum limited warranty.

PART 2 PRODUCTS

2.1 WINDOW SHADES

Roller tube must operate smoothly and be of sufficient diameter and thickness to prevent excessive deflection. Provide brackets that are appropriate for inside mount. The shade cloth must meet the performance described in NFPA 701, small scale test. Treat steel features for corrosion resistance.

Provide Various Fiber Components with a minimum of 60 percent recycled content. Provide data identifying percentage of recycled content for various fiber components.

2.1.1 Light Filtering Shades

Provide light filtering window shades to conform with the following:

a. Roller tube must be extruded aluminum or steel. Diameter, wall thickness, and material to be selected by the manufacturer to accommodate the shade size. Provide roller idler assembly of molded nylon and zinc-plated steel pin. Sliding pin must allow easy installation and removal of roller. Fabric must be connected to the roller tube with double sided adhesive specifically developed to attach coated textiles to metal to eliminate horizontal impressions in fabric or attached with a spline lock system.

b. Fascia must be L-shaped aluminum extrusion to conceal shade roller and hardware that snaps onto end caps without requiring exposed fasteners of any kind. Fascia can be mounted continuously across two or more shade bands.

c. End caps must be stamped steel with universal design suitable for mounting to window mullions. Provide size compatible with roller size. End cap covers must match fascia/headbox finish.

d. Provide hardware that allows for field adjustment or removal of shade roller tube and other operable hardware component or adjustment of motor without requiring removal of brackets and end or center supports. Provide hardware system that allows for operation of multiple shade bands by a single operator. Connectors must be offset to assure alignment from the first to the last shade band. Provide shade hardware constructed of minimum 1/8 inch thick plated steel or heavier as required to support 150 percent of the full weight of each shade.

e. Manual Operated Chain Drive Hardware must provide for universal, regular and offset drive capacity, allowing drive chain to fall at front, rear or non-offset for all shade drive end brackets. Universal offset must be adjustable for future change. Provide positive mechanical engagement of drive mechanism to shade roller tube. The drive bracket must be fully integrated with all accessories. Drive
chain must be #10 stainless steel chain rated to 90 lb. minimum breaking strength.

2.2 COLOR

Provide color, pattern and texture for metal and shade fabric as indicated. Color listed is not intended to limit the selection of equal colors from other manufacturers.

PART 3 EXECUTION

3.1 FIELD MEASUREMENTS

After becoming familiar with details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing the work.

3.2 INSTALLATION

Do not install building construction materials that show visual evidence of biological growth.

Perform installation in accordance with the approved detail drawings and manufacturer's installation instructions. Install units level, plumb, secure, and at proper height and location relative to window units. Provide and install supplementary or miscellaneous items in total, including clips, brackets, or anchorages incidental to or necessary for a sound, secure, and complete installation. Do not start installation until completion of room painting and finishing operations.

3.3 CLEAN-UP

Upon completion of the installation, clean window treatments and adjust them for form and appearance and proper operating condition. Repair or replace damaged units as directed by the Contracting Officer. Isolate metal parts from direct contact with concrete, mortar, or dissimilar metals. Ensure shades installed in recessed pockets can be removed without disturbing the pocket. The entire shade, when retracted, must be contained inside the pocket. For shades installed outside the jambs and mullions, overlap each jamb and mullion 0.75 inch or more when the jamb and mullion sizes permit. Include all hardware, brackets, anchors, fasteners, and accessories necessary for a complete, finished installation.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE)

ASSE 1015 (2011) Performance Requirements for Double Check Backflow Prevention Assemblies and Double Check Fire Protection Backflow Prevention Assemblies - (ANSI approved 2010)

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C900 (2016) Polyvinyl Chloride (PVC) Pressure Pipe, and Fabricated Fittings, 4 In. Through 60 In. (100 mm Through 1,500 mm)

ASME INTERNATIONAL (ASME)

ASME B16.11 (2016) Forged Fittings, Socket-Welding and Threaded
ASME B16.21 (2011) Nonmetallic Flat Gaskets for Pipe Flanges
ASME B16.3 (2011) Malleable Iron Threaded Fittings, Classes 150 and 300
ASME B16.4 (2011) Standard for Gray Iron Threaded Fittings; Classes 125 and 250
ASME B18.2.2 (2015) Nuts for General Applications:
Machine Screw Nuts, Hex, Square, Hex Flange, and Coupling Nuts (Inch Series)

ASTM INTERNATIONAL (ASTM)

ASTM A135/A135M

ASTM A183

ASTM A449

ASTM A47/A47M

ASTM A53/A53M

ASTM A536

ASTM A795/A795M

ASTM F436
(2011) Hardened Steel Washers

FM GLOBAL (FM)

FM APP GUIDE
(updated on-line) Approval Guide
http://www.approvalguide.com/

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-71
(2011; Errata 2013) Gray Iron Swing Check Valves, Flanged and Threaded Ends

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 101
(2018; TIA 18-1) Life Safety Code

NFPA 13
(2016; TIA 16-1; TIA 16-2; TIA 16-3 2016; Errata 17-1; Errata 17-2) Standard for the Installation of Sprinkler Systems

NFPA 1963
(2014) Standard for Fire Hose Connections

NFPA 24
(2016; ERTA 2016) Standard for the Installation of Private Fire Service Mains and Their Appurtenances
1.2 SYSTEM DESCRIPTION

Furnish piping offsets, fittings, and any other accessories as required to provide a complete installation and to eliminate interference with other construction. Install sprinkler system over and under ducts, piping and platforms when such equipment can negatively effect or disrupt the sprinkler discharge pattern and coverage. Provide wet pipe sprinkler system in areas indicated on the drawings. The work includes the removal of existing components and the installation of new components to provide complete sprinkler coverage throughout the building including renovated areas. Except as modified herein, the system shall be designed and installed in accordance with UFC 3-600-01 and NFPA 13. Rack sprinklers shall be in accordance with NFPA 13. Pipe sizes which are not indicated on drawings shall be determined by hydraulic calculation. Design any portions of the sprinkler system that are not indicated on the drawings including locating sprinklers, piping and equipment, and size piping and equipment when this information is not indicated on the drawings or is not specified herein. The design of the sprinkler system shall be based on hydraulic calculations, and the other provisions specified herein.

1.2.1 Hydraulic Design

Hydraulically design the system in accordance with the latest edition of UFC 3-600-01. The minimum pipe size for branch lines in gridded systems shall be 1-1/4 inch. Hydraulic calculations shall be in accordance with the Area/Density Method of NFPA 13. Water velocity in the piping shall not exceed 20 ft/s.

1.2.1.1 Hose Demand

Add an allowance for exterior hose streams of 250 gpm to the sprinkler
1.2.1.2 Basis for Calculations

The design of the system shall be based upon current flow test as conducted by the Fire Sprinkler contractor and witnessed by the Contracting Officer's Representative and the Hurlburt Field Fire Department. Water supply shall be presumed available at the point of connection to existing. Hydraulic calculations shall be based upon the Hazen-Williams formula with a "C" value of 120 for steel piping, 150 for copper tubing, 140 for new cement-lined ductile-iron piping, and 100 for existing underground piping.

1.2.1.3 Hydraulic Calculations

Submit hydraulic calculations, including a drawing showing hydraulic reference points and pipe segments as and outlined in NFPA 13, except that calculations shall be performed by computer using software intended specifically for fire protection system design using the design data shown on the drawings. Software that uses k-factors for typical branch lines is not acceptable. Calculations shall be based on the water supply data shown on the drawings to substantiate that the design area used in the calculations is the most demanding hydraulically. Water supply curves and system requirements shall be plotted on semi-logarithmic graph paper so as to present a summary of the complete hydraulic calculation. Provide a summary sheet listing sprinklers in the design area and their respective hydraulic reference points, elevations, actual discharge pressures and actual flows. Elevations of hydraulic reference points (nodes) shall be indicated. Documentation shall identify each pipe individually and the nodes connected thereto. Indicate the diameter, length, flow, velocity, friction loss, number and type fittings, total friction loss in the pipe, equivalent pipe length and Hazen-Williams coefficient for each pipe. For gridded systems, calculations shall show peaking of demand area friction loss to verify that the hydraulically most demanding area is being used. Also for gridded systems, a flow diagram indicating the quantity and direction of flows shall be included. A drawing showing hydraulic reference points (nodes) and pipe designations used in the calculations shall be included and shall be independent of shop drawings.

1.2.2 Sprinkler Coverage

Sprinklers shall be uniformly spaced on branch lines. In buildings protected by automatic sprinklers, sprinklers shall provide coverage throughout 100 percent of the building. This includes, but is not limited to, telephone rooms, electrical equipment rooms, boiler rooms, switchgear rooms, transformer rooms, and other electrical and mechanical spaces. Coverage per sprinkler shall be in accordance with NFPA 13, but shall not exceed 100 square feet for extra hazard occupancies, 130 square feet for ordinary hazard occupancies, and 225 square feet for light hazard occupancies. Exceptions are as follows:

a. Sprinklers may be omitted from small rooms which are exempted for specific occupancies in accordance with NFPA 101.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submit the following in accordance with Section 01 33 00.
SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Shop Drawings; G
As-Built Drawings

SD-03 Product Data

Fire Protection Related Submittals
Materials and Equipment; G
Spare Parts
Preliminary Tests; G
Final Acceptance Test; G
Fire Protection Specialist; G
Sprinkler System Installer; G

SD-05 Design Data

Sway Bracing; G
Hydraulic Calculations; G

SD-06 Test Reports

Preliminary Test Report; G
Final Acceptance Test Report; G

SD-07 Certificates

Inspection by Fire Protection Specialist; G

1.4 QUALITY ASSURANCE

Compliance with referenced NFPA standards is mandatory. This includes advisory provisions listed in the appendices of such standards, as though the word "shall" had been substituted for the word "should" wherever it appears. In the event of a conflict between specific provisions of this specification and applicable NFPA standards, this specification shall govern. Reference to "authority having jurisdiction" shall be interpreted to mean the Contracting Officer.

1.4.1 Fire Protection Specialist

Perform work specified in this section under the supervision of and certified by the Fire Protection Specialist who is an individual registered professional engineer who has passed the fire protection engineering written examination administered by the National Council of Examiners for Engineering and Surveys (NCEES) or who is certified as a Level IV Technician by National Institute for Certification in Engineering Technologies (NICET) in the Automatic Sprinkler System Layout subfield of Fire Protection Engineering Technology in accordance with NICET 1014-7. Submit the name and documentation of certification of the proposed Fire Protection Specialists, no later than 14 days after the Notice to Proceed and prior to the submittal of the sprinkler system drawings and hydraulic calculations. The Fire Protection Specialist shall prepare and submit a list of the fire protection related submittals, no later than 7 days after the approval of the Fire Protection Specialist, from the Contract Submittal Register that relate to the successful installation of the sprinkler systems(s). The submittals identified on this list shall be accompanied by
a letter of approval signed and dated by the Fire Protection Specialist when submitted to the Government. The Fire Protection Specialist shall be regularly engaged in the design and installation of the type and complexity of system specified in the contract documents, and shall have served in a similar capacity for at least three systems that have performed in the manner intended for a period of not less than 6 months.

1.4.2 Sprinkler System Installer

Work specified in this section shall be performed by the Sprinkler System Installer who is regularly engaged in the installation of the type and complexity of system specified in the contract documents, and who has served in a similar capacity for at least three systems that have performed in the manner intended for a period of not less than 6 months. Submit the name and documentation of certification of the proposed Sprinkler System Installer, concurrent with submittal of the Fire Protection Specialist Qualifications.

1.4.3 Shop Drawings

Shop Drawings shall conform to the requirements established for working plans as prescribed in NFPA 13. Submit 3 copies of the Sprinkler System shop drawings, no later than 21 days prior to the start of sprinkler system installation. Drawings shall include plan and elevation views demonstrating that the equipment will fit the allotted spaces with clearance for installation and maintenance. Each set of drawings shall include the following:

a. Descriptive index of drawings in the submittal with drawings listed in sequence by drawing number. A legend identifying device symbols, nomenclature, and conventions used.

b. Floor plans drawn to a scale not less than 1/8" = 1'-0" which clearly show locations of sprinklers, risers, pipe hangers, seismic separation assemblies, sway bracing, inspector's test connections, drains, and other applicable details necessary to clearly describe the proposed arrangement. Each type of fitting used and the locations of bushings, reducing couplings, and welded joints shall be indicated.

c. Actual center-to-center dimensions between sprinklers on branch lines and between branch lines; from end sprinklers to adjacent walls; from walls to branch lines; from sprinkler feed mains, cross-mains and branch lines to finished floor and roof or ceiling. A detail shall show the dimension from the sprinkler and sprinkler deflector to the ceiling in finished areas.

d. Longitudinal and transverse building sections showing typical branch line and cross-main pipe routing as well as elevation of each typical sprinkler above finished floor.

e. Details of each type of riser assembly; pipe hanger; sway bracing for earthquake protection, and restraint of underground water main at point-of-entry into the building, and electrical devices and interconnecting wiring. Submit load calculations for sizing of sway bracing, for systems that are required to be protected against damage from earthquakes.

f. Drawings and hydraulic calculations shall be sealed by the Fire Protection Engineer.
1.5 DELIVERY, STORAGE, AND HANDLING

All equipment delivered and placed in storage shall be housed in a manner to preclude any damage from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Additionally, all pipes shall either be capped or plugged until installed.

1.6 EXTRA MATERIALS

Submit spare parts data for each different item of material and equipment specified. The data shall include a complete list of parts and supplies, with current unit prices and source of supply, and a list of parts recommended by the manufacturer to be replaced after 1 year and 3 years of service. Include a list of special tools and test equipment required for maintenance and testing of the products supplied.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Provide materials and equipment which are standard products of a manufacturer regularly engaged in the manufacture of such products and that essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening.

2.2 NAMEPLATES

All equipment shall have a nameplate that identifies the manufacturer's name, address, type or style, model or serial number, and catalog number.

2.3 REQUIREMENTS FOR FIRE PROTECTION SERVICE

Provide Materials and Equipment that have been tested by Underwriters Laboratories, Inc. and are listed in UL Fire Prot Dir or approved by Factory Mutual and listed in FM APP GUIDE. Where the terms "listed" or "approved" appear in this specification, such shall mean listed in UL Fire Prot Dir or FM APP GUIDE. Submit manufacturer's catalog data included with the Sprinkler System Drawings for all items specified herein. The data shall be highlighted to show model, size, options, etc., that are intended for consideration. Data shall be adequate to demonstrate compliance with all contract requirements. In addition, provide a complete equipment list that includes equipment description, model number and quantity.

2.4 UNDERGROUND PIPING COMPONENTS

2.4.1 Pipe to FDC (Fire Department Connection)

Piping to FDC from a point 6 inches above the floor to a point 5 feet outside the building wall shall be ductile iron with a rated working pressure of 175 psi conforming to NFPA 24, Section 8-3.2. Piping more than 5 feet outside the building walls shall be AWWA C900 PVC. Piping from water main to the base of the fire riser is existing.

2.4.2 Fittings and Gaskets

Fittings shall be ductile iron conforming to AWWA C110/A21.10. Gaskets shall be suitable in design and size for the pipe with which such gaskets
are to be used. Gaskets for ductile iron pipe joints shall conform to AWWA C111/A21.11.

2.5 ABOVEGROUND PIPING COMPONENTS

Aboveground piping shall be steel.

2.5.1 Steel Piping Components

2.5.1.1 Steel Pipe

Except as modified herein, steel pipe shall be black as permitted by NFPA 13 and shall conform to applicable provisions of ASTM A795/A795M, ASTM A53/A53M, or ASTM A135/A135M. All pipe shall be Schedule 40. Pipe shall be marked with the name of the manufacturer, kind of pipe, and ASTM designation.

2.5.1.2 Fittings for Non-Grooved Steel Pipe

Fittings shall be cast iron conforming to ASME B16.4, steel conforming to ASME B16.9 or ASME B16.11, or malleable iron conforming to ASME B16.3. Fittings into which sprinklers, drop nipples or riser nipples (sprigs) are screwed shall be threaded type. Plain-end fittings with mechanical couplings, fittings that use steel gripping devices to bite into the pipe and segmented welded fittings shall not be used.

2.5.1.3 Grooved Mechanical Joints and Fittings

Joints and fittings shall be designed for not less than 175 psi service and shall be the product of the same manufacturer; segmented welded fittings shall not be used. Fitting and coupling houses shall be malleable iron conforming to ASTM A47/A47M, Grade 32510; ductile iron conforming to ASTM A536, Grade 65-45-12. Gasket shall be the flush type that fills the entire cavity between the fitting and the pipe. Nuts and bolts shall be heat-treated steel conforming to ASTM A183 and shall be cadmium plated or zinc electroplated.

2.5.1.4 Flanges

Flanges shall conform to NFPA 13 and ASME B16.1. Gaskets shall be non-asbestos compressed material in accordance with ASME B16.21, 1/16 inch thick, and full face or self-centering flat ring type.

2.5.1.5 Bolts, Nut, and Washers

Bolts shall be conform to ASTM A449, Type 1 and shall extend no less than three full threads beyond the nut with bolts tightened to the required torque. Nuts shall be hexagon type conforming to ASME B18.2.2. Washers shall meet the requirements of ASTM F436. Flat circular washers shall be provided under all bolt heads and nuts.

2.5.2 Valves

2.5.2.1 Control Valve and Gate Valve

Manually operated sprinkler control valve and gate valve shall be outside stem and yoke (OS&Y) type and shall be listed in UL Bld Mat Dir or FM APP GUIDE.
2.5.2.2 Check Valve

Check valve 2 inches and larger shall be listed in UL Bld Mat Dir or FM APP GUIDE. Check valves 4 inches and larger shall be of the swing type with flanged cast iron body and flanged inspection plate, shall have a clear waterway and shall meet the requirements of MSS SP-71, for Type 3 or 4.

2.5.2.3 Hose Valve

Valve shall comply with UL 668 and shall have a minimum rating of 300 psi. Valve shall be non-rising stem, all bronze, 90 degree angle type, with 2-1/2 inch American National Standard Fire Hose Screw Thread (NH) male outlet in accordance with NFPA 1963. Hose valve shall be provided with 2-1/2 to 1-1/2 inch reducer. Hose valves shall be equipped with luged cap with drip drain, cap gasket and chain. Valve finish shall be polished brass.

2.6 ALARM CHECK VALVE ASSEMBLY

Assembly shall include a riser check valve, pressure gauges, testing valves, main drain, and other components as required for a fully operational system.

2.7 ALARM INITIATING AND SUPERVisory DEVICES

2.7.1 Sprinkler Waterflow Indicator Switch, Vane Type

Switch shall be vane type with a pipe saddle and cast aluminum housing. The electro-mechanical device shall include a flexible, low-density polyethylene paddle conforming to the inside diameter of the fire protection pipe. The device shall sense water movements and be capable of detecting a sustained flow of 10 gpm or greater. The device shall contain a retard device adjustable from 0 to 90 seconds to reduce the possibility of false alarms caused by transient flow surges. The switch shall be tamper resistant and contain two SPDT (Form C) contacts arranged to transfer upon removal of the housing cover, and shall be equipped with a silicone rubber gasket to assure positive water seal and a dustproof cover and gasket to seal the mechanism from dirt and moisture.

2.7.2 Valve Supervisory (Tamper) Switch

Switch shall be suitable for mounting to the type of control valve to be supervised open. The switch shall be tamper resistant and contain one set of SPDT (Form C) contacts arranged to transfer upon removal of the housing cover or closure of the valve of more than two rotations of the valve stem.

2.8 FIRE DEPARTMENT CONNECTION

Fire department connection shall be a remote pedestal mounted type with cast brass body, with a chrome plated finish. The connection shall have two inlets with individual self-closing clappers, caps with drip drains and chains. Female inlets shall have 2-1/2 inch diameter American National Fire Hose Connection Screw Threads (NH) per NFPA 1963.

2.9 SPRINKLERS

Sprinklers with internal O-rings shall not be used. Sprinklers shall be used in accordance with their listed coverage limitations. Temperature
classification shall be ordinary. Sprinklers in high heat areas including attic spaces or in close proximity to unit heaters shall have temperature classification in accordance with NFPA 13. Extended coverage sprinklers shall not be used.

2.9.1 Concealed Sprinkler
Concealed sprinkler shall be chrome-plated and shall have a nominal 1/2 inch or 17/32 inch orifice.

2.9.2 Recessed Sprinkler
Recessed sprinkler shall be chrome-plated and shall have a nominal 1/2 inch or 17/32 inch orifice.

2.9.3 Flush Sprinkler
Flush sprinkler shall be chrome-plated and shall have a nominal 1/2 inch or 17/32 inch orifice.

2.9.4 Pendent Sprinkler
Pendent sprinkler shall be of the fusible strut or glass bulb type, recessed type with nominal 1/2 inch orifice. Pendent sprinklers shall have a polished chrome finish.

2.9.5 Upright Sprinkler
Upright sprinkler shall be chrome-plated and shall have a nominal 1/2 inch or 17/32 inch orifice.

2.9.6 Sidewall Sprinkler
Sidewall sprinkler shall have a nominal 1/2 inch orifice. Sidewall sprinkler shall have a polished chrome finish. Sidewall sprinkler shall be the quick-response type.

2.10 ACCESSORIES

2.10.1 Pendent Sprinkler Escutcheon
Escutcheon shall be one-piece metallic type with a depth of less than 3/4 inch and suitable for installation on pendent sprinklers. The escutcheon shall have a factory finish that matches the pendent sprinkler heads.

2.10.2 Pipe Escutcheon
Escutcheon shall be polished chromium-plated zinc alloy, or polished chromium-plated copper alloy. Escutcheons shall be either one-piece or split-pattern, held in place by internal spring tension or set screw.

2.10.3 Identification Sign
Valve identification sign shall be minimum 6 inches wide by 2 inches high with enamel baked finish on minimum 18 gauge steel or 0.024 inch aluminum with red letters on a white background or white letters on red background. Wording of sign shall include, but not be limited to "main drain," "auxiliary drain," "inspector's test," "alarm test," "alarm line," and similar wording as required to identify operational components.
2.11 DOUBLE-CHECK VALVE BACKFLOW PREVENTION ASSEMBLY

Double-check backflow prevention assembly shall comply with ASSE 1015. The assembly shall have a bronze, cast-iron or stainless steel body with flanged ends. The assembly shall include pressure gauge test ports and OS&Y shutoff valves on the inlet and outlet, 2-positive-seating check valve for continuous pressure application, and four test cocks. Assemblies shall be rated for working pressure of 150 psi. The maximum pressure loss shall be 6 psi at a flow rate equal to the sprinkler water demand, at the location of the assembly. A test port for a pressure gauge shall be provided both upstream and downstream of the double check backflow prevention assembly valves.

PART 3 EXECUTION

3.1 FIELD MEASUREMENTS

After becoming familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing the work.

3.2 INSTALLATION REQUIREMENTS

The installation shall be in accordance with the applicable provisions of NFPA 13, NFPA 24 and publications referenced therein. Installation of in-rack sprinklers shall comply with applicable provisions of NFPA 13.

3.3 INSPECTION BY FIRE PROTECTION SPECIALIST

Prior to ceiling installation and concurrent with the Final Acceptance Test Report, certification by the Fire Protection Specialist that the sprinkler system is installed in accordance with the contract requirements, including signed approval of the Preliminary and Final Acceptance Test Reports. The Fire Protection Specialist shall: 1) inspect the sprinkler system periodically during the installation to assure that the sprinkler system is being provided and installed in accordance with the contract requirements, 2) witness the preliminary and final tests, and sign the test results, 3) after completion of the system inspections and a successful final test, certify in writing that the system has been installed in accordance with the contract requirements. Any discrepancy shall be brought to the attention of the Contracting Officer in writing, no later than three working days after the discrepancy is discovered.

3.4 ABOVEGROUND PIPING INSTALLATION

3.4.1 Protection of Piping Against Earthquake Damage

Seismically protect the system piping against damage from earthquakes. This requirement is not subject to determination under NFPA 13. Install the seismic protection of the system piping in accordance with UFC 3-310-04, NFPA 13 and Annex A. Include the required features identified therein that are applicable to the specific piping system.

3.4.2 Piping in Exposed Areas

Install exposed piping without diminishing exit access widths, corridors or equipment access. Exposed horizontal piping, including drain piping, shall be installed to provide maximum headroom.
3.4.3 Piping in Finished Areas

In areas with suspended or dropped ceilings and in areas with concealed spaces above the ceiling, piping shall be concealed above ceilings. Piping shall be inspected, tested and approved before being concealed. Risers and similar vertical runs of piping in finished areas shall be concealed.

3.4.4 Pendent Sprinklers

Drop nipples to pendent sprinklers shall consist of minimum 1 inch pipe with a reducing coupling into which the sprinkler shall be threaded. Hangers shall be provided on arm-overs to drop nipples supplying pendent sprinklers when the arm-over exceeds 12 inches for steel pipe or 6 inches for copper tubing. Where sprinklers are installed below suspended or dropped ceilings, drop nipples shall be cut such that sprinkler ceiling plates or escutcheons are of a uniform depth throughout the finished space. The outlet of the reducing coupling shall not extend more than 1 inch below the underside of the ceiling. On pendent sprinklers installed below suspended or dropped ceilings, the distance from the sprinkler deflector to the underside of the ceiling shall not exceed 4 inches. Recessed pendent sprinklers shall be installed such that the distance from the sprinkler deflector to the underside of the ceiling shall not exceed the manufacturer's listed range and shall be of uniform depth throughout the finished area. Pendent sprinklers in suspended ceilings shall be a minimum of 6 inches from ceiling grid.

3.4.5 Upright Sprinklers

Riser nipples or "sprigs" to upright sprinklers shall contain no fittings between the branch line tee and the reducing coupling at the sprinkler. Riser nipples exceeding 30 inches in length shall be individually supported.

3.4.6 Pipe Joints

Pipe joints shall conform to NFPA 13, except as modified herein. Not more than four threads shall show after joint is made up. Welded joints will be permitted, only if welding operations are performed as required by NFPA 13 at the Contractor's fabrication shop, not at the project construction site. Flanged joints shall be provided where indicated or required by NFPA 13. Grooved pipe and fittings shall be prepared in accordance with the manufacturer's latest published specification according to pipe material, wall thickness and size. Grooved couplings, fittings and grooving tools shall be products of the same manufacturer. For copper tubing, pipe and groove dimensions shall comply with the tolerances specified by the coupling manufacturer. The diameter of grooves made in the field shall be measured using a "go/no-go" gauge, vernier or dial caliper, narrow-land micrometer, or other method specifically approved by the coupling manufacturer for the intended application. Groove width and dimension of groove from end of pipe shall be measured and recorded for each change in grooving tool setup to verify compliance with coupling manufacturer's tolerances. Grooved joints shall not be used in concealed locations, such as behind solid walls or ceilings, unless an access panel is shown on the drawings for servicing or adjusting the joint.

3.4.7 Reducers

Reductions in pipe sizes shall be made with one-piece tapered reducing fittings. The use of grooved-end or rubber-gasketed reducing couplings
will not be permitted. When standard fittings of the required size are not manufactured, single bushings of the face type will be permitted. Where used, face bushings shall be installed with the outer face flush with the face of the fitting opening being reduced. Bushings shall not be used in elbow fittings, in more than one outlet of a tee, in more than two outlets of a cross, or where the reduction in size is less than 1/2 inch.

3.4.8 Pipe Penetrations

Cutting structural members for passage of pipes or for pipe-hanger fastenings will not be permitted. Pipes that must penetrate concrete or masonry walls or concrete floors shall be core-drilled and provided with pipe sleeves. Each sleeve shall be Schedule 40 galvanized steel, ductile iron or cast iron pipe and shall extend through its respective wall or floor and be cut flush with each wall surface. Sleeves shall provide required clearance between the pipe and the sleeve per NFPA 13. The space between the sleeve and the pipe shall be firmly packed with mineral wool insulation. Where pipes penetrate fire walls, fire partitions, or floors, pipes shall be fire stopped. In penetrations that are not fire-rated or not a floor penetration, the space between the sleeve and the pipe shall be sealed at both ends with plastic waterproof cement that will dry to a firm but pliable mass or with a mechanically adjustable segmented elastomer seal.

3.4.9 Escutcheons

Escutcheons shall be provided for pipe penetration of ceilings and walls. Escutcheons shall be securely fastened to the pipe at surfaces through which piping passes.

3.4.10 Inspector's Test Connection

Unless otherwise indicated, test connection shall consist of 1 inch pipe connected to the remote branch line; a test valve located approximately 7 feet above the floor; a smooth bore brass outlet equivalent to the smallest orifice sprinkler used in the system; and a painted metal identification sign affixed to the valve with the words "Inspector's Test." The discharge orifice shall be located outside the building wall directed so as not to cause damage to adjacent construction or landscaping during full flow discharge.

3.4.11 Drains

Main drain piping shall be provided to discharge at a safe point outside the building. Auxiliary drains shall be provided as required by NFPA 13.

3.4.12 Installation of Fire Department Connection

Connection shall be mounted on the remote pedestal not lower than 3 feet above finished grade and not higher than 4 feet above finished grade. The piping between the connection and the check valve shall be provided with an automatic drip in accordance with NFPA 13 and arranged to drain to the outside.

3.4.13 Identification Signs

Signs shall be affixed to each control valve, inspector test valve, main drain, auxiliary drain, test valve, and similar valves as appropriate or as required by NFPA 13. Hydraulic design data nameplates shall be permanently affixed to each sprinkler riser as specified in NFPA 13.
3.5 UNDERGROUND PIPING INSTALLATION

The fire protection water main shall be laid, and joints anchored, in accordance with NFPA 24. Minimum depth of cover shall be 3 feet. The supply line shall terminate inside the building with a flanged piece, the bottom of which shall be set not less than 6 inches above the finished floor. A blind flange shall be installed temporarily on top of the flanged piece to prevent the entrance of foreign matter into the supply line. A concrete thrust block shall be provided at the elbow where the pipe turns up toward the floor. In addition, joints shall be anchored in accordance with NFPA 24. Buried steel components shall be provided with a corrosion protective coating in accordance with AWWA C203. Piping more than 5 feet outside the building walls shall be AWWA C900 PVC.

3.6 PIPE COLOR CODE MARKING

Color code marking of piping shall be as specified in Section 09 90 00 PAINTS AND COATINGS. Piping installed in exposed areas shall be painted to match color of surface behind the pipe and marked with pipe marking / stencils. Piping installed in mechanical rooms or in concealed areas shall be painted red.

3.7 PRELIMINARY TESTS

The system, including the underground water mains, and the aboveground piping and system components, shall be tested to assure that equipment and components function as intended. Submit proposed procedures for Preliminary Tests, no later than 14 days prior to the proposed start of the tests and proposed date and time to begin the preliminary tests. The underground and aboveground interior piping systems and attached appurtenances subjected to system working pressure shall be tested in accordance with NFPA 13 and NFPA 24. Upon completion of specified tests, submit 3 copies of the completed Preliminary Test Report, no later than 7 days after the completion of the Tests. The Report shall include both the Contractor's Material and Test Certificate for Underground Piping and the Contractor's Material and Test Certificate for Aboveground Piping. All items in the Preliminary Tests Report shall be signed by the Fire Protection Specialist.

3.7.1 Underground Piping

3.7.1.1 Flushing

Underground piping shall be flushed in accordance with NFPA 24. This includes the requirement to flush the lead-in connection to the fire protection system at a flow rate not less that the calculated maximum water demand rate of the system.

3.7.1.2 Hydrostatic Testing

New underground piping shall be hydrostatically tested in accordance with NFPA 24. The allowable leakage shall be measured at the specified test pressure by pumping from a calibrated container. The amount of leakage at the joints shall not exceed 2 quarts per hour per 100 gaskets or joints, regardless of pipe diameter.
3.7.2 Aboveground Piping

3.7.2.1 Hydrostatic Testing

Aboveground piping shall be hydrostatically tested in accordance with NFPA 13 at not less than 200 psi or 50 psi in excess of maximum system operating pressure and shall maintain that pressure without loss for 2 hours. There shall be no drop in gauge pressure or visible leakage when the system is subjected to the hydrostatic test. The test pressure shall be read from a gauge located at the low elevation point of the system or portion being tested.

3.7.2.2 Backflow Prevention Assembly Forward Flow Test

Each backflow prevention assembly shall be tested at system flow demand, including all applicable hose streams, as specified in NFPA 13. Provide all equipment and instruments necessary to conduct a complete forward flow test, including 2.5 inch diameter hoses, playpipe nozzles, calibrated pressure gauges, pitot tube gauge, plus all necessary supports to safely secure hoses and nozzles during the test. At the system demand flow, the pressure readings and pressure drop (friction) across the assembly shall be recorded. Provide a metal placard on the backflow prevention assembly that lists the pressure readings both upstream and downstream of the assembly, total pressure drop, and the system test flow rate. The pressure drop shall be compared to the manufacturer's data.

3.7.3 Testing of Alarm Devices

Each alarm switch shall be tested by flowing water through the inspector's test connection. Each water-operated alarm devices shall be tested to verify proper operation.

3.7.4 Main Drain Flow Test

Following flushing of the underground piping, a main drain test shall be made to verify the adequacy of the water supply. Static and residual pressures shall be recorded on the certificate specified in paragraph SUBMITTALS. In addition, a main drain test shall be conducted each time after a main control valve is shut and opened.

3.8 FINAL ACCEPTANCE TEST

Begin the Final Acceptance Test only when the Preliminary Test Report has been approved. Submit proposed procedures for Final Acceptance Test, no later than 14 days prior to the proposed start of the tests, and proposed date and time to begin the Test, submitted with the procedures. Notification shall be provided at least 14 days prior to the proposed start of the test. Notification shall include a copy of the Contractor's Material & Test Certificates. The Fire Protection Specialist shall conduct the Final Acceptance Test and shall provide a complete demonstration of the operation of the system. This shall include operation of control valves and flowing of inspector's test connections to verify operation of associated workflow alarm switches. After operation of control valves has been completed, the main drain test shall be repeated to assure that control valves are in the open position. Submit as-built shop drawings, at least 14 days after completion of the Final Tests, updated to reflect as-built conditions after all related work is completed. Drawings shall be on reproducible full-size mylar film. Contractor shall also provide a disk with final AutoCADD drawings of the fire protection system. In addition,
the representative shall have available copies of as-built drawings and certificates of tests previously conducted. The installation shall not be considered accepted until identified discrepancies have been corrected and test documentation is properly completed and received. Submit 3 copies of the completed Final Acceptance Test Report no later than 7 days after the completion of the Final Acceptance Tests. All items in the Final Acceptance Report shall be signed by the Fire Protection Specialist as specified.

-- End of Section --
SECTION 22 00 00

PLUMBING, GENERAL PURPOSE

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE)

ASSE 1001 (2016) Performance Requirements for Atmospheric Type Vacuum Breakers

ASSE 1013 (2011) Performance Requirements for Reduced Pressure Principle Backflow Preventers and Reduced Pressure Fire Protection Principle Backflow Preventers - (ANSI approved 2010)

ASSE 1019 (2011; R 2016) Performance Requirements for Wall Hydrant with Backflow Protection
and Freeze Resistance

ASSE 1020 (2004; Errata 2004; Errata 2004) Performance Requirements for Pressure Vacuum Breaker Assembly (ANSI Approved 2004)

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA 10084 (2017) Standard Methods for the Examination of Water and Wastewater

AWWA B301 (2010) Liquid Chlorine

AWWA C606 (2015) Grooved and Shouldered Joints

AWWA C651 (2014) Standard for Disinfecting Water Mains

AWWA C652 (2011) Disinfection of Water-Storage Facilities

AMERICAN WELDING SOCIETY (AWS)

AWS A5.8/A5.8M (2011; Amendment 2012) Specification for Filler Metals for Brazing and Braze Welding

ASME INTERNATIONAL (ASME)

ASME A112.1.2 (2012; R 2017) Air Gaps in Plumbing Systems (For Plumbing Fixtures and Water-Connected Receptors)

ASME A112.36.2M (1991; R 2017) Cleanouts

ASME A112.6.3 (2016) Standard for Floor and Trench Drains

ASME B1.20.1 (2013) Pipe Threads, General Purpose (Inch)

ASME B16.15 (2013) Cast Copper Alloy Threaded Fittings Classes 125 and 250

ASME B16.18 (2012) Cast Copper Alloy Solder Joint Pressure Fittings

ASME B16.3 (2011) Malleable Iron Threaded Fittings, Classes 150 and 300

ASME B16.50 (2013) Wrought Copper and Copper Alloy
Braze-Joint Pressure Fittings

ASME BPVC SEC IV (2010) BPVC Section IV-Rules for Construction of Heating Boilers

ASME CSD-1 (2016) Control and Safety Devices for Automatically Fired Boilers

ASTM INTERNATIONAL (ASTM)

COPPER DEVELOPMENT ASSOCIATION (CDA)

CDA A4015 (2016; 14/17) Copper Tube Handbook

INTERNATIONAL CODE COUNCIL (ICC)

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-110 (2010) Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

MSS SP-58 (1993; Reaffirmed 2010) Pipe Hangers and
Supports - Materials, Design and Manufacture, Selection, Application, and Installation

MSS SP-78 (2011) Cast Iron Plug Valves, Flanged and Threaded Ends

MSS SP-80 (2013) Bronze Gate, Globe, Angle and Check Valves

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NSF INTERNATIONAL (NSF)

NSF 372 (2011) Drinking Water System Components - Lead Content

NSF/ANSI 14 (2017b) Plastics Piping System Components and Related Materials

NSF/ANSI 61 (2016) Drinking Water System Components - Health Effects

PLASTIC PIPE AND FITTINGS ASSOCIATION (PPFA)

PPFA Fire Man (2016) Firestopping: Plastic Pipe in Fire Resistant Construction

PLUMBING AND DRAINAGE INSTITUTE (PDI)

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

PL 93-523 (1974; A 1999) Safe Drinking Water Act

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

40 CFR 141.80 National Primary Drinking Water Regulations; Control of Lead and Copper; General Requirements

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Plumbing System; G

Detail drawings consisting of schedules, performance charts,
instructions, diagrams, and other information to illustrate the requirements and operations of systems that are not covered by the Plumbing Code. Detail drawings for the complete plumbing system including piping layouts and locations of connections; dimensions for roughing-in, foundation, and support points; schematic diagrams and wiring diagrams or connection and interconnection diagrams. Detail drawings shall indicate clearances required for maintenance and operation. Where piping and equipment are to be supported other than as indicated, details shall include loadings and proposed support methods. Mechanical drawing plans, elevations, views, and details, shall be drawn to scale.

SD-03 Product Data

Fixtures

List of installed fixtures with manufacturer, model, and flow rate.

Water Heaters; G

Backflow Prevention Assemblies; G

SD-06 Test Reports

Tests, Flushing and Disinfection

Test reports in booklet form showing all field tests performed to adjust each component and all field tests performed to prove compliance with the specified performance criteria, completion and testing of the installed system. Each test report shall indicate the final position of controls.

Test of Backflow Prevention Assemblies; G.

Certification of proper operation shall be as accomplished in accordance with state regulations by an individual certified by the state to perform such tests. If no state requirement exists, the Contractor shall have the manufacturer's representative test the device, to ensure the unit is properly installed and performing as intended. The Contractor shall provide written documentation of the tests performed and signed by the individual performing the tests.

SD-10 Operation and Maintenance Data

Plumbing System; G

Submit in accordance with Section 01 78 23 OPERATION AND MAINTENANCE DATA.

1.3 STANDARD PRODUCTS

Specified materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacture of such products. Specified equipment shall essentially duplicate equipment that has performed satisfactorily at least two years prior to bid opening. Standard
products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year use shall include applications of equipment and materials under similar circumstances and of similar size. The product shall have been for sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2 year period.

1.3.1 Alternative Qualifications

Products having less than a two-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturer's factory or laboratory tests, can be shown.

1.3.2 Service Support

The equipment items shall be supported by service organizations. Submit a certified list of qualified permanent service organizations for support of the equipment which includes their addresses and qualifications. These service organizations shall be reasonably convenient to the equipment installation and able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

1.3.3 Manufacturer's Nameplate

Each item of equipment shall have a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

1.3.4 Modification of References

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction", or words of similar meaning, to mean the Contracting Officer.

1.3.4.1 Definitions

For the International Code Council (ICC) Codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall." Reference to the "code official" shall be interpreted to mean the "Contracting Officer." For Navy owned property, references to the "owner" shall be interpreted to mean the "Contracting Officer." For leased facilities, references to the "owner" shall be interpreted to mean the "lessee." References to the "permit holder" shall be interpreted to mean the "Contractor."

1.3.4.2 Administrative Interpretations

For ICC Codes referenced in the contract documents, the provisions of Chapter 1, "Administrator," do not apply. These administrative requirements are covered by the applicable Federal Acquisition Regulations (FAR) included in this contract and by the authority granted to the Officer in Charge of Construction to administer the construction of this project. References in the ICC Codes to sections of Chapter 1, shall be applied appropriately by the Contracting Officer as authorized by his administrative cognizance and the FAR.
1.4 DELIVERY, STORAGE, AND HANDLING

Handle, store, and protect equipment and materials to prevent damage before and during installation in accordance with the manufacturer's recommendations, and as approved by the Contracting Officer. Replace damaged or defective items.

1.5 PERFORMANCE REQUIREMENTS

1.5.1 Cathodic Protection and Pipe Joint Bonding

Cathodic protection and pipe joint bonding systems shall be sacrificial anode.

1.6 REGULATORY REQUIREMENTS

Unless otherwise required herein, plumbing work shall be in accordance with ICC IPC. Energy consuming products and systems shall be in accordance with PL 109-58 and ASHRAE 90.1 - IP

1.7 PROJECT/SITE CONDITIONS

The Contractor shall become familiar with details of the work, verify dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work.

1.8 INSTRUCTION TO GOVERNMENT PERSONNEL

When specified in other sections, furnish the services of competent instructors to give full instruction to the designated Government personnel in the adjustment, operation, and maintenance, including pertinent safety requirements, of the specified equipment or system. Instructors shall be thoroughly familiar with all parts of the installation and shall be trained in operating theory as well as practical operation and maintenance work.

Instruction shall be given during the first regular work week after the equipment or system has been accepted and turned over to the Government for regular operation. The number of man-days (8 hours per day) of instruction furnished shall be as specified in the individual section. When more than 4 man-days of instruction are specified, use approximately half of the time for classroom instruction. Use other time for instruction with the equipment or system.

When significant changes or modifications in the equipment or system are made under the terms of the contract, provide additional instruction to acquaint the operating personnel with the changes or modifications.

1.9 ACCESSIBILITY OF EQUIPMENT

Install all work so that parts requiring periodic inspection, operation, maintenance, and repair are readily accessible. Install concealed valves, expansion joints, controls, dampers, and equipment requiring access, in locations freely accessible through access doors.
PART 2 PRODUCTS

2.1 Materials

Materials for various services shall be in accordance with TABLES I and II. Steel pipe shall contain a minimum of 25 percent recycled content, with a minimum of 16 percent post-consumer recycled content. Pipe schedules shall be selected based on service requirements. Pipe fittings shall be compatible with the applicable pipe materials. Plastic pipe, fittings, and solvent cement shall meet NSF/ANSI 14 and shall be NSF listed for the service intended. Pipe threads (except dry seal) shall conform to ASME B1.20.1. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption, and shall be certified in accordance with NSF/ANSI 61, Annex G or NSF 372. In line devices such as water meters, building valves, check valves, meter stops, valves, fittings and back flow preventers shall comply with PL 93-523 and NSF/ANSI 61, Section 8. End point devices such as drinking water fountains, lavatory faucets, kitchen and bar faucets, residential ice makers, supply stops and end point control valves used to dispense water for drinking must meet the requirements of NSF/ANSI 61, Section 9. Plastic pipe shall not be installed in air plenums. Plastic pipe shall not be installed in a pressure piping system in buildings greater than three stories including any basement levels.

2.1.1 Pipe Joint Materials

Hubless cast-iron soil pipe shall not be used underground. Solder containing lead shall not be used with copper pipe. Cast iron soil pipe and fittings shall be marked with the collective trademark of the Cast Iron Soil Institute. Joints and gasket materials shall conform to the following:

b. Brazing Material: Brazing material shall conform to AWS A5.8/A5.8M, BCuP-5.

c. Brazing Flux: Flux shall be in paste or liquid form appropriate for use with brazing material. Flux shall be as follows: lead-free; have a 100 percent flushable residue; contain slightly acidic reagents; contain potassium borides; and contain fluorides.

d. Solder Material: Solder metal shall conform to ASTM B32.

e. Solder Flux: Flux shall be liquid form, non-corrosive, and conform to ASTM B813, Standard Test 1.

f. PTFE Tape: PTFE Tape, for use with Threaded Metal or Plastic Pipe.

g. Flexible Elastomeric Seals: ASTM D3139, ASTM D3212 or ASTM F477.

i. Copper tubing shall conform to ASTM B88, Type K or L.

2.1.2 Miscellaneous Materials

Miscellaneous materials shall conform to the following:

SECTION 22 00 00 Page 9

c. Asphalt Roof Cement: ASTM D2822/D2822M.

f. Metallic Cleanouts: ASME A112.36.2M.

j. Liquid Chlorine: AWWA B301.

2.1.3 Pipe Insulation Material

Insulation shall be as specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

2.2 PIPE HANGERS, INSERTS, AND SUPPORTS

Pipe hangers, inserts, and supports shall conform to MSS SP-58.

2.3 VALVES

Valves shall be provided on supplies to equipment and fixtures. Valves 2-1/2 inches and smaller shall be bronze with threaded bodies for pipe and solder-type connections for tubing. Pressure ratings shall be based upon the application. Valves shall conform to the following standards:

<table>
<thead>
<tr>
<th>Description</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends</td>
<td>MSS SP-110</td>
</tr>
<tr>
<td>Cast-Iron Plug Valves, Flanged and Threaded Ends</td>
<td>MSS SP-78</td>
</tr>
<tr>
<td>Bronze Gate, Globe, Angle, and Check Valves</td>
<td>MSS SP-80</td>
</tr>
<tr>
<td>Water Heater Drain Valves</td>
<td>ASME BPVC SEC IV, Part HLW-810:</td>
</tr>
<tr>
<td></td>
<td>Requirements for Potable-Water Heaters</td>
</tr>
<tr>
<td></td>
<td>Bottom Drain Valve</td>
</tr>
<tr>
<td>Trap Seal Primer Valves</td>
<td>ASSE 1018</td>
</tr>
<tr>
<td>Temperature and Pressure Relief Valves for Hot Water Supply Systems</td>
<td>ANSI Z21.22/CSA 4.4</td>
</tr>
<tr>
<td>Temperature and Pressure Relief Valves for</td>
<td>ASME CSD-1</td>
</tr>
<tr>
<td>Automatically Fired Hot Water Boilers</td>
<td>Safety Code No., Part CW, Article 5</td>
</tr>
</tbody>
</table>
2.3.1 Wall Hydrants (Frostproof)

ASSE 1019 with vacuum-breaker backflow preventer shall have a nickel-brass or nickel-bronce wall plate or flange with nozzle and detachable key handle. A brass or bronze operating rod shall be provided within a galvanized iron casing of sufficient length to extend through the wall so that the valve is inside the building, and the portion of the hydrant between the outlet and valve is self-draining. A brass or bronze valve with coupling and union elbow having metal-to-metal seat shall be provided. Valve rod and seat washer shall be removable through the face of the hydrant. The hydrant shall have 3/4 inch exposed hose thread on spout and 3/4 inch male pipe thread on inlet.

2.3.2 Relief Valves

Water heaters and hot water storage tanks shall have a combination pressure and temperature (P&T) relief valve. The pressure relief element of a P&T relief valve shall have adequate capacity to prevent excessive pressure buildup in the system when the system is operating at the maximum rate of heat input. The temperature element of a P&T relief valve shall have a relieving capacity which is at least equal to the total input of the heaters when operating at their maximum capacity. Relief valves shall be rated according to ANSI Z21.22/CSA 4.4. Relief valves for systems where the maximum rate of heat input is less than 200,000 Btu/h shall have 3/4 inch minimum inlets, and 3/4 inch outlets. Relief valves for systems where the maximum rate of heat input is greater than 200,000 Btu/h shall have 1 inch minimum inlets, and 1 inch outlets. The discharge pipe from the relief valve shall be the size of the valve outlet.

2.4 FIXTURES

Fixtures shall be water conservation type, in accordance with ASHRAE 189.1 Section 6.3.2.1 (Plumbing fixtures and Fittings). No fixture will be accepted that shows cracks, crazes, blisters, thin spots, or other flaws. Fixtures shall be equipped with appurtenances such as traps, faucets, stop valves, and drain fittings. Each fixture and piece of equipment requiring connections to the drainage system, except grease interceptors, shall be equipped with a trap. Brass expansion or toggle bolts capped with acorn nuts shall be provided for supports, and polished chromium-plated pipe, valves, and fittings shall be provided where exposed to view. Fixtures with the supply discharge below the rim shall be equipped with backflow preventers. Internal parts of flush valves and flushometer valves, shower mixing valves, shower head face plates, pop-up stoppers of lavatory waste drains, and pop-up stoppers and overflow tees and shoes of bathtub waste drain shall be copper alloy with all visible surfaces chrome plated. Plastic in contact with hot water shall be suitable for 180 degrees F water temperature.

2.4.1 Precast Terrazzo Mop Sinks

Terrazzo shall be made of marble chips cast in white portland cement to produce 3000 psi minimum compressive strength 7 days after casting. Provide floor or wall outlet copper alloy body drain cast integral with terrazzo, with polished stainless steel strainers. Provide back mounted washerless faucet with vacuum breaker and 0.75 inch external nose threads.

2.5 BACKFLOW PREVENTERS

Backflow prevention devices must be approved by the State or local

SECTION 22 00 00 Page 11
regulatory agencies. If there is no State or local regulatory agency requirements, the backflow prevention devices must be listed by the Foundation for Cross-Connection Control & Hydraulic Research, or any other approved testing laboratory having equivalent capabilities for both laboratory and field evaluation of backflow prevention devices and assemblies.

Reduced pressure principle assemblies, double check valve assemblies, atmospheric (nonpressure) type vacuum breakers, and pressure type vacuum breakers shall meet the above requirements.

Backflow preventers with intermediate atmospheric vent shall conform to ASSE 1012. Reduced pressure principle backflow preventers shall conform to ASSE 1013. Hose connection vacuum breakers shall conform to ASSE 1011. Pipe applied atmospheric type vacuum breakers shall conform to ASSE 1001. Pressure vacuum breaker assembly shall conform to ASSE 1020. Air gaps in plumbing systems shall conform to ASME A112.1.2.

2.6 DRAINS

2.6.1 Floor Drains

Floor drains shall consist of a galvanized body, integral seepage pan, and adjustable perforated or slotted chromium-plated bronze, nickel-bronce, or nickel-brass strainer, consisting of grate and threaded collar. Floor drains shall be cast iron except where metallic waterproofing membrane is installed. Drains shall be of double drainage pattern for embedding in the floor construction. The seepage pan shall have weep holes or channels for drainage to the drainpipe. The strainer shall be adjustable to floor thickness. A clamping device for attaching flashing or waterproofing membrane to the seepage pan without damaging the flashing or waterproofing membrane shall be provided when required. Drains shall be provided with threaded connection. Between the drain outlet and waste pipe, a neoprene rubber gasket conforming to ASTM C564 may be installed, provided that the drain is specifically designed for the rubber gasket compression type joint. Floor drains shall conform to ASME A112.6.3. Provide drain with trap primer connection, trap primer, and connection piping. Primer shall meet ASSE 1018.

2.6.2 Floor Sinks

Floor sinks shall be square, with 12 inch nominal overall width or diameter and 10 inch nominal overall depth. Floor sink shall have an acid-resistant enamel interior finish with cast-iron body, aluminum sediment bucket, and perforated grate of cast iron in industrial areas and stainless steel in finished areas. The outlet pipe size shall be as indicated or of the same size as the connecting pipe.

2.7 TRAPS

Unless otherwise specified, traps shall be copper-alloy adjustable tube type with slip joint inlet and swivel. Traps shall be without a cleanout. Tubes shall be copper alloy with walls not less than 0.032 inch thick within commercial tolerances, except on the outside of bends where the thickness may be reduced slightly in manufacture by usual commercial methods. Inlets shall have rubber washer and copper alloy nuts for slip joints above the discharge level. Swivel joints shall be below the discharge level and shall be of metal-to-metal or metal-to-plastic type as required for the application. Nuts shall have flats for wrench grip.
Outlets shall have internal pipe thread, except that when required for the application, the outlets shall have sockets for solder-joint connections. The depth of the water seal shall be not less than 2 inches. The interior diameter shall be not more than 1/8 inch over or under the nominal size, and interior surfaces shall be reasonably smooth throughout. A copper alloy "P" trap assembly consisting of an adjustable "P" trap and threaded trap wall nipple with cast brass wall flange shall be provided for lavatories. The assembly shall be a standard manufactured unit and may have a rubber-gasketed swivel joint.

2.8 INTERCEPTORS

2.8.1 Grease Interceptor

Grease interceptor of the size indicated shall be of reinforced concrete, or precast concrete construction. Concrete shall have 3,000 psi minimum compressive strength at 28 days.

2.9 WATER HEATERS

Water heater types and capacities shall be as indicated. Each water heater shall have replaceable anodes. Each primary water heater shall have controls with an adjustable range that includes 90 to 160 degrees F. The thermal efficiencies and standby heat losses shall conform to TABLE III for each type of water heater specified. The only exception is that storage water heaters and hot water storage tanks having more than 500 gallons storage capacity need not meet the standard loss requirement if the tank surface area is insulated to R-12.5 and if a standing light is not used. A factory pre-charged expansion tank shall be installed on the cold water supply to each water heater. Expansion tanks shall be specifically designed for use on potable water systems and shall be rated for 200 degrees F water temperature and 150 psi working pressure. The expansion tank size and acceptance volume shall be as indicated.

2.10 MISCELLANEOUS PIPING ITEMS

2.10.1 Escutcheon Plates

Provide one piece or split hinge metal plates for piping entering floors, walls, and ceilings in exposed spaces. Provide chromium-plated on copper alloy plates or polished stainless steel finish in finished spaces. Provide paint finish on plates in unfinished spaces.

2.10.2 Pipe Sleeves

Provide where piping passes entirely through walls, ceilings, roofs, and floors. Sleeves are not required where drain, waste, and vent (DWV) piping passes through concrete floor slabs located on grade, except where penetrating a membrane waterproof floor.

2.10.2.1 Sleeves in Masonry and Concrete

Provide steel pipe sleeves or schedule 40 PVC plastic pipe sleeves. Sleeves are not required where drain, waste, and vent (DWV) piping passes through concrete floor slabs located on grade. Core drilling of masonry and concrete may be provided in lieu of pipe sleeves when cavities in the core-drilled hole are completely grouted smooth.
2.10.2.2 Sleeves Not in Masonry and Concrete

Provide 26 gage galvanized steel sheet or PVC plastic pipe sleeves.

2.10.3 Pipe Hangers (Supports)

Provide MSS SP-58 Type 1 with adjustable type steel support rods, except as specified or indicated otherwise. Attach to steel joists with Type 19 or 23 clamps and retaining straps. Attach to Steel W or S beams with Type 21, 28, 29, or 30 clamps. Attach to steel angles and vertical web steel channels with Type 20 clamp with beam clamp channel adapter. Attach to horizontal web steel channel and wood with drilled hole on centerline and double nut and washer. Attach to concrete with Type 18 insert or drilled expansion anchor. Provide Type 40 insulation protection shield for insulated piping.

PART 3 EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS

Piping located in air plenums shall conform to NFPA 90A requirements. Piping located in shafts that constitute air ducts or that enclose air ducts shall be noncombustible in accordance with NFPA 90A. Installation of plastic pipe where in compliance with NFPA may be installed in accordance with PFFA Fire Man. The plumbing system shall be installed complete with necessary fixtures, fittings, traps, valves, and accessories. Water and drainage piping shall be extended 5 feet outside the building, unless otherwise indicated. A full port ball valve and drain shall be installed on the water service line inside the building approximately 6 inches above the floor from point of entry. Piping shall be connected to the exterior service lines or capped or plugged if the exterior service is not in place. Sewer and water pipes shall be laid in separate trenches, except when otherwise shown. Exterior underground utilities shall be at least 12 inches below the finish grade or as indicated on the drawings. If trenches are closed or the pipes are otherwise covered before being connected to the service lines, the location of the end of each plumbing utility shall be marked with a stake or other acceptable means. Valves shall be installed with control no lower than the valve body.

3.1.1 Water Pipe, Fittings, and Connections

3.1.1.1 Utilities

The piping shall be extended to fixtures, outlets, and equipment. The hot-water and cold-water piping system shall be arranged and installed to permit draining. The supply line to each item of equipment or fixture, except faucets, flush valves, or other control valves which are supplied with integral stops, shall be equipped with a shutoff valve to enable isolation of the item for repair and maintenance without interfering with operation of other equipment or fixtures. Supply piping to fixtures, faucets, hydrants, shower heads, and flushing devices shall be anchored to prevent movement.

3.1.1.2 Cutting and Repairing

The work shall be carefully laid out in advance, and unnecessary cutting of construction shall be avoided. Damage to building, piping, wiring, or equipment as a result of cutting shall be repaired by mechanics skilled in the trade involved.
3.1.1.3 Protection of Fixtures, Materials, and Equipment

Pipe openings shall be closed with caps or plugs during installation. Fixtures and equipment shall be tightly covered and protected against dirt, water, chemicals, and mechanical injury. Upon completion of the work, the fixtures, materials, and equipment shall be thoroughly cleaned, adjusted, and operated. Safety guards shall be provided for exposed rotating equipment.

3.1.1.4 Mains, Branches, and Runouts

Piping shall be installed as indicated. Pipe shall be accurately cut and worked into place without springing or forcing. Structural portions of the building shall not be weakened. Aboveground piping shall run parallel with the lines of the building, unless otherwise indicated. Branch pipes from service lines may be taken from top, bottom, or side of main, using crossover fittings required by structural or installation conditions. Supply pipes, valves, and fittings shall be kept a sufficient distance from other work and other services to permit not less than 1/2 inch between finished covering on the different services. Bare and insulated water lines shall not bear directly against building structural elements so as to transmit sound to the structure or to prevent flexible movement of the lines. Water pipe shall not be buried in or under floors unless specifically indicated or approved. Changes in pipe sizes shall be made with reducing fittings. Use of bushings will not be permitted except for use in situations in which standard factory fabricated components are furnished to accommodate specific accepted installation practice. Change in direction shall be made with fittings, except that bending of pipe 4 inches and smaller will be permitted, provided a pipe bender is used and wide sweep bends are formed. The center-line radius of bends shall be not less than six diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be acceptable.

3.1.1.5 Pipe Drains

Pipe drains indicated shall consist of 3/4 inch hose bibb with renewable seat and full port ball valve ahead of hose bibb. At other low points, 3/4 inch brass plugs or caps shall be provided. Disconnection of the supply piping at the fixture is an acceptable drain.

3.1.1.6 Expansion and Contraction of Piping

Allowance shall be made throughout for expansion and contraction of water pipe. Each hot-water and hot-water circulation riser shall have expansion loops or other provisions such as offsets and changes in direction where indicated and required. Risers shall be securely anchored as required or where indicated to force expansion to loops. Branch connections from risers shall be made with ample swing or offset to avoid undue strain on fittings or short pipe lengths. Horizontal runs of pipe over 50 feet in length shall be anchored to the wall or the supporting construction about midway on the run to force expansion, evenly divided, toward the ends. Sufficient flexibility shall be provided on branch runouts from mains and risers to provide for expansion and contraction of piping. Flexibility shall be provided by installing one or more turns in the line so that piping will spring enough to allow for expansion without straining. If mechanical grooved pipe coupling systems are provided, the deviation from design requirements for expansion and contraction may be allowed pending approval of Contracting Officer.
3.1.1.7 Commercial-Type Water Hammer Arresters

Commercial-type water hammer arresters shall be provided on hot- and cold-water supplies and shall be located as generally indicated, with precise location and sizing to be in accordance with PDI WH 201. Water hammer arresters, where concealed, shall be accessible by means of access doors or removable panels. Commercial-type water hammer arresters shall conform to ASSE 1010. Vertical capped pipe columns will not be permitted.

3.1.2 Joints

Installation of pipe and fittings shall be made in accordance with the manufacturer's recommendations. Mitering of joints for elbows and notching of straight runs of pipe for tees will not be permitted. Joints shall be made up with fittings of compatible material and made for the specific purpose intended.

3.1.2.1 Threaded

Threaded joints shall have American Standard taper pipe threads conforming to ASME B1.20.1. Only male pipe threads shall be coated with graphite or with an approved graphite compound, or with an inert filler and oil, or shall have a polytetrafluoroethylene tape applied.

3.1.2.2 Unions

Unions couplings shall not be concealed in walls, ceilings, or partitions. Unions shall be used on pipe sizes 2-1/2 inches and smaller.

3.1.2.3 Copper Tube and Pipe

a. Brazed. Brazed joints shall be made in conformance with AWS B2.2/B2.2M, ASME B16.50, and CDA A4015 with flux and are acceptable for all pipe sizes. Copper to copper joints shall include the use of copper-phosphorus or copper-phosphorus-silver brazing metal without flux. Brazing of dissimilar metals (copper to bronze or brass) shall include the use of flux with either a copper-phosphorus, copper-phosphorus-silver or a silver brazing filler metal.

b. Soldered. Soldered joints shall be made with flux and are only acceptable for piping 2 inches and smaller. Soldered joints shall conform to ASME B31.5 and CDA A4015. Soldered joints shall not be used in compressed air piping between the air compressor and the receiver.

3.1.2.4 Plastic Pipe

PVC and CPVC pipe shall have joints made with solvent cement elastomeric, threading, (threading of Schedule 80 Pipe is allowed only where required for disconnection and inspection; threading of Schedule 40 Pipe is not allowed), or mated flanged.

3.1.3 Dissimilar Pipe Materials

Connections between ferrous and non-ferrous copper water pipe shall be made with dielectric unions or flange waterways. Dielectric waterways shall have temperature and pressure rating equal to or greater than that specified for the connecting piping. Waterways shall have metal connections on both ends suited to match connecting piping. Dielectric
waterways shall be internally lined with an insulator specifically designed to prevent current flow between dissimilar metals. Dielectric flanges shall meet the performance requirements described herein for dielectric waterways. Connecting joints between plastic and metallic pipe shall be made with transition fitting for the specific purpose.

3.1.4 Pipe Sleeves and Flashing

Pipe sleeves shall be furnished and set in their proper and permanent location.

3.1.4.1 Sleeve Requirements

Unless indicated otherwise, provide pipe sleeves meeting the following requirements:

Secure sleeves in position and location during construction. Provide sleeves of sufficient length to pass through entire thickness of walls, ceilings, roofs, and floors.

A modular mechanical type sealing assembly may be installed in lieu of a waterproofing clamping flange and caulking and sealing of annular space between pipe and sleeve. The seals shall consist of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe and sleeve using galvanized steel bolts, nuts, and pressure plates. The links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut. After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal between the pipe and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe and sleeve involved.

Sleeves shall not be installed in structural members, except where indicated or approved. Rectangular and square openings shall be as detailed. Each sleeve shall extend through its respective floor, or roof, and shall be cut flush with each surface, except for special circumstances. Pipe sleeves passing through floors in wet areas such as mechanical equipment rooms, lavatories, kitchens, and other plumbing fixture areas shall extend a minimum of 4 inches above the finished floor.

Unless otherwise indicated, sleeves shall be of a size to provide a minimum of 1/4 inch clearance between bare pipe or insulation and inside of sleeve or between insulation and inside of sleeve. Sleeves in bearing walls and concrete slab on grade floors shall be steel pipe or cast-iron pipe. Sleeves in nonbearing walls or ceilings may be steel pipe, cast-iron pipe, galvanized sheet metal with lock-type longitudinal seam, or plastic.

Except as otherwise specified, the annular space between pipe and sleeve, or between jacket over insulation and sleeve, shall be sealed as indicated with sealants conforming to ASTM C920 and with a primer, backstop material and surface preparation as specified in Section 07 92 00 JOINT SEALANTS. The annular space between pipe and sleeve, between bare insulation and sleeve or between jacket over insulation and sleeve shall not be sealed for interior walls which are not designated as fire rated.

Sleeves through below-grade walls in contact with earth shall be recessed 1/2 inch from wall surfaces on both sides. Annular space between pipe and sleeve shall be filled with backing material and sealants in the joint.
between the pipe and masonry wall as specified above. Sealant selected for
the earth side of the wall shall be compatible with
dampproofing/waterproofing materials that are to be applied over the joint
sealant. Pipe sleeves in fire-rated walls shall conform to the
requirements in Section 07 84 00 FIRESTOPPING.

3.1.4.2 Flashing Requirements

Pipes passing through roof shall be installed through a 16 ounce copper
flashing, each within an integral skirt or flange. Flashing shall be
suitably formed, and the skirt or flange shall extend not less than 8 inches
from the pipe and shall be set over the roof or floor membrane in a solid
coating of bituminous cement. The flashing shall extend up the pipe a
minimum of 10 inches. For cleanouts, the flashing shall be turned down
into the hub and caulked after placing the ferrule. Pipes passing through
pitched roofs shall be flashed, using lead or copper flashing, with an
adjustable integral flange of adequate size to extend not less than 8 inches
from the pipe in all directions and lapped into the roofing to provide a
watertight seal. The annular space between the flashing and the bare pipe
or between the flashing and the metal-jacket-covered insulation shall be
sealed as indicated. Flashing for dry vents shall be turned down into the
pipe to form a waterproof joint. Pipes, up to and including 10 inches in
diameter, passing through roof or floor waterproofing membrane may be
installed through a cast-iron sleeve with caulking recess, anchor lugs,
flashing-clamp device, and pressure ring with brass bolts. Flashing shield
shall be fitted into the sleeve clamping device. Pipes passing through
wall waterproofing membrane shall be sleeved as described above. A
waterproofing clamping flange shall be installed.

3.1.4.3 Pipe Penetrations of Slab on Grade Floors

Where pipes, fixture drains, floor drains, cleanouts or similar items
penetrate slab on grade floors, except at penetrations of floors with
waterproofing membrane as specified in paragraphs FLASHING REQUIREMENTS and
WATERPROOFING, a groove 1/4 to 1/2 inch wide by 1/4 to 3/8 inch deep shall
be formed around the pipe, fitting or drain. The groove shall be filled
with a sealant as specified in Section 07 92 00 JOINT SEALANTS.

3.1.4.4 Pipe Penetrations

Provide sealants for all pipe penetrations. All pipe penetrations shall be
sealed to prevent infiltration of air, insects, and vermin.

3.1.5 Fire Seal

Where pipes pass through fire walls, fire-partitions, fire-rated pipe chase
walls or floors above grade, a fire seal shall be provided as specified in
Section 07 84 00 FIRESTOPPING.

3.1.6 Supports

3.1.6.1 General

Hangers used to support piping 2 inches and larger shall be fabricated to
permit adequate adjustment after erection while still supporting the load.
Pipe guides and anchors shall be installed to keep pipes in accurate
alignment, to direct the expansion movement, and to prevent buckling,
swaying, and undue strain. Piping subjected to vertical movement when
operating temperatures exceed ambient temperatures shall be supported by
variable spring hangers and supports or by constant support hangers. In
the support of multiple pipe runs on a common base member, a clip or clamp
shall be used where each pipe crosses the base support member. Spacing of
the base support members shall not exceed the hanger and support spacing
required for an individual pipe in the multiple pipe run. Threaded
sections of rods shall not be formed or bent.

3.1.6.2 Pipe Supports and Structural Bracing, Seismic Requirements

Piping and attached valves shall be supported and braced to resist seismic
loads.

3.1.6.3 Pipe Hangers, Inserts, and Supports

Installation of pipe hangers, inserts and supports shall conform to
MSS SP-58 except as modified herein.

a. Types 5, 12, and 26 shall not be used.

b. Type 3 shall not be used on insulated pipe.

c. Type 18 inserts shall be secured to concrete forms before concrete is
placed. Continuous inserts which allow more adjustment may be used if
they otherwise meet the requirements for type 18 inserts.

d. Type 19 and 23 C-clamps shall be torqued per MSS SP-58 and shall have
both locknuts and retaining devices furnished by the manufacturer.
Field-fabricated C-clamp bodies or retaining devices are not acceptable.

e. Type 20 attachments used on angles and channels shall be furnished with
an added malleable-iron heel plate or adapter.

f. Type 24 may be used only on trapeze hanger systems or on fabricated
frames.

g. Type 39 saddles shall be used on insulated pipe 4 inches and larger
when the temperature of the medium is 60 degrees F or higher. Type 39
saddles shall be welded to the pipe.

h. Type 40 shields shall:

(1) Be used on insulated pipe less than 4 inches.

(2) Be used on insulated pipe 4 inches and larger when the temperature
of the medium is 60 degrees F or less.

(3) Have a high density insert for all pipe sizes. High density
inserts shall have a density of 8 pcf or greater.

i. Horizontal pipe supports shall be spaced as specified in MSS SP-58 and
a support shall be installed not over 1 foot from the pipe fitting
joint at each change in direction of the piping. Pipe supports shall
be spaced not over 5 feet apart at valves. Operating temperatures in
determining hanger spacing for PVC or CPVC pipe shall be 120 degrees F
for PVC and 180 degrees F for CPVC. Horizontal pipe runs shall include
allowances for expansion and contraction.

j. Vertical pipe shall be supported at each floor, except at
slab-on-grade, at intervals of not more than 15 feet nor more than 8
feet from end of risers, and at vent terminations. Vertical pipe risers shall include allowances for expansion and contraction.

k. Type 35 guides using steel, reinforced polytetrafluoroethylene (PTFE) or graphite slides shall be provided to allow longitudinal pipe movement. Slide materials shall be suitable for the system operating temperatures, atmospheric conditions, and bearing loads encountered. Lateral restraints shall be provided as needed. Where steel slides do not require provisions for lateral restraint the following may be used:

(1) On pipe 4 inches and larger when the temperature of the medium is 60 degrees F or higher, a Type 39 saddle, welded to the pipe, may freely rest on a steel plate.

(2) On pipe less than 4 inches a Type 40 shield, attached to the pipe or insulation, may freely rest on a steel plate.

(3) On pipe 4 inches and larger carrying medium less than 60 degrees F a Type 40 shield, attached to the pipe or insulation, may freely rest on a steel plate.

l. Pipe hangers on horizontal insulated pipe shall be the size of the outside diameter of the insulation. The insulation shall be continuous through the hanger on all pipe sizes and applications.

m. Where there are high system temperatures and welding to piping is not desirable, the type 35 guide shall include a pipe cradle, welded to the guide structure and strapped securely to the pipe. The pipe shall be separated from the slide material by at least 4 inches or by an amount adequate for the insulation, whichever is greater.

n. Hangers and supports for plastic pipe shall not compress, distort, cut or abrade the piping, and shall allow free movement of pipe except where otherwise required in the control of expansion/contraction.

3.1.6.4 Structural Attachments

Attachment to building structure concrete and masonry shall be by cast-in concrete inserts, built-in anchors, or masonry anchor devices. Inserts and anchors shall be applied with a safety factor not less than 5. Supports shall not be attached to metal decking. Supports shall not be attached to the underside of concrete filled floor or concrete roof decks unless approved by the Contracting Officer. Masonry anchors for overhead applications shall be constructed of ferrous materials only.

3.1.7 Pipe Cleanouts

Pipe cleanouts shall be the same size as the pipe except that cleanout plugs larger than 4 inches will not be required. A cleanout installed in connection with cast-iron soil pipe shall consist of a long-sweep 1/4 bend or one or two 1/8 bends extended to the place shown. An extra-heavy cast-brass or cast-iron ferrule with countersunk cast-brass head screw plug shall be caulked into the hub of the fitting and shall be flush with the floor. Cleanouts in connection with other pipe, where indicated, shall be T-pattern, 90-degree branch drainage fittings with cast-brass screw plugs, except plastic plugs shall be installed in plastic pipe. Plugs shall be the same size as the pipe up to and including 4 inches. Cleanout tee branches with screw plug shall be installed at the foot of soil and waste stacks, at the foot of interior downspouts, on each connection to building
storm drain where interior downspouts are indicated, and on each building drain outside the building. Cleanout tee branches may be omitted on stacks in single story buildings with slab-on-grade construction or where less than 18 inches of crawl space is provided under the floor. Cleanouts on pipe concealed in partitions shall be provided with chromium plated bronze, nickel bronze, nickel brass or stainless steel flush type access cover plates. Round access covers shall be provided and secured to plugs with securing screw. Square access covers may be provided with matching frames, anchoring lugs and cover screws. Cleanouts in finished walls shall have access covers and frames installed flush with the finished wall. Cleanouts installed in finished floors subject to foot traffic shall be provided with a chrome-plated cast brass, nickel brass, or nickel bronze cover secured to the plug or cover frame and set flush with the finished floor. Heads of fastening screws shall not project above the cover surface. Where cleanouts are provided with adjustable heads, the heads shall be cast iron.

3.2 WATER HEATERS AND HOT WATER STORAGE TANKS

3.2.1 Relief Valves

No valves shall be installed between a relief valve and its water heater or storage tank. The P&T relief valve shall be installed where the valve actuator comes in contact with the hottest water in the heater. Whenever possible, the relief valve shall be installed directly in a tapping in the tank or heater; otherwise, the P&T valve shall be installed in the hot-water outlet piping. A vacuum relief valve shall be provided on the cold water supply line to the hot-water storage tank or water heater and mounted above and within 6 inches above the top of the tank or water heater.

3.2.2 Heat Traps

Piping to and from each water heater and hot water storage tank shall be routed horizontally and downward a minimum of 2 feet before turning in an upward direction.

3.2.3 Connections to Water Heaters

Connections of metallic pipe to water heaters shall be made with dielectric unions or flanges.

3.2.4 Expansion Tank

A pre-charged expansion tank shall be installed on the cold water supply between the water heater inlet and the cold water supply shut-off valve. The Contractor shall adjust the expansion tank air pressure, as recommended by the tank manufacturer, to match incoming water pressure.

3.3 FIXTURES AND FIXTURE TRIMMINGS

Polished chromium-plated pipe, valves, and fittings shall be provided where exposed to view. Angle stops, straight stops, stops integral with the faucets, or concealed type of lock-shield, and loose-key pattern stops for supplies with threaded, sweat or solvent weld inlets shall be furnished and installed with fixtures. Where connections between copper tubing and faucets are made by rubber compression fittings, a beading tool shall be used to mechanically deform the tubing above the compression fitting. Exposed traps and supply pipes for fixtures and equipment shall be connected to the rough piping systems at the wall, unless otherwise specified under the item. Floor and wall escutcheons shall be as
specified. Drain lines and hot water lines of fixtures for handicapped personnel shall be insulated and do not require polished chrome finish. Plumbing fixtures and accessories shall be installed within the space shown.

3.3.1 Fixture Connections

Where space limitations prohibit standard fittings in conjunction with the cast-iron floor flange, special short-radius fittings shall be provided. Connections between earthenware fixtures and flanges on soil pipe shall be made gastight and watertight with a closet-setting compound or neoprene gasket and seal. Use of natural rubber gaskets or putty will not be permitted. Fixtures with outlet flanges shall be set the proper distance from floor or wall to make a first-class joint with the closet-setting compound or gasket and fixture used.

3.3.2 Backflow Prevention Devices

Plumbing fixtures, equipment, and pipe connections shall not cross connect or interconnect between a potable water supply and any source of nonpotable water. Backflow preventers shall be installed where indicated and in accordance with ICC IPC at all other locations necessary to preclude a cross-connect or interconnect between a potable water supply and any nonpotable substance. In addition backflow preventers shall be installed at all locations where the potable water outlet is below the flood level of the equipment, or where the potable water outlet will be located below the level of the nonpotable substance. Backflow preventers shall be located so that no part of the device will be submerged. Backflow preventers shall be of sufficient size to allow unrestricted flow of water to the equipment, and preclude the backflow of any nonpotable substance into the potable water system. Bypass piping shall not be provided around backflow preventers. Access shall be provided for maintenance and testing. Each device shall be a standard commercial unit.

3.3.3 Access Panels

Access panels shall be provided for concealed valves and controls, or any item requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced, maintained, or replaced.

3.3.4 Sight Drains

Sight drains shall be installed so that the indirect waste will terminate 2 inches above the flood rim of the funnel to provide an acceptable air gap.

3.3.5 Traps

Each trap shall be placed as near the fixture as possible, and no fixture shall be double-trapped. Traps installed on cast-iron soil pipe shall be cast iron. Traps installed on steel pipe or copper tubing shall be recess-drainage pattern, or brass-tube type. Traps installed on plastic pipe may be plastic conforming to ASTM D3311. Traps for acid-resisting waste shall be of the same material as the pipe.

3.4 ESCUTCHEONS

Escutcheons shall be provided at finished surfaces where bare or insulated piping, exposed to view, passes through floors, walls, or ceilings, except in boiler, utility, or equipment rooms. Escutcheons shall be fastened.
securely to pipe or pipe covering and shall be satin-finish, corrosion-resisting steel, polished chromium-plated zinc alloy, or polished chromium-plated copper alloy. Escutcheons shall be either one-piece or split-pattern, held in place by internal spring tension or setscrew.

3.5 PAINTING

Painting of pipes, hangers, supports, and other iron work, either in concealed spaces or exposed spaces, is specified in Section 09 90 00 PAINTS AND COATINGS.

3.5.1 Painting of New Equipment

New equipment painting shall be factory applied or shop applied, and shall be as specified herein, and provided under each individual section.

3.5.1.1 Factory Painting Systems

Manufacturer's standard factory painting systems may be provided subject to certification that the factory painting system applied will withstand 125 hours in a salt-spray fog test, except that equipment located outdoors shall withstand 500 hours in a salt-spray fog test. Salt-spray fog test shall be in accordance with ASTM B117, and for that test the acceptance criteria shall be as follows: immediately after completion of the test, the paint shall show no signs of blistering, wrinkling, or cracking, and no loss of adhesion; and the specimen shall show no signs of rust creepage beyond 0.125 inch on either side of the scratch mark.

The film thickness of the factory painting system applied on the equipment shall not be less than the film thickness used on the test specimen. If manufacturer's standard factory painting system is being proposed for use on surfaces subject to temperatures above 120 degrees F, the factory painting system shall be designed for the temperature service.

3.5.1.2 Shop Painting Systems for Metal Surfaces

Clean, pretreat, prime and paint metal surfaces; except aluminum surfaces need not be painted. Apply coatings to clean dry surfaces. Clean the surfaces to remove dust, dirt, rust, oil and grease by wire brushing and solvent degreasing prior to application of paint, except metal surfaces subject to temperatures in excess of 120 degrees F shall be cleaned to bare metal.

Where more than one coat of paint is specified, apply the second coat after the preceding coat is thoroughly dry. Lightly sand damaged painting and retouch before applying the succeeding coat. Color of finish coat shall be aluminum or light gray.

a. Temperatures Less Than 120 Degrees F: Immediately after cleaning, the metal surfaces subject to temperatures less than 120 degrees F shall receive one coat of pretreatment primer applied to a minimum dry film thickness of 0.3 mil, one coat of primer applied to a minimum dry film thickness of one mil; and two coats of enamel applied to a minimum dry film thickness of one mil per coat.

b. Temperatures Between 120 and 400 Degrees F: Metal surfaces subject to temperatures between 120 and 400 degrees F shall receive two coats of 400 degrees F heat-resisting enamel applied to a total minimum
thickness of 2 mils.

c. Temperatures Greater Than 400 Degrees F: Metal surfaces subject to temperatures greater than 400 degrees F shall receive two coats of 600 degrees F heat-resisting paint applied to a total minimum dry film thickness of 2 mils.

3.6 TESTS, FLUSHING AND DISINFECTION

3.6.1 Plumbing System

The following tests shall be performed on the plumbing system in accordance with ICC IPC, except that the drainage and vent system final test shall include the smoke test. The Contractor has the option to perform a peppermint test in lieu of the smoke test. If a peppermint test is chosen, the Contractor must submit a testing procedure and reasons for choosing this option in lieu of the smoke test to the Contracting Officer for approval.

a. Drainage and Vent Systems Test.
b. Building Sewers Tests.

3.6.1.1 Test of Backflow Prevention Assemblies

Backflow prevention assembly shall be tested using gauges specifically designed for the testing of backflow prevention assemblies.

Backflow prevention assembly test gauges shall be tested annually for accuracy in accordance with the requirements of State or local regulatory agencies. If there is no State or local regulatory agency requirements, gauges shall be tested annually for accuracy in accordance with the requirements of University of Southern California's Foundation of Cross Connection Control and Hydraulic Research or the American Water Works Association Manual of Cross Connection (Manual M-14), or any other approved testing laboratory having equivalent capabilities for both laboratory and field evaluation of backflow prevention assembly test gauges. Report form for each assembly shall include, as a minimum, the following:

<table>
<thead>
<tr>
<th>Data on Device</th>
<th>Data on Testing Firm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Assembly</td>
<td>Name</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Address</td>
</tr>
<tr>
<td>Model Number</td>
<td>Certified Tester</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Certified Tester No.</td>
</tr>
<tr>
<td>Size</td>
<td>Date of Test</td>
</tr>
<tr>
<td>Location</td>
<td></td>
</tr>
</tbody>
</table>
If the unit fails to meet specified requirements, the unit shall be repaired and retested.

3.6.2 Defective Work

If inspection or test shows defects, such defective work or material shall be replaced or repaired as necessary and inspection and tests shall be repeated. Repairs to piping shall be made with new materials. Caulking of screwed joints or holes will not be acceptable.

3.6.3 System Flushing

3.6.3.1 During Flushing

Before operational tests or disinfection, potable water piping system shall be flushed with potable water. Sufficient water shall be used to produce a water velocity that is capable of entraining and removing debris in all portions of the piping system. This requires simultaneous operation of all fixtures on a common branch or main in order to produce a flushing velocity of approximately 4 fps through all portions of the piping system. In the event that this is impossible due to size of system, the Contracting Officer (or the designated representative) shall specify the number of fixtures to be operated during flushing. Contractor shall provide adequate personnel to monitor the flushing operation and to ensure that drain lines are unobstructed in order to prevent flooding of the facility. Contractor shall be responsible for any flood damage resulting from flushing of the system. Flushing shall be continued until entrained dirt and other foreign materials have been removed and until discharge water shows no discoloration. All faucets and drinking water fountains, to include any device considered as an end point device by NSF/ANSI 61, Section 9, shall be flushed a minimum of 0.25 gallons per 24 hour period, ten times over a 14 day period.

3.6.3.2 After Flushing

System shall be drained at low points. Strainer screens shall be removed, cleaned, and replaced. After flushing and cleaning, systems shall be prepared for testing by immediately filling water piping with clean, fresh potable water. Any stoppage, discoloration, or other damage to the finish, furnishings, or parts of the building due to the Contractor's failure to properly clean the piping system shall be repaired by the Contractor. When the system flushing is complete, the hot-water system shall be adjusted for uniform circulation. Flushing devices and automatic control systems shall be adjusted for proper operation according to manufacturer's instructions. Comply with ASHRAE 90.1 - IP for minimum efficiency requirements. Unless more stringent local requirements exist, lead levels shall not exceed limits established by 40 CFR 141.80 (c)(1). The water supply to the building shall be tested separately to ensure that any lead contamination found during potable water system testing is due to work being performed inside the building.

3.6.4 Disinfection

After all system components are provided and operational tests are complete, the entire domestic hot- and cold-water distribution system shall be disinfected. Before introducing disinfecting chlorination material,
entire system shall be flushed with potable water until any entrained dirt and other foreign materials have been removed.

Water chlorination procedure shall be in accordance with AWWA C651 and AWWA C652 as modified and supplemented by this specification. The chlorinating material shall be hypochlorites or liquid chlorine. The chlorinating material shall be fed into the water piping system at a constant rate at a concentration of at least 50 parts per million (ppm). Feed a properly adjusted hypochlorite solution injected into the system with a hypochlorinator, or inject liquid chlorine into the system through a solution-feed chlorinator and booster pump until the entire system is completely filled.

Test the chlorine residual level in the water at 6 hour intervals for a continuous period of 24 hours. If at the end of a 6 hour interval, the chlorine residual has dropped to less than 25 ppm, flush the piping including tanks with potable water, and repeat the above chlorination procedures. During the chlorination period, each valve and faucet shall be opened and closed several times.

After the second 24 hour period, verify that no less than 25 ppm chlorine residual remains in the treated system. The 24 hour chlorination procedure must be repeated until no less than 25 ppm chlorine residual remains in the treated system.

Upon the specified verification, the system including tanks shall then be flushed with potable water until the residual chlorine level is reduced to less than one part per million. During the flushing period, each valve and faucet shall be opened and closed several times.

Take additional samples of water in disinfected containers, for bacterial examination, at locations specified by the Contracting Officer. Test these samples for total coliform organisms (coliform bacteria, fecal coliform, streptococcal, and other bacteria) in accordance with AWWA 10084. The testing method used shall be EPA approved for drinking water systems and shall comply with applicable local and state requirements. Disinfection shall be repeated until bacterial tests indicate the absence of coliform organisms (zero mean coliform density per 100 milliliters) in the samples for at least 2 full days. The system will not be accepted until satisfactory bacteriological results have been obtained.

3.7 PERFORMANCE OF WATER HEATING EQUIPMENT

Standard rating condition terms are as follows:

EF = Energy factor, minimum overall efficiency.

ET = Minimum thermal efficiency with 70 degrees F delta T.

SL = Standby loss is maximum (Btu/h) based on a 70 degrees F temperature difference between stored water and ambient requirements.

V = Rated volume in gallons

Q = Nameplate input rate in kW (Btu/h)
3.7.1 Storage Water Heaters

3.7.1.1 Electric

a. Storage capacity of 60 gallons shall have a minimum energy factor (EF) of 0.93 or higher per FEMP requirements.

3.8 TABLES

<table>
<thead>
<tr>
<th>Table I</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIPE AND FITTING MATERIALS FOR DRAINAGE, WASTE, VENT AND CONDENSATE DRAIN PIPING SYSTEMS</td>
</tr>
<tr>
<td>Id</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
TABLE I

PIPE AND FITTING MATERIALS FOR DRAINAGE, WASTE, VENT AND CONDENSATE DRAIN PIPING SYSTEMS

<table>
<thead>
<tr>
<th></th>
<th>Pipe and Fitting Materials</th>
<th>SERVICE A</th>
<th>SERVICE B</th>
<th>SERVICE C</th>
<th>SERVICE D</th>
<th>SERVICE E</th>
<th>SERVICE F</th>
<th>SERVICE G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERVICE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Underground Building Soil, Waste and Storm Drain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Aboveground Soil, Waste, Drain In Buildings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Underground Vent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Aboveground Vent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Interior Rainwater Conductors Aboveground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Corrosive Waste And Vent Above And Belowground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Condensate Drain Aboveground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Hard Temper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE II

PIPE AND FITTING MATERIALS FOR PRESSURE PIPING SYSTEMS

<table>
<thead>
<tr>
<th>Item #</th>
<th>Pipe and Fitting Materials</th>
<th>SERVICE A</th>
<th>SERVICE B</th>
<th>SERVICE C</th>
<th>SERVICE D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Malleable-iron threaded fittings:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Galvanized, ASME B16.3 for use with Item 4a</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>b. Same as "a" but not galvanized for use with Item 4b</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Steel pipe:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Seamless, galvanized, ASTM A53/A53M, Type S, Grade B</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>b. Seamless, black, ASTM A53/A53M, Type S, Grade B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>Seamless copper pipe, ASTM B42</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Seamless copper water tube, ASTM B88, ASTM B88M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Pipe and Fitting Materials</td>
<td>SERVICE A</td>
<td>SERVICE B</td>
<td>SERVICE C</td>
<td>SERVICE D</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>5</td>
<td>Wrought copper and bronze solder-joint pressure fittings ASME B16.22</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>Fittings: brass or bronze; ASME B16.15, and ASME B16.18 ASTM B828</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Malleable-iron threaded pipe unions ASME B16.39</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Nipples, pipe threaded ASTM A733</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

SERVICE:
- A - Cold Water Service Aboveground
- B - Hot and Cold Water Distribution 82 degrees F Maximum Aboveground
- C - Compressed Air Lubricated
- D - Cold Water Service Belowground

Indicated types are minimum wall thicknesses.

** - Type L - Hard

*** - Type K - Hard temper with brazed joints only or type K-soft temper without joints in or under floors

**** - In or under slab floors only brazed joints
SECTION 23 00 00

AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)

AMCA 201 (2002; R 2011) Fans and Systems
AMCA 210 (2016) Laboratory Methods of Testing Fans for Aerodynamic Performance Rating
AMCA 300 (2014) Reverberant Room Method for Sound Testing of Fans
AMCA 301 (2014) Methods for Calculating Fan Sound Ratings from Laboratory Test Data
AMCA 500-D (2012) Laboratory Methods of Testing Dampers for Rating

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)

AHRI 410 (2001; Addendum 1 2002; Addendum 2 2005; Addendum 3 2011) Forced-Circulation Air-Cooling and Air-Heating Coils
AHRI 880 I-P (2011) Performance Rating of Air Terminals
AHRI 885 (2008; Addendum 2011) Procedure for Estimating Occupied Space Sound Levels in the Application of Air Terminals and Air Outlets
AHRI Guideline D (1996) Application and Installation of Central Station Air-Handling Units

AMERICAN BEARING MANUFACTURERS ASSOCIATION (ABMA)

ABMA 11 (2014) Load Ratings and Fatigue Life for Roller Bearings
ABMA 9 (2015) Load Ratings and Fatigue Life for Ball Bearings

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

Removal Efficiency by Particle Size

ASHRAE 70 (2006; R 2011) Method of Testing for Rating the Performance of Air Outlets and Inlets

ASTM INTERNATIONAL (ASTM)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA MG 1 (2016; SUPP 2016) Motors and Generators

NEMA MG 11

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 90A

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

SMACNA 1981

SMACNA 1819

SMACNA 1966
(2005) HVAC Duct Construction Standards Metal and Flexible, 3rd Edition

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

40 CFR 82
Protection of Stratospheric Ozone

UNDERWRITERS LABORATORIES (UL)

UL 181
(2013; Reprint Apr 2017) UL Standard for Safety Factory-Made Air Ducts and Air Connectors

UL 214
(1997; Rev thru Aug 2001) Tests for Flame-Propagation of Fabrics and Films

UL 555
(2006; Reprint Aug 2016) UL Standard for Safety Fire Dampers

UL 586
(2009; Reprint Sep 2014) Standard for High-Efficiency Particulate, Air Filter Units

UL 6
(2007; Reprint Nov 2014) Electrical Rigid Metal Conduit-Steel

UL 705

UL 723
(2008; Reprint Aug 2013) Test for Surface Burning Characteristics of Building Materials

UL 900

UL Bld Mat Dir
(updated continuously online) Building Materials Directory

UL Electrical Constructn

SECTION 23 00 00 Page 3
1.2 SYSTEM DESCRIPTION

Furnish ductwork, piping offsets, fittings, and accessories as required to provide a complete installation. Coordinate the work of the different trades to avoid interference between piping, equipment, structural, and electrical work. Provide complete, in place, all necessary offsets in piping and ductwork, and all fittings, and other components, required to install the work as indicated and specified.

1.2.1 Mechanical Equipment Identification

Provide chart listing of equipment by designation numbers and capacities such as flow rates, pressure and temperature differences, heating and cooling capacities, horsepower, pipe sizes, and voltage and current characteristics. Diagrams shall be neat mechanical drawings provided with extruded aluminum frames and 1/8-inch acrylic plastic protection. Location is as directed by the Contracting Officer. The number of charts and diagrams shall be equal to or greater than the number of mechanical equipment rooms. Where more than one chart per space is required, mount these in edge pivoted, swinging leaf, extruded aluminum frame holders which open to 170 degrees.

1.2.2 Service Labeling

Label equipment, including fans, air handlers, terminal units, etc. with labels made of self-sticking, plastic film designed for permanent installation. Labels shall be in accordance with the typical examples below:

<table>
<thead>
<tr>
<th>SERVICE</th>
<th>LABEL AND TAG DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air handling unit Number</td>
<td>AHU - _____</td>
</tr>
<tr>
<td>Control and instrument air</td>
<td>CONTROL AND INSTR.</td>
</tr>
<tr>
<td>Exhaust Fan Number</td>
<td>EF - _____</td>
</tr>
<tr>
<td>VAV Box Number</td>
<td>VAV - _____</td>
</tr>
<tr>
<td>Fan Coil Unit Number</td>
<td>FC - _____</td>
</tr>
<tr>
<td>Terminal Box Number</td>
<td>TB - _____</td>
</tr>
<tr>
<td>Unit Ventilator Number</td>
<td>UV - _____</td>
</tr>
</tbody>
</table>

Identify similar services with different temperatures or pressures. Where pressures could exceed 125 pounds per square inch, gage, include the maximum system pressure in the label. Label and arrow piping in accordance with the following:

a. Each point of entry and exit of pipe passing through walls.

b. Each change in direction, i.e., elbows, tees.

c. In congested or hidden areas and at all access panels at each point required to clarify service or indicated hazard.
d. In long straight runs, locate labels at distances within eyesight of each other not to exceed 75 feet. All labels shall be visible and legible from the primary service and operating area.

<table>
<thead>
<tr>
<th>For Bare or Insulated Pipes</th>
<th>Lettering</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 thru 1-3/8 inch</td>
<td>1/2 inch</td>
</tr>
<tr>
<td>1-1/2 thru 2-3/8 inch</td>
<td>3/4 inch</td>
</tr>
<tr>
<td>2-1/2 inch and larger</td>
<td>1-1/4 inch</td>
</tr>
</tbody>
</table>

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Detail Drawings

 Drawings as specified in Paragraph Detail Drawings and throughout this Section.

SD-03 Product Data

Standard Products: Manufacturer's catalog data included with the detail drawings for the following items. Highlight the data to show model, size, options, etc., that are intended for consideration. Provide adequate data to demonstrate compliance with contract requirements for the following:

Insulated Nonmetallic Flexible Duct Runouts
Duct Connectors
Duct Access Doors
Fire Dampers
Manual Balancing Dampers
Diffusers
Registers and Grilles
Louvers
Air Vents, Penthouses, and Goosenecks
In-Line Centrifugal Fans
Ceiling Exhaust Fans
Variable Volume, Single Duct Terminal Units

Diagrams

 Proposed diagrams, at least 2 weeks prior to start of related testing. Frame under glass or laminated plastic, system diagrams that show the layout of equipment, piping, and ductwork, and typed condensed operation manuals explaining preventative maintenance procedures, methods of checking the system for normal, safe operation, and procedures for safely starting and stopping the system. After approval, post these items where directed.

Operation and Maintenance Training
Proposed On-site Training schedule, submitted concurrently with the Operation and Maintenance Manuals.

SD-06 Test Reports

Performance Tests

Test reports for the performance tests in booklet form, upon completion of testing. Document phases of tests performed including initial test summary, repairs/adjustments made, and final test results in the reports.

Damper Acceptance Test

Proposed schedule, at least 2 weeks prior to the start of test.

SD-08 Manufacturer's Instructions

Manufacturer's Installations Instructions
Operation and Maintenance Training

SD-10 Operation and Maintenance Data

Operation and Maintenance Manuals

Six manuals at least 2 weeks prior to field training. Submit data complying with the requirements specified in Section 01 78 23 0PERATION AND MAINTENANCE DATA. Submit Data Package 3 for the following:

Fire Dampers
Manual Balancing Dampers
In-Line Centrifugal Fans
Ceiling Exhaust Fans
Variable Volume, Single Duct Terminal Units

1.4 QUALITY ASSURANCE

Except as otherwise specified, approval of materials and equipment is based on manufacturer's published data.

a. Where materials and equipment are specified to conform to the standards of the Underwriters Laboratories, the label of or listing with reexamination in UL Bld Mat Dir, and UL 6 is acceptable as sufficient evidence that the items conform to Underwriters Laboratories requirements. In lieu of such label or listing, submit a written certificate from any nationally recognized testing agency, adequately equipped and competent to perform such services, stating that the items have been tested and that the units conform to the specified requirements. Outline methods of testing used by the specified agencies.

b. Where materials or equipment are specified to be constructed or tested, or both, in accordance with the standards of the ASTM International (ASTM), the ASME International (ASME), or other standards, a manufacturer's certificate of compliance of each item is acceptable as proof of compliance.
c. Conformance to such agency requirements does not relieve the item from compliance with other requirements of these specifications.

1.4.1 Prevention of Corrosion

Protect metallic materials against corrosion. Manufacturer shall provide rust-inhibiting treatment and standard finish for the equipment enclosures. Do not use aluminum in contact with earth, and where connected to dissimilar metal. Protect aluminum by approved fittings, barrier material, or treatment. Ferrous parts such as anchors, bolts, braces, boxes, bodies, clamps, fittings, guards, nuts, pins, rods, shims, thimbles, washers, and miscellaneous parts not of corrosion-resistant steel or nonferrous materials shall be hot-dip galvanized in accordance with ASTM A123/A123M for exterior locations and cadmium-plated in conformance with ASTM B766 for interior locations.

1.4.2 Asbestos Prohibition

Do not use asbestos and asbestos-containing products.

1.4.3 Ozone Depleting Substances Used as Refrigerants

Minimize releases of Ozone Depleting Substances (ODS) during repair, maintenance, servicing or disposal of appliances containing ODS's by complying with all applicable sections of 40 CFR 82 Part 82 Subpart F. Any person conducting repair, maintenance, servicing or disposal of appliances owned by NASA shall comply with the following:

a. Do not knowingly vent or otherwise release into the environment, Class I or Class II substances used as a refrigerant.

b. Do not open appliances without meeting the requirements of 40 CFR 82 Part 82.156 Subpart F, regarding required practices for evacuation and collection of refrigerant, and 40 CFR 82 Part 82.158 Subpart F, regarding standards of recycling and recovery equipment.

c. Only persons who comply with 40 CFR 82 Part 82.161 Subpart F, regarding technician certification, can conduct work on appliances containing refrigerant.

In addition, provide copies of all applicable certifications to the Contracting Officer at least 14 calendar days prior to initiating maintenance, repair, servicing, dismantling or disposal of appliances, including:

a. Proof of Technician Certification

b. Proof of Equipment Certification for recovery or recycling equipment.

c. Proof of availability of certified recovery or recycling equipment.

1.4.4 Use of Ozone Depleting Substances, Other than Refrigerants

The use of Class I or Class II ODS's listed as nonessential in 40 CFR 82 Part 82.66 Subpart C is prohibited. These prohibited materials and uses include:

a. Any plastic party spray streamer or noise horn which is propelled by a chlorofluorocarbon
b. Any cleaning fluid for electronic and photographic equipment which contains a chlorofluorocarbon; including liquid packaging, solvent wipes, solvent sprays, and gas sprays

c. Any plastic flexible or packaging foam product which is manufactured with or contains a chlorofluorocarbon, including, open cell foam, open cell rigid polyurethane poured foam, closed cell extruded polystyrene sheet foam, closed cell polyethylene foam and closed cell polypropylene foam except for flexible or packaging foam used in coaxial

d. Any aerosol product or other pressurized dispenser which contains a chlorofluorocarbon, except for those listed in 40 CFR 82 Part 82.66 Subpart C.

Request a waiver if a facility requirement dictates that a prohibited material is necessary to achieve project goals. Submit the waiver request in writing to the Contracting Officer. The waiver will be evaluated and dispositioned.

1.4.5 Detail Drawings

Submit detail drawings showing equipment layout, including assembly and installation details and electrical connection diagrams; ductwork layout showing the location of all supports and hangers, typical hanger details, gauge reinforcement, reinforcement spacing rigidity classification, and static pressure and seal classifications. Include any information required to demonstrate that the system has been coordinated and functions properly as a unit on the drawings and show equipment relationship to other parts of the work, including clearances required for operation and maintenance. Submit drawings showing bolt-setting information, and foundation bolts prior to concrete foundation construction for all equipment indicated or required to have concrete foundations. Submit function designation of the equipment and any other requirements specified throughout this Section with the shop drawings.

1.5 DELIVERY, STORAGE, AND HANDLING

Protect stored equipment at the jobsite from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Additionally, cap or plug all pipes until installed.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Provide components and equipment that are "standard products" of a manufacturer regularly engaged in the manufacturing of products that are of a similar material, design and workmanship. "Standard products" is defined as being in satisfactory commercial or industrial use for 2 years before bid opening, including applications of components and equipment under similar circumstances and of similar size, satisfactorily completed by a product that is sold on the commercial market through advertisements, manufacturers' catalogs, or brochures. Products having less than a 2-year field service record are acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown. Provide equipment items that are supported by a service organization. Where applicable, provide equipment that is an ENERGY STAR Qualified product or a Federal Energy
Management Program (FEMP) designated product.

2.2 IDENTIFICATION PLATES

In addition to standard manufacturer's identification plates, provide engraved laminated phenolic identification plates for each piece of mechanical equipment. Identification plates are to designate the function of the equipment. Submit designation with the shop drawings. Identification plates shall be three layers, black-white-black, engraved to show white letters on black background. Letters shall be upper case. Identification plates 1-1/2-inches high and smaller shall be 1/16-inch thick, with engraved lettering 1/8-inch high; identification plates larger than 1-1/2-inches high shall be 1/8-inch thick, with engraved lettering of suitable height. Identification plates 1-1/2-inches high and larger shall have beveled edges. Install identification plates using a compatible adhesive.

2.3 EQUIPMENT GUARDS AND ACCESS

Fully enclose or guard belts, pulleys, chains, gears, couplings, projecting setscrews, keys, and other rotating parts exposed to personnel contact according to OSHA requirements. Properly guard or cover with insulation of a type specified, high temperature equipment and piping exposed to contact by personnel or where it creates a potential fire hazard.

2.4 ELECTRICAL WORK

a. Provide motors, controllers, integral disconnects, contactors, and controls with their respective pieces of equipment, except controllers indicated as part of motor control centers. Provide electrical equipment, including motors and wiring, as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Provide manual or automatic control and protective or signal devices required for the operation specified and control wiring required for controls and devices specified, but not shown. For packaged equipment, include manufacturer provided controllers with the required monitors and timed restart.

b. For single-phase motors, provide high-efficiency type, fractional-horsepower alternating-current motors, including motors that are part of a system, in accordance with NEMA MG 11. Integral size motors shall be the premium efficiency type in accordance with NEMA MG 1.

c. For polyphase motors, provide squirrel-cage medium induction motors, including motors that are part of a system, and that meet the efficiency ratings for premium efficiency motors in accordance with NEMA MG 1. Select premium efficiency polyphase motors in accordance with NEMA MG 10.

d. Provide motors in accordance with NEMA MG 1 and of sufficient size to drive the load at the specified capacity without exceeding the nameplate rating of the motor. Provide motors rated for continuous duty with the enclosure specified. Provide motor duty that allows for maximum frequency start-stop operation and minimum encountered interval between start and stop. Provide motor torque capable of accelerating the connected load within 20 seconds with 80 percent of the rated voltage maintained at motor terminals during one starting period. Provide motor starters complete with thermal overload protection and other necessary appurtenances. Fit motor bearings with grease supply fittings and grease relief to outside of the enclosure.
2.5 ANCHOR BOLTS

Provide anchor bolts for equipment placed on concrete equipment pads or on concrete slabs. Bolts to be of the size and number recommended by the equipment manufacturer and located by means of suitable templates. Installation of anchor bolts shall not degrade the surrounding concrete.

2.6 SEISMIC ANCHORAGE

Anchor equipment in accordance with applicable seismic criteria for the area and as defined in SMACNA 1981.

2.7 PAINTING

Paint equipment units in accordance with approved equipment manufacturer's standards unless specified otherwise. Field retouch only if approved. Otherwise, return equipment to the factory for refinishing.

2.8 INDOOR AIR QUALITY

Provide equipment and components that comply with the requirements of ASHRAE 62.1 unless more stringent requirements are specified herein.

2.9 DUCT SYSTEMS

2.9.1 Metal Ductwork

Provide metal ductwork construction, including all fittings and components, that complies with SMACNA 1966, as supplemented and modified by this specification.

a. Ductwork shall be constructed meeting the requirements for the duct system static pressure specified in APPENDIX D of Section 23 05 93 TESTING, ADJUSTING AND BALANCING FOR HVAC.

b. Provide radius type elbows with a centerline radius of 1.5 times the width or diameter of the duct where space permits. Otherwise, elbows having a minimum radius equal to the width or diameter of the duct or square elbows with factory fabricated turning vanes are allowed.

c. Provide ductwork that meets the requirements of Seal Class A. Provide ductwork in VAV systems upstream of the VAV boxes that meets the requirements of Seal Class A.

d. Provide sealants that conform to fire hazard classification specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS and are suitable for the range of air distribution and ambient temperatures to which it is exposed. Do not use pressure sensitive tape as a sealant.

e. Make spiral lock seam duct, and flat oval with duct sealant and lock with not less than 3 equally spaced drive screws or other approved methods indicated in SMACNA 1966. Apply the sealant to the exposed male part of the fitting collar so that the sealer is on the inside of

SECTION 23 00 00 Page 10
2.9.1.1 Insulated Nonmetallic Flexible Duct Runouts

Use flexible duct runouts only where indicated. Runout length is indicated on the drawings, and is not to exceed 5 feet. Provide runouts that are preinsulated, factory fabricated, and that comply with NFPA 90A and UL 181. Provide either field or factory applied vapor barrier. Provide not less than 20 ounce glass fabric duct connectors coated on both sides with neoprene. Where coil induction or high velocity units are supplied with vertical air inlets, use a streamlined, vaned and mitered elbow transition piece for connection to the flexible duct or hose. Provide a die-stamped elbow and not a flexible connector as the last elbow to these units other than the vertical air inlet type. Insulated flexible connectors are allowed as runouts. Provide insulated material and vapor barrier that conform to the requirements of Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS. Do not expose the insulation material surface to the air stream.

2.9.1.2 General Service Duct Connectors

Provide a flexible duct connector approximately 6 inches in width where sheet metal connections are made to fans or where ducts of dissimilar metals are connected. For round/oval ducts, secure the flexible material by stainless steel or zinc-coated, iron clinch-type draw bands. For rectangular ducts, install the flexible material locked to metal collars using normal duct construction methods. Provide a composite connector system that complies with UL 214 and is classified as "flame-retarded fabrics" in UL Bld Mat Dir.

2.9.1.3 High Temperature Service Duct Connections

Provide material that is approximately 3/32 inch thick, 35 to 40-ounce per square yard weight, plain weave fibrous glass cloth with, nickel/chrome wire reinforcement for service in excess of 1200 degrees F.

2.9.1.4 Aluminum Ducts

ASTM B209, alloy 3003-H14 for aluminum sheet and alloy 6061-T6 or equivalent strength for aluminum connectors and bar stock.

2.9.1.5 Copper Sheets

ASTM B152/B152M, light cold rolled temper.

2.9.1.6 Corrosion Resisting (Stainless) Steel Sheets

ASTM A167

2.9.2 Duct Access Doors

Provide hinged access doors conforming to SMACNA 1966 in ductwork and plenums where indicated and at all air flow measuring primaries, automatic dampers, fire dampers, coils, thermostats, and other apparatus requiring
service and inspection in the duct system. Provide access doors upstream and downstream of air flow measuring primaries and heating and cooling coils. Provide doors that are a minimum 15 by 18 inches, unless otherwise shown. Where duct size does not accommodate this size door, make the doors as large as practicable. Equip doors 24 by 24 inches or larger with fasteners operable from inside and outside the duct. Use insulated type doors in insulated ducts.

2.9.3 Fire Dampers

Use 1.5 hour rated fire dampers unless otherwise indicated. Provide fire dampers that conform to the requirements of NFPA 90A and UL 555. Provide automatic operating fire dampers with a dynamic rating suitable for the maximum air velocity and pressure differential to which it is subjected. Provide fire dampers approved for the specific application, and install according to their listing. Equip fire dampers with a steel sleeve or adequately sized frame installed in such a manner that disruption of the attached ductwork, if any, does not impair the operation of the damper. Equip sleeves or frames with perimeter mounting angles attached on both sides of the wall or floor opening. Construct ductwork in fire-rated floor-ceiling or roof-ceiling assembly systems with air ducts that pierce the ceiling of the assemblies in conformance with UL Fire Resistance. Provide curtain type with damper blades fire dampers. Install dampers that do not reduce the duct or the air transfer opening cross-sectional area. Install dampers so that the centerline of the damper depth or thickness is located in the centerline of the wall, partition or floor slab depth or thickness. Unless otherwise indicated, comply with the installation details given in SMACNA 1819 and in manufacturer's instructions for fire dampers.

2.9.4 Manual Balancing Dampers

Furnish manual balancing dampers with accessible operating mechanisms. Use chromium plated operators (with all exposed edges rounded) in finished portions of the building. Provide manual volume control dampers that are operated by locking-type quadrant operators. Install dampers that are 2 gauges heavier than the duct in which installed. Unless otherwise indicated, provide opposed blade type multileaf dampers with maximum blade width of 12 inches. Provide access doors or panels for all concealed damper operators and locking setscrews. Provide stand-off mounting brackets, bases, or adapters not less than the thickness of the insulation when the locking-type quadrant operators for dampers are installed on ducts to be thermally insulated, to provide clearance between the duct surface and the operator. Stand-off mounting items shall be integral with the operator or standard accessory of the damper manufacturer.

2.9.5 Air Supply And Exhaust Air Dampers

Where outdoor air supply and exhaust air dampers are required they shall have a maximum leakage rate when tested in accordance with AMCA 500-D as required by ASHRAE 90.1 - IP, including:

Maximum Damper Leakage for:

1) The maximum damper leakage at 1.0 inch w.g. for motorized dampers is 4 cfm per square foot of damper area and non-motorized dampers are not allowed.

Dampers smaller than 24 inches in either direction may have leakage of 40
2.9.6 Air Deflectors and Branch Connections

Provide air deflectors at all duct mounted supply outlets, at takeoff or extension collars to supply outlets, at duct branch takeoff connections, and at 90 degree elbows, as well as at locations as indicated on the drawings or otherwise specified. Conical branch connections or 45 degree entry connections are allowed in lieu of deflectors for branch connections. Furnish all air deflectors, except those installed in 90 degree elbows, with an approved means of adjustment. Provide easily accessible means for adjustment inside the duct or from an adjustment with sturdy lock on the face of the duct. When installed on ducts to be thermally insulated, provide external adjustments with stand-off mounting brackets, integral with the adjustment device, to provide clearance between the duct surface and the adjustment device not less than the thickness of the thermal insulation. Provide factory-fabricated air deflectors consisting of curved turning vanes or louver blades designed to provide uniform air distribution and change of direction with minimum turbulence or pressure loss. Provide factory or field assembled air deflectors. Make adjustment from the face of the diffuser or by position adjustment and lock external to the duct. Provide stand-off brackets on insulated ducts as described herein. Provide fixed air deflectors, also called turning vanes, in 90 degree elbows.

2.9.7 Diffusers, Registers, and Grilles

Provide factory-fabricated units of steel that distribute the specified quantity of air evenly over space intended without causing noticeable drafts, air movement faster than 50 fpm in occupied zone, or dead spots anywhere in the conditioned area. Provide outlets for diffusion, spread, throw, and noise level as required for specified performance. Certify performance according to ASHRAE 70. Provide sound rated and certified inlets and outlets according to ASHRAE 70. Provide sound power level as indicated. Provide different types and registers with damper with accessible operator, unless otherwise indicated; or if standard with the manufacturer, an automatically controlled device is acceptable. Provide opposed blade type volume dampers for all diffusers and registers, except linear slot diffusers. Provide linear slot diffusers with round or elliptical balancing dampers. Where the inlet and outlet openings are located less than 7 feet above the floor, protect them by a grille or screen according to NFPA 90A.

2.9.7.1 Diffusers

Provide diffuser types indicated. Furnish ceiling mounted units with anti-smudge devices, unless the diffuser unit minimizes ceiling smudging through design features. Provide deflectors with air deflectors of the type indicated. Provide air handling troffers or combination light and ceiling diffusers conforming to the requirements of UL Electrical Constructn for the interchangeable use as cooled or heated air supply diffusers or return air units. Install ceiling mounted units with rims tight against ceiling. Provide sponge rubber gaskets between ceiling and surface mounted diffusers for air leakage control. Provide suitable trim for flush mounted diffusers. For connecting the duct to diffuser, provide duct collar that is airtight and does not interfere with volume controller. Provide return or exhaust units that are similar to supply diffusers.
2.9.7.2 Registers and Grilles

Provide units that are four-way directional-control type, except provide return and exhaust registers that are fixed horizontal or vertical louver type similar in appearance to the supply register face. Furnish registers with sponge-rubber gasket between flanges and wall or ceiling. Install wall supply registers at least 6 inches below the ceiling unless otherwise indicated. Locate return and exhaust registers 6 inches above the floor unless otherwise indicated. Achieve four-way directional control by a grille face which can be rotated in 4 positions or by adjustment of horizontal and vertical vanes. Provide grilles as specified for registers, without volume control damper.

2.9.8 Louvers

Provide louvers for installation in exterior walls that are associated with the air supply and distribution system.

2.9.9 Air Vents, Penthouses, and Goosenecks

Fabricate air vents, penthouses, and goosenecks from galvanized steel or aluminum sheets with galvanized or aluminum structural shapes. Provide sheet metal thickness, reinforcement, and fabrication that conform to SMACNA 1966. Accurately fit and secure louver blades to frames. Fold or bead edges of louver blades for rigidity and baffle these edges to exclude driving rain. Provide air vents, penthouses, and goosenecks with bird screen.

2.9.10 Bird Screens and Frames

Provide bird screens that conform to ASTM E2016, No. 2 mesh, aluminum or stainless steel. Provide "medium-light" rated aluminum screens. Provide "light" rated stainless steel screens. Provide removable type frames fabricated from either stainless steel or extruded aluminum.

2.10 AIR SYSTEMS EQUIPMENT

2.10.1 Fans

Test and rate fans according to AMCA 210. Calculate system effect on air moving devices in accordance with AMCA 201 where installed ductwork differs from that indicated on drawings. Install air moving devices to minimize fan system effect. Where system effect is unavoidable, determine the most effective way to accommodate the inefficiencies caused by system effect on the installed air moving device. The sound power level of the fans shall not exceed 85 dBA when tested according to AMCA 300 and rated in accordance with AMCA 301. Provide all fans with an AMCA seal. Connect fans to the motors either directly or indirectly with V-belt drive. Use V-belt drives designed for not less than 150 percent of the connected driving capacity. Provide variable pitch motor sheaves for 15 hp and below, and fixed pitch as defined by AHRI Guideline D. Select variable pitch sheaves to drive the fan at a speed which can produce the specified capacity when set at the approximate midpoint of the sheave adjustment. When fixed pitch sheaves are furnished, provide a replaceable sheave when needed to achieve system air balance. Provide motors for V-belt drives with adjustable rails or bases. Provide removable metal guards for all exposed V-belt drives, and provide speed-test openings at the center of all rotating shafts. Provide fans with personnel screens or guards on both suction and supply ends, except that the screens need not be provided, unless otherwise indicated.
where ducts are connected to the fan. Provide fan and motor assemblies with vibration-isolation supports or mountings as indicated. Use vibration-isolation units that are standard products with published loading ratings. Select each fan to produce the capacity required at the fan static pressure indicated. Provide sound power level as indicated. Obtain the sound power level values according to AMCA 300. Provide standard AMCA arrangement, rotation, and discharge as indicated. Provide power ventilators that conform to UL 705 and have a UL label.

2.10.1.1 In-Line Centrifugal Fans

Provide in-line fans with centrifugal backward inclined blades, stationary discharge conversion vanes, internal and external belt guards, and adjustable motor mounts. Mount fans in a welded tubular casing. Provide a fan that axially flows the air in and out. Streamline inlets with conversion vanes to eliminate turbulence and provide smooth discharge air flow. Enclose and isolate fan bearings and drive shafts from the air stream. Provide precision, self aligning ball or roller type fan bearings that are sealed against dust and dirt and are permanently lubricated. Provide L50 rated bearing life at not less than 200,000 hours as defined by ABMA 9 and ABMA 11.

2.10.1.2 Ceiling Exhaust Fans

Provide centrifugal type, direct driven suspended cabinet-type ceiling exhaust fans. Provide fans with acoustically insulated housing. Provide chatter-proof backdraft damper. Provide egg-crate design or louver design integral face grille. Mount fan motors on vibration isolators. Furnish unit with mounting flange for hanging unit from above. Provide U.L. listed fans.

2.10.2 Coils

Provide fin-and-tube type coils constructed of seamless copper tubes and aluminum or copper fins mechanically bonded or soldered to the tubes. Provide casing and tube support sheets that are not lighter than 16 gauge galvanized steel, formed to provide structural strength. When required, provide multiple tube supports to prevent tube sag. Test each coil at the factory under water at not less than 400 psi air pressure and make suitable for 200 psi working pressure and 300 degrees F operating temperature unless otherwise stated. Mount coils for counterflow service. Rate and certify coils to meet the requirements of AHRI 410.

2.10.2.1 Water Coils

Install water coils with a pitch of not less than 1/8 inch/foot of the tube length toward the drain end. Use headers constructed of cast iron, welded steel or copper. Furnish each coil with a plugged vent and drain connection extending through the unit casing. Provide removable water coils with drain pans.

2.10.3 Air Filters

List air filters according to requirements of UL 900, except list high efficiency particulate air filters of 99.97 percent efficiency by the DOP Test method under the Label Service to meet the requirements of UL 586.
2.10.3.1 Extended Surface Pleated Panel Filters

Provide 2 inch depth, sectional, disposable type filters of the size indicated with a MERV of 8 when tested according to ASHRAE 52.2. Provide initial resistance at 500 fpm that does not exceed 0.36 inches water gauge. Provide UL Class 2 filters, and nonwoven cotton and synthetic fiber mat media. Attach a wire support grid bonded to the media to a moisture resistant fiberboard frame. Bond all four edges of the filter media to the inside of the frame to prevent air bypass and increase rigidity.

2.10.3.2 Holding Frames

Fabricate frames from not lighter than 16 gauge sheet steel with rust-inhibitor coating. Equip each holding frame with suitable filter holding devices. Provide gasketed holding frame seats. Make all joints airtight.

2.11 TERMINAL UNITS

2.11.1 Variable Air Volume (VAV) Terminal Units

a. Provide VAV terminal units that are the type, size, and capacity shown, mounted in the ceiling or wall cavity, plus units that are suitable for single duct system applications. Provide actuators and controls as specified in paragraph SUPPLEMENTAL COMPONENTS/SERVICES, subparagraph CONTROLS. For each VAV terminal unit, provide a temperature sensor in the unit discharge ductwork.

b. Provide unit enclosures that are constructed of galvanized steel not lighter than 22 gauge or aluminum sheet not lighter than 18 gauge. Provide single or multiple discharge outlets as required. Units with flow limiters are not acceptable. Provide unit air volume that is factory preset and readily field adjustable without special tools. Provide reheat coils as indicated.

c. Attach a flow chart to each unit. Base acoustic performance of the terminal units upon units tested according to AHRI 880 I-P with the calculations prepared in accordance with AHRI 885. Provide sound power level as indicated. Show discharge sound power for minimum and 1-1/2 inches water gauge inlet static pressure. Provide acoustical lining according to NFPA 90A.

2.11.1.1 Variable Volume, Single Duct Terminal Units

Provide variable volume, single duct, terminal units with a calibrated air volume sensing device, air valve or damper, actuator, and accessory relays. Provide units that control air volume to within plus or minus 5 percent of each air set point volume as determined by the thermostat with variations in inlet pressures from 3/4 to 6 inch water gauge. Provide units with an internal resistance not exceeding 0.4 inch water gauge at maximum flow range. Provide external differential pressure taps separate from the control pressure taps for air flow measurement with a 0 to 1 inch water gauge range. Provide sound attenuator at each VAV box.

PART 3 EXECUTION

3.1 EXAMINATION

After becoming familiar with all details of the work, verify all dimensions
3.2 INSTALLATION

a. Install materials and equipment in accordance with the requirements of the contract drawings and approved manufacturer's installation instructions. Accomplish installation by workers skilled in this type of work. Perform installation so that there is no degradation of the designed fire ratings of walls, partitions, ceilings, and floors.

b. No installation is permitted to block or otherwise impede access to any existing machine or system. Install all hinged doors to swing open a minimum of 120 degrees. Provide an area in front of all access doors that clears a minimum of 3 feet. In front of all access doors to electrical circuits, clear the area the minimum distance to energized circuits as specified in OSHA Standards, part 1910.333 (Electrical-Safety Related work practices).

c. Except as otherwise indicated, install emergency switches and alarms in conspicuous locations. Mount all indicators, to include gauges, meters, and alarms in order to be easily visible by people in the area.

3.2.1 Condensate Drain Lines

Provide water seals in the condensate drain from all units. Provide a depth of each seal of 2 inches plus the number of inches, measured in water gauge, of the total static pressure rating of the unit to which the drain is connected. Provide water seals that are constructed of 2 tees and an appropriate U-bend with the open end of each tee plugged. Provide pipe cap or plug cleanouts where indicated. Connect drains indicated to connect to the sanitary waste system using an indirect waste fitting. Insulate air conditioner drain lines as specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

3.2.2 Equipment and Installation

Provide frames and supports for tanks, compressors, pumps, valves, air handling units, fans, coils, dampers, and other similar items requiring supports. Floor mount or ceiling hang air handling units as indicated. Anchor and fasten as detailed. Set floor-mounted equipment on not less than 6 inch concrete pads or curbs doweled in place unless otherwise indicated. Make concrete foundations for circulating pumps heavy enough to minimize the intensity of the vibrations transmitted to the piping and the surrounding structure, as recommended in writing by the pump manufacturer.

3.2.3 Access Panels

Install access panels for concealed valves, vents, controls, dampers, and items requiring inspection or maintenance of sufficient size, and locate them so that the concealed items are easily serviced and maintained or completely removed and replaced.

3.2.4 Flexible Duct

Install pre-insulated flexible duct in accordance with the latest printed instructions of the manufacturer to ensure a vapor tight joint. Provide hangers, when required to suspend the duct, of the type recommended by the duct manufacturer and set at the intervals recommended.

SECTION 23 00 00 Page 17
3.2.5 Metal Ductwork

Install according to SMACNA 1966 unless otherwise indicated. Install duct supports for sheet metal ductwork according to SMACNA 1966, unless otherwise specified. Do not use friction beam clamps indicated in SMACNA 1966. Anchor risers on high velocity ducts in the center of the vertical run to allow ends of riser to move due to thermal expansion. Erect supports on the risers that allow free vertical movement of the duct. Attach supports only to structural framing members and concrete slabs. Do not anchor supports to metal decking unless a means is provided and approved for preventing the anchor from puncturing the metal decking. Where supports are required between structural framing members, provide suitable intermediate metal framing. Where C-clamps are used, provide retainer clips.

3.2.6 Acoustical Duct Lining

Apply lining in cut-to-size pieces attached to the interior of the duct with nonflammable fire resistant adhesive conforming to ASTM C916, Type I, NFPA 90A, UL 723, and ASTM E84. Provide top and bottom pieces that lap the side pieces and are secured with welded pins, adhered clips of metal, nylon, or high impact plastic, and speed washers or welding cup-head pins installed according to SMACNA 1966. Provide welded pins, cup-head pins, or adhered clips that do not distort the duct, burn through, nor mar the finish or the surface of the duct. Make pins and washers flush with the surfaces of the duct liner and seal all breaks and punctures of the duct liner coating with the nonflammable, fire resistant adhesive. Coat exposed edges of the liner at the duct ends and at other joints where the lining is subject to erosion with a heavy brush coat of the nonflammable, fire resistant adhesive, to prevent delamination of glass fibers. Apply duct liner to flat sheet metal prior to forming duct through the sheet metal brake. Additionally secure lining at the top and bottom surfaces of the duct by welded pins or adhered clips as specified for cut-to-size pieces. Other methods indicated in SMACNA 1966 to obtain proper installation of duct liners in sheet metal ducts, including adhesives and fasteners, are acceptable.

3.2.7 Dust Control

To prevent the accumulation of dust, debris and foreign material during construction, perform temporary dust control protection. Protect the distribution system (supply and return) with temporary seal-offs at all inlets and outlets at the end of each day's work. Keep temporary protection in place until system is ready for startup.

3.2.8 Insulation

Provide thickness and application of insulation materials for ductwork, piping, and equipment according to Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS. Externally insulate outdoor air intake ducts and plenums up to the point where the outdoor air reaches the conditioning unit.

3.2.9 Duct Test Holes

Provide holes with closures or threaded holes with plugs in ducts and plenums as indicated or where necessary for the use of pitot tube in balancing the air system. Provide extensions, complete with cap or plug, where the ducts are insulated.
3.2.10 Power Transmission Components Adjustment

Test V-belts and sheaves for proper alignment and tension prior to operation and after 72 hours of operation at final speed. Uniformly load belts on drive side to prevent bouncing. Make alignment of direct driven couplings to within 50 percent of manufacturer's maximum allowable range of misalignment.

3.3 EQUIPMENT PADS

Provide equipment pads to the dimensions shown or, if not shown, to conform to the shape of each piece of equipment served with a minimum 3-inch margin around the equipment and supports. Allow equipment bases and foundations, when constructed of concrete or grout, to cure a minimum of 14 calendar days before being loaded.

3.4 CUTTING AND PATCHING

Install work in such a manner and at such time that a minimum of cutting and patching of the building structure is required. Make holes in exposed locations, in or through existing floors, by drilling and smooth by sanding. Use of a jackhammer is permitted only where specifically approved. Make holes through masonry walls to accommodate sleeves with an iron pipe masonry core saw.

3.5 CLEANING

Thoroughly clean surfaces of piping and equipment that have become covered with dirt, plaster, or other material during handling and construction before such surfaces are prepared for final finish painting or are enclosed within the building structure. Before final acceptance, clean mechanical equipment, including piping, ducting, and fixtures, and free from dirt, grease, and finger marks. When the work area is in an occupied space such as office, laboratory or warehouse protect all furniture and equipment from dirt and debris. Incorporate housekeeping for field construction work which leaves all furniture and equipment in the affected area free of construction generated dust and debris; and, all floor surfaces vacuum-swept clean.

3.6 PENETRATIONS

Provide sleeves and prepared openings for duct mains, branches, and other penetrating items, and install during the construction of the surface to be penetrated. Cut sleeves flush with each surface. Place sleeves for round duct 15 inches and smaller. Build framed, prepared openings for round duct larger than 15 inches and square, rectangular or oval ducts. Sleeves and framed openings are also required where grilles, registers, and diffusers are installed at the openings. Provide one inch clearance between penetrating and penetrated surfaces except at grilles, registers, and diffusers. Pack spaces between sleeve or opening and duct or duct insulation with mineral fiber conforming with ASTM C553, Type 1, Class B-2.

a. Sleeves: Fabricate sleeves, except as otherwise specified or indicated, from 20 gauge thick mill galvanized sheet metal. Where sleeves are installed in bearing walls or partitions, provide black steel pipe conforming with ASTM A53/A53M, Schedule 20.

b. Framed Prepared Openings: Fabricate framed prepared openings from 20
gauge galvanized steel, unless otherwise indicated.

c. Insulation: Provide duct insulation in accordance with Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS continuous through sleeves and prepared openings except firewall penetrations. Terminate duct insulation at fire dampers and flexible connections. For duct handling air at or below 60 degrees F, provide insulation continuous over the damper collar and retaining angle of fire dampers, which are exposed to unconditioned air.

d. Firestopping: Where ducts pass through fire-rated walls, fire partitions, and fire rated chase walls, seal the penetration with fire stopping materials as specified in Section 07 84 00 FIRESTOPPING.

3.7 FIELD PAINTING OF MECHANICAL EQUIPMENT

Clean, pretreat, prime and paint metal surfaces; except aluminum surfaces need not be painted. Apply coatings to clean dry surfaces. Clean the surfaces to remove dust, dirt, rust, oil and grease by wire brushing and solvent degreasing prior to application of paint, except clean to bare metal on metal surfaces subject to temperatures in excess of 120 degrees F. Where more than one coat of paint is specified, apply the second coat after the preceding coat is thoroughly dry. Lightly sand damaged painting and retouch before applying the succeeding coat. Provide aluminum or light gray finish coat.

a. Temperatures less than 120 degrees F: Immediately after cleaning, apply one coat of pretreatment primer applied to a minimum dry film thickness of 0.3 mil, one coat of primer applied to a minimum dry film thickness of one mil; and two coats of enamel applied to a minimum dry film thickness of one mil per coat to metal surfaces subject to temperatures less than 120 degrees F.

b. Temperatures between 120 and 400 degrees F: Apply two coats of 400 degrees F heat-resisting enamel applied to a total minimum thickness of two mils to metal surfaces subject to temperatures between 120 and 400 degrees F.

c. Temperatures greater than 400 degrees F: Apply two coats of 315 degrees C 600 degrees F heat-resisting paint applied to a total minimum dry film thickness of two mils to metal surfaces subject to temperatures greater than 400 degrees F.

3.7.1 Finish Painting

The requirements for finish painting of items only primed at the factory, and surfaces not specifically noted otherwise, are specified in Section 09 90 00 PAINTS AND COATINGS.

3.8 IDENTIFICATION SYSTEMS

Provide identification tags made of brass, engraved laminated plastic, or engraved anodized aluminum, indicating service and item number on all valves and dampers. Provide tags that are 1-3/8 inch minimum diameter with stamped or engraved markings. Make indentations black for reading clarity. Attach tags to valves with No. 12 AWG 0.0808-inch diameter corrosion-resistant steel wire, copper wire, chrome-plated beaded chain or plastic straps designed for that purpose.
3.9 DAMPER ACCEPTANCE TEST

Operate all fire dampers and smoke dampers under normal operating conditions, prior to the occupancy of a building to determine that they function properly. Test each fire damper equipped with fusible link. Test dynamic fire dampers with the air handling and distribution system running. Reset all fire dampers with the fusible links connected after acceptance testing. To ensure optimum operation and performance, install the damper so it is square and free from racking.

3.10 TESTING, ADJUSTING, AND BALANCING

The requirements for testing, adjusting, and balancing are specified in Section 23 05 93 TESTING, ADJUSTING AND BALANCING FOR HVAC. Begin testing, adjusting, and balancing only when the air supply and distribution, including controls, has been completed, with the exception of performance tests.

3.11 PERFORMANCE TESTS

After testing, adjusting, and balancing is complete as specified, test each system as a whole to see that all items perform as integral parts of the system and temperatures and conditions are evenly controlled throughout the building. Make corrections and adjustments as necessary to produce the conditions indicated or specified. Conduct capacity tests and general operating tests by an experienced engineer. Provide tests that cover a period of not less than 2 days and demonstrate that the entire system is functioning according to the specifications. Make coincidental chart recordings at points indicated on the drawings for the duration of the time period and record the temperature at space thermostats or space sensors, the humidity at space humidistats or space sensors and the ambient temperature and humidity in a shaded and weather protected area.

3.12 CLEANING AND ADJUSTING

Provide a temporary bypass for water coils to prevent flushing water from passing through coils. Inside of air terminal units, thoroughly clean ducts, plenums, and casing of debris and blow free of small particles of rubbish and dust before installing outlet faces. Wipe equipment clean, with no traces of oil, dust, dirt, or paint spots. Provide temporary filters prior to startup of all fans that are operated during construction, and install new filters after all construction dirt has been removed from the building, and the ducts, plenums, casings, and other items specified have been vacuum cleaned. Maintain system in this clean condition until final acceptance. Properly lubricate bearings with oil or grease as recommended by the manufacturer. Tighten belts to proper tension. Adjust control valves and other miscellaneous equipment requiring adjustment to setting indicated or directed. Adjust fans to the speed indicated by the manufacturer to meet specified conditions.

3.13 OPERATION AND MAINTENANCE TRAINING

Conduct a training course for the members of the operating staff as designated by the Contracting Officer. Make the training period consist of a total of 8 hours of normal working time and start it after all work specified herein is functionally completed and the Performance Tests have been approved. Conduct field instruction that covers all of the items contained in the Operation and Maintenance Manuals as well as demonstrations of routine maintenance operations. Notify the Contracting
Officer at least 14 days prior to the date of proposed conduct of the training course.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

1.2 RELATED REQUIREMENTS

This section applies to all sections of Divisions: 21, FIRE SUPPRESSION; 22, PLUMBING; and 23, HEATING, VENTILATING, AND AIR CONDITIONING of this project specification, unless specified otherwise in the individual section.

1.3 QUALITY ASSURANCE

1.3.1 Material and Equipment Qualifications

Provide materials and equipment that are standard products of manufacturers regularly engaged in the manufacture of such products, which are of a similar material, design and workmanship. Standard products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year use shall include applications of equipment and materials under similar circumstances and of similar size. The product shall have been for sale on the commercial market through advertisements, manufacturers’ catalogs, or brochures during the 2 year period.

1.3.2 Alternative Qualifications

Products having less than a two-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturer's factory or laboratory tests, can be shown.

1.3.3 Service Support

The equipment items shall be supported by service organizations. Submit a certified list of qualified permanent service organizations for support of the equipment which includes their addresses and qualifications. These service organizations shall be reasonably convenient to the equipment installation and able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

1.3.4 Manufacturer's Nameplate

Each item of equipment shall have a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be
acceptable.

1.3.5 Modification of References

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction", or words of similar meaning, to mean the Contracting Officer.

1.3.5.1 Definitions

For the International Code Council (ICC) Codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall." Reference to the "code official" shall be interpreted to mean the "Contracting Officer." For Navy owned property, references to the "owner" shall be interpreted to mean the "Contracting Officer." For leased facilities, references to the "owner" shall be interpreted to mean the "lessor." References to the "permit holder" shall be interpreted to mean the "Contractor."

1.3.5.2 Administrative Interpretations

For ICC Codes referenced in the contract documents, the provisions of Chapter 1, "Administrator," do not apply. These administrative requirements are covered by the applicable Federal Acquisition Regulations (FAR) included in this contract and by the authority granted to the Officer in Charge of Construction to administer the construction of this project. References in the ICC Codes to sections of Chapter 1, shall be applied appropriately by the Contracting Officer as authorized by his administrative cognizance and the FAR.

1.4 DELIVERY, STORAGE, AND HANDLING

Handle, store, and protect equipment and materials to prevent damage before and during installation in accordance with the manufacturer's recommendations, and as approved by the Contracting Officer. Replace damaged or defective items.

1.5 ELECTRICAL REQUIREMENTS

Furnish motors, controllers, disconnects and contactors with their respective pieces of equipment. Motors, controllers, disconnects and contactors shall conform to and have electrical connections provided under Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Furnish internal wiring for components of packaged equipment as an integral part of the equipment. Extended voltage range motors will not be permitted. Controllers and contactors shall have a maximum of 120 volt control circuits, and shall have auxiliary contacts for use with the controls furnished. When motors and equipment furnished are larger than sizes indicated, the cost of additional electrical service and related work shall be included under the section that specified that motor or equipment. Power wiring and conduit for field installed equipment shall be provided under and conform to the requirements of Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

1.6 INSTRUCTION TO GOVERNMENT PERSONNEL

When specified in other sections, furnish the services of competent instructors to give full instruction to the designated Government personnel.
in the adjustment, operation, and maintenance, including pertinent safety
requirements, of the specified equipment or system. Instructors shall be
thoroughly familiar with all parts of the installation and shall be trained
in operating theory as well as practical operation and maintenance work.

Instruction shall be given during the first regular work week after the
equipment or system has been accepted and turned over to the Government for
regular operation. The number of man-days (8 hours per day) of instruction
furnished shall be as specified in the individual section. When more than
4 man-days of instruction are specified, use approximately half of the time
for classroom instruction. Use other time for instruction with the
equipment or system.

When significant changes or modifications in the equipment or system are
made under the terms of the contract, provide additional instruction to
acquaint the operating personnel with the changes or modifications.

1.7 ACCESSIBILITY

Install all work so that parts requiring periodic inspection, operation,
maintenance, and repair are readily accessible. Install concealed valves,
expansion joints, controls, dampers, and equipment requiring access, in
locations freely accessible through access doors.

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

3.1 PAINTING OF NEW EQUIPMENT

New equipment painting shall be factory applied or shop applied, and shall
be as specified herein, and provided under each individual section.

3.1.1 Factory Painting Systems

Manufacturer's standard factory painting systems may be provided subject to
certification that the factory painting system applied will withstand 125
hours in a salt-spray fog test, except that equipment located outdoors
shall withstand 500 hours in a salt-spray fog test. Salt-spray fog test
shall be in accordance with ASTM B117, and for that test the acceptance
criteria shall be as follows: immediately after completion of the test,
the paint shall show no signs of blistering, wrinkling, or cracking, and no
loss of adhesion; and the specimen shall show no signs of rust creepage
beyond 0.125 inch on either side of the scratch mark.

The film thickness of the factory painting system applied on the equipment
shall not be less than the film thickness used on the test specimen. If
manufacturer's standard factory painting system is being proposed for use
on surfaces subject to temperatures above 120 degrees F, the factory
painting system shall be designed for the temperature service.

3.1.2 Shop Painting Systems for Metal Surfaces

Clean, pretreat, prime and paint metal surfaces; except aluminum surfaces
need not be painted. Apply coatings to clean dry surfaces. Clean the
surfaces to remove dust, dirt, rust, oil and grease by wire brushing and
solvent degreasing prior to application of paint, except metal surfaces
subject to temperatures in excess of 120 degrees F shall be cleaned to bare metal.

Where more than one coat of paint is specified, apply the second coat after the preceding coat is thoroughly dry. Lightly sand damaged painting and retouch before applying the succeeding coat. Color of finish coat shall be aluminum or light gray.

 a. Temperatures Less Than 120 Degrees F: Immediately after cleaning, the metal surfaces subject to temperatures less than 120 degrees F shall receive one coat of pretreatment primer applied to a minimum dry film thickness of 0.3 mil, one coat of primer applied to a minimum dry film thickness of one mil; and two coats of enamel applied to a minimum dry film thickness of one mil per coat.

 b. Temperatures Between 120 and 400 Degrees F: Metal surfaces subject to temperatures between 120 and 400 degrees F shall receive two coats of 400 degrees F heat-resisting enamel applied to a total minimum thickness of 2 mils.

 c. Temperatures Greater Than 400 Degrees F: Metal surfaces subject to temperatures greater than 400 degrees F shall receive two coats of 600 degrees F heat-resisting paint applied to a total minimum dry film thickness of 2 mils.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)
AMCA 203 (1990; R 2011) Field Performance Measurements of Fan Systems

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASSOCIATED AIR BALANCE COUNCIL (AABC)
AABC MN-4 (1996) Test and Balance Procedures

NATIONAL ENVIRONMENTAL BALANCING BUREAU (NEBB)
NEBB PROCEDURAL STANDARDS (2005) Procedural Standards for TAB (Testing, Adjusting and Balancing) Environmental Systems

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

1.2 DEFINITIONS

b. COTR: Contracting Officer's Technical Representative.
c. DALT: Duct air leakage test

d. DALT'd: Duct air leakage tested

e. HVAC: Heating, ventilating, and air conditioning; or heating, ventilating, and cooling.

f. NEBB: National Environmental Balancing Bureau

g. Out-of-tolerance data: Pertains only to field acceptance testing of Final DALT or TAB report. When applied to DALT work, this phase means "a leakage rate measured during DALT field acceptance testing which exceeds the leakage rate allowed by SMACNA Leak Test Manual for an indicated duct construction and sealant class." When applied to TAB work this phase means "a measurement taken during TAB field acceptance testing which does not fall within the range of plus 5 to minus 5 percent of the original measurement reported on the TAB Report for a specific parameter."

h. Season of maximum heating load: The time of year when the outdoor temperature at the project site remains within plus or minus 30 degrees Fahrenheit of the project site's winter outdoor design temperature, throughout the period of TAB data recording.

i. Season of maximum cooling load: The time of year when the outdoor temperature at the project site remains within plus or minus 5 degrees Fahrenheit of the project site's summer outdoor design temperature, throughout the period of TAB data recording.

j. Season 1, Season 2: Depending upon when the project HVAC is completed and ready for TAB, Season 1 is defined, thereby defining Season 2. Season 1 could be the season of maximum heating load, or the season of maximum cooling load.

k. Sound measurements terminology: Defined in AABC MN-1, NEBB MASV, or SMACNA 1858 (TABB).

l. TAB: Testing, adjusting, and balancing (of HVAC systems).

m. TAB'd: HVAC Testing/Adjusting/Balancing procedures performed.

n. TAB Agency: TAB Firm

o. TAB team field leader: TAB team field leader

p. TAB team supervisor: TAB team engineer.

q. TAB team technicians: TAB team assistants.

r. TABB: Testing Adjusting and Balancing Bureau.

1.2.1 Similar Terms

In some instances, terminology differs between the Contract and the TAB Standard primarily because the intent of this Section is to use the industry standards specified, along with additional requirements listed herein to produce optimal results.
The following table of similar terms is provided for clarification only. Contract requirements take precedent over the corresponding AABC, NEBB, or TABB requirements where differences exist.

<table>
<thead>
<tr>
<th>Similar Terms</th>
<th>AABC Term</th>
<th>NEBB Term</th>
<th>TABB Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAB Specialist</td>
<td>TAB Engineer</td>
<td>TAB Supervisor</td>
<td>TAB Supervisor</td>
</tr>
<tr>
<td>Systems Readiness Check</td>
<td>Construction Phase Inspection</td>
<td>Field Readiness Check & Preliminary Field Procedures</td>
<td>Field Readiness Check & Prelim. Field Procedures</td>
</tr>
</tbody>
</table>

1.3 WORK DESCRIPTION

The work includes duct air leakage testing (DALT) and testing, adjusting, and balancing (TAB) of new and existing heating, ventilating, and cooling (HVAC) air and water distribution systems including equipment and performance data, ducts, and piping which are located within, on, under, between, and adjacent to buildings.

Perform TAB in accordance with the requirements of the TAB procedural standard recommended by the TAB trade association that approved the TAB Firm's qualifications. Comply with requirements of AABC MN-1, NEBB PROCEDURAL STANDARDS, or SMACNA 1780 (TABB) as supplemented and modified by this specification section. All recommendations and suggested practices contained in the TAB procedural standards are considered mandatory.

Conduct DALT and TAB of the indicated existing systems and equipment and submit the specified DALT and TAB reports for approval. Conduct DALT testing in compliance with the requirements specified in SMACNA 1972 CD, except as supplemented and modified by this section. Conduct DALT and TAB work in accordance with the requirements of this section.

1.3.1 Air Distribution Systems

Test, adjust, and balance systems (TAB) in compliance with this section. Obtain Contracting Officer's written approval before applying insulation to exterior of air distribution systems as specified under Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

1.3.2 Water Distribution Systems

TAB systems in compliance with this section. Obtain Contracting Officer's written approval before applying insulation to water distribution systems as specified under Section 23 07 00 THERMAL INSULATION FOR MECHANICAL
SYSTEMS. At Contractor's option and with Contracting Officer's written approval, the piping systems may be insulated before systems are TAB'd.

Terminate piping insulation immediately adjacent to each flow control valve, automatic control valve, or device. Seal the ends of pipe insulation and the space between ends of pipe insulation and piping, with waterproof vapor barrier coating.

After completion of work under this section, insulate the flow control valves and devices as specified under Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

1.3.3 TAB SCHEMATIC DRAWINGS

Show the following information on TAB Schematic Drawings:

1. A unique number or mark for each piece of equipment or terminal.
2. Air quantities at air terminals.
3. Air quantities and temperatures in air handling unit schedules.
4. Water quantities and temperatures in thermal energy transfer equipment schedules.
5. Water quantities and heads in pump schedules.
6. Water flow measurement fittings and balancing fittings.
7. Ductwork Construction and Leakage Testing Table that defines the DALT test requirements, including each applicable HVAC duct system ID or mark, duct pressure class, duct seal class, and duct leakage test pressure. This table is included in the file for Graphics for Unified Facilities Guide Specifications:

The Testing, Adjusting, and Balancing (TAB) Specialist must review the Contract Plans and Specifications and advise the Contracting Officer of any deficiencies that would prevent the effective and accurate TAB of the system and systems readiness check. The TAB Specialist must provide a Design Review Report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

Submit three copies of the TAB Schematic Drawings and Report Forms to the Contracting Officer, no later than 21 days prior to the start of TAB field measurements.

1.3.4 Related Requirements

Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS applies to work specified in this section.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in
acccordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

TAB Firm; G

Designation of TAB team assistants; G

Designation of TAB team engineer; G or TAB Specialist; G

Designation of TAB team field leader; G

SD-02 Shop Drawings

TAB Schematic Drawings and Report Forms; G

SD-03 Product Data

Equipment and Performance Data; G

TAB Related HVAC Submittals; G

A list of the TAB Related HVAC Submittals, no later than 7 days after the approval of the TAB team engineer and assistant.

TAB Procedures; G

Proposed procedures for TAB, submitted with the TAB Schematic Drawings and Report Forms.

Calibration; G

Systems Readiness Check; G

TAB Execution; G

SD-06 Test Reports

Design review report; G

Pre-Final DALT report; G

Final DALT report; G

TAB report; G

SD-07 Certificates

Advance notice of Pre-Final DALT field work; G

TAB Firm; G

Independent TAB Agency and Personnel Qualifications; G

DALT and TAB Submittal and Work Schedule; G

Design review report; G

Pre-field TAB engineering report; G
1.5 QUALITY ASSURANCE

1.5.1 Independent TAB Agency and Personnel Qualifications

To secure approval for the proposed agency, submit information certifying that the TAB agency is a first tier subcontractor who is not affiliated with any other company participating in work on this contract, including design, furnishing equipment, or construction. Further, submit the following, for the agency, to Contracting Officer for approval:

a. Independent AABC or NEBB or TABB TAB agency:

TAB agency: AABC registration number and expiration date of current certification; or NEBB certification number and expiration date of current certification; or TABB certification number and expiration date of current certification.

TAB team supervisor: Name and copy of AABC or NEBB or TABB TAB supervisor certificate and expiration date of current certification.

TAB team field leader: Name and documented evidence that the team field leader has satisfactorily performed full-time supervision of TAB work in the field for not less than 3 years immediately preceding this contract's bid opening date.

TAB team field technicians: Names and documented evidence that each field technician has satisfactorily assisted a TAB team field leader in performance of TAB work in the field for not less than one year immediately preceding this contract's bid opening date.

Current certificates: Registrations and certifications are current, and valid for the duration of this contract. Renew Certifications which expire prior to completion of the TAB work, in a timely manner so that there is no lapse in registration or certification. TAB agency or TAB team personnel without a current registration or current certification are not to perform TAB work on this contract.

b. TAB Team Members: TAB team approved to accomplish work on this contract are full-time employees of the TAB agency. No other personnel is allowed to do TAB work on this contract.

c. Replacement of TAB team members: Replacement of members may occur if each new member complies with the applicable personnel qualifications and each is approved by the Contracting Officer.

1.5.2 TAB Standard

Perform TAB in accordance with the requirements of the standard under which the TAB Firm's qualifications are approved, i.e., AABC MN-1, NEBB PROCEDURAL STANDARDS, or SMACNA 1780 unless otherwise specified herein. All recommendations and suggested practices contained in the TAB Standard are considered mandatory. Use the provisions of the TAB Standard,
including checklists, report forms, etc., as nearly as practical, to satisfy the Contract requirements. Use the TAB Standard for all aspects of TAB, including qualifications for the TAB Firm and Specialist and calibration of TAB instruments. Where the instrument manufacturer calibration recommendations are more stringent than those listed in the TAB Standard, adhere to the manufacturer's recommendations.

All quality assurance provisions of the TAB Standard such as performance guarantees are part of this contract. For systems or system components not covered in the TAB Standard, TAB procedures must be developed by the TAB Specialist. Where new procedures, requirements, etc., applicable to the Contract requirements have been published or adopted by the body responsible for the TAB Standard used (AABC, NEBB, or TABB), the requirements and recommendations contained in these procedures and requirements are considered mandatory, including the latest requirements of ASHRAE 62.1.

1.5.3 Qualifications

1.5.3.1 TAB Firm

The TAB Firm must be either a member of AABC or certified by the NEBB or the TABB and certified in all categories and functions where measurements or performance are specified on the plans and specifications.

Certification must be maintained for the entire duration of duties specified herein. If, for any reason, the firm loses subject certification during this period, the Contractor must immediately notify the Contracting Officer and submit another TAB Firm for approval. Any firm that has been the subject of disciplinary action by either the AABC, the NEBB, or the TABB within the five years preceding Contract Award is not eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections to be performed by the TAB Firm will be considered invalid if the TAB Firm loses its certification prior to Contract completion and must be performed by an approved successor.

These TAB services are to assist the prime Contractor in performing the quality oversight for which it is responsible. The TAB Firm must be a prime subcontractor of the Contractor and be financially and corporately independent of the mechanical subcontractor, reporting directly to and paid by the Contractor.

1.5.3.2 TAB Specialist

The TAB Specialist must be either a member of AABC, an experienced technician of the Firm certified by the NEBB, or a Supervisor certified by the TABB. The certification must be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, immediately notify the Contracting Officer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC, the NEBB, or the TABB within the five years preceding Contract Award is not eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB Specialist will be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by the approved successor.
1.5.3.3 TAB Specialist Responsibilities

TAB Specialist responsibilities include all TAB work specified herein and in related sections under his direct guidance. The TAB specialist is required to be onsite on a daily basis to direct TAB efforts. The TAB Specialist must participate in the commissioning process.

1.5.3.4 TAB Related HVAC Submittals

The TAB Specialist must prepare a list of the submittals from the Contract Submittal Register that relate to the successful accomplishment of all HVAC TAB. Accompany the submittals identified on this list with a letter of approval signed and dated by the TAB Specialist when submitted to the Government. Ensure that the location and details of ports, terminals, connections, etc., necessary to perform TAB are identified on the submittals.

1.5.4 Responsibilities

The Contractor is responsible for ensuring compliance with the requirements of this section. The following delineation of specific work responsibilities is specified to facilitate TAB execution of the various work efforts by personnel from separate organizations. This breakdown of specific duties is specified to facilitate adherence to the schedule listed in paragraph entitled "TAB Submittal and Work Schedule."

1.5.4.1 Contractor

a. TAB personnel: Ensure that the DALT work and the TAB work is accomplished by a group meeting the requirements specified in paragraph entitled "TAB Personnel Qualification Requirements."

b. Pre-DALT/TAB meeting: Attend the meeting with the TAB Supervisor, and ensure that a representative is present for the sheetmetal contractor, mechanical contractor, electrical contractor, and automatic temperature controls contractor.

c. HVAC documentation: Furnish one complete set of the following HVAC-related documentation to the TAB agency:

(1) Contract drawings and specifications

(2) Approved submittal data for equipment

(3) Construction work schedule

(4) Up-to-date revisions and change orders for the previously listed items

d. Submittal and work schedules: Ensure that the schedule for submittals and work required by this section and specified in paragraph entitled "TAB Submittal and Work Schedule," is met.

e. Coordination of supporting personnel:

Provide the technical personnel, such as factory representatives or HVAC controls installer required by the TAB field team to support the DALT and the TAB field measurement work.
Provide equipment mechanics to operate HVAC equipment and ductwork mechanics to provide the field designated test ports to enable TAB field team to accomplish the DALT and the TAB field measurement work. Ensure these support personnel are present at the times required by the TAB team, and cause no delay in the DALT and the TAB field work.

Conversely, ensure that the HVAC controls installer has required support from the TAB team field leader to complete the controls check out.

f. Deficiencies: Ensure that the TAB Agency supervisor submits all Design/Construction deficiency notifications directly to the Contracting officer within 3 days after the deficiency is encountered. Further, ensure that all such notification submittals are complete with explanation, including documentation, detailing deficiencies.

g. Prerequisite HVAC work: Complete check out and debugging of HVAC equipment, ducts, and controls prior to the TAB engineer arriving at the project site to begin the TAB work. Debugging includes searching for and eliminating malfunctioning elements in the HVAC system installations, and verifying all adjustable devices are functioning as designed. Include as prerequisite work items, the deficiencies pointed out by the TAB team supervisor in the design review report.

h. Prior to the TAB field team's arrival, ensure completion of the applicable inspections and work items listed in the TAB team supervisor's pre-field engineering report. Do not allow the TAB team to commence TAB field work until all of the following are completed.

(1) HVAC system installations are fully complete.
(2) HVAC prerequisite checkout work lists specified in the paragraph "Pre-Field TAB Engineering Report" are completed, submitted, and approved. Ensure that the TAB Agency gets a copy of the approved prerequisite HVAC work checklist.
(3) DALT field checks for all systems are completed.
(4) HVAC system filters are clean for TAB field work.

i. Advance notice: Furnish to the Contracting Officer with advance written notice for the commencement of the DALT field work and for the commencement of the TAB field work.

j. Insulation work: For required DALT work, ensure that insulation is not installed on ducts to be DALT'd until DALT work on the subject ducts is complete. Later, ensure that openings in duct and machinery insulation coverings for TAB test ports are marked, closed and sealed.

1.5.4.2 TAB Agency

Provide the services of a TAB team which complies with the requirements of paragraph entitled "Independent TAB Agency Personnel Qualifications". The work to be performed by the TAB agency is limited to testing, adjusting, and balancing of HVAC air and water systems to satisfy the requirements of this specification section.
1.5.4.3 TAB Team Supervisor

a. Overall management: Supervise and manage the overall TAB team work effort, including preliminary and technical DALT and TAB procedures and TAB team field work.

b. Pre-DALT/TAB meeting: Attend meeting with Contractor.

c. Design review report: Review project specifications and accompanying drawings to verify that the air systems and water systems are designed in such a way that the TAB engineer can accomplish the work in compliance with the requirements of this section. Verify the presence and location of permanently installed test ports and other devices needed, including gauge cocks, thermometer wells, flow control devices, circuit setters, balancing valves, and manual volume dampers.

d. Support required: Specify the technical support personnel required from the Contractor other than the TAB agency; such as factory representatives for temperature controls or for complex equipment. Inform the Contractor in writing of the support personnel needed and when they are needed. Furnish the notice as soon as the need is anticipated, either with the design review report, or the pre-field engineering report, the during the DALT or TAB field work.

e. Pre-field DALT preliminary notification: Monitor the completion of the duct installation of each system and provide the necessary written notification to the Contracting Officer.

f. Pre-field engineering report: Utilizing the following HVAC-related documentation; contract drawings and specifications, approved submittal data for equipment, up-to-date revisions and change orders; prepare this report.

g. Prerequisite HVAC work checklist: Ensure the Contractor gets a copy of this checklist at the same time as the pre-field engineering report is submitted.

h. Technical assistance for DALT work.

 (1) Technical assistance: Provide immediate technical assistance to TAB field team.

i. Final DALT report: Certify the DALT report. This certification includes the following work:

 (1) Review: Review the Pre-final DALT report data. From these field reports, prepare the Certified Final DALT report.

j. Technical Assistance for TAB Work: Provide immediate technical assistance to the TAB field team for the TAB work.

 (1) TAB field visit: Near the end of the TAB field work effort, visit the contract site to inspect the HVAC installation and the progress of the TAB field work. Conduct site visit full-time for a minimum of one 8 hour workday duration. Review the TAB final report data and certify the TAB final report.

k. Certified TAB report: Certify the TAB report. This certification includes the following work:
(1) Review: Review the TAB field data report. From this field report, prepare the certified TAB report.

(2) Verification: Verify adherence, by the TAB field team, to the TAB plan prescribed by the pre-field engineering report and verify adherence to the procedures specified in this section.

l. Design/Construction deficiencies: Within 3 working days after the TAB Agency has encountered any design or construction deficiencies, the TAB Supervisor must submit written notification directly to the Contracting Officer, with a separate copy to the Contractor, of all such deficiencies. Provide in this submittal a complete explanation, including supporting documentation, detailing deficiencies. Where deficiencies are encountered that are believed to adversely impact successful completion of TAB, the TAB Agency must issue notice and request direction in the notification submittal.

m. TAB Field Check: The TAB team supervisor must attend and supervise TAB field check.

1.5.4.4 TAB Team Field Leader

a. Field manager: Manage, in the field, the accomplishment of the work specified in Part 3, "Execution."

b. Full time: Be present at the contract site when DALT field work or TAB field work is being performed by the TAB team; ensure day-to-day TAB team work accomplishments are in compliance with this section.

c. Prerequisite HVAC work: Do not bring the TAB team to the contract site until a copy of the prerequisite HVAC Checklist, with all work items certified by the Contractor to be working as designed, reaches the office of the TAB Agency.

1.5.5 Test Reports

1.5.5.1 Data from DALT Field Work

Report the data for the Pre-final DALT Report and Certified Final DALT Report in compliance the following requirements:

a. Report format: Submit report data on Air Duct Leakage Test Summary Report Forms as shown on Page 6-2 of SMACNA 1972 CD. The TAB supervisor must review and certify the report.

b. The TAB supervisor must include a copy of all calculations prepared in determining the duct surface area of each duct test section. In addition, provide the ductwork air leak testing (DALT) reports with a copy(s) of the calibration curve for each of the DALT test orifices used for testing.

d. Certification: Include the typed name of the TAB supervisor and the dated signature of the TAB supervisor.

1.5.5.2 Certified TAB Reports

Submit: TAB Report in the following manner:
a. Report format: Submit the completed pre-field data forms approved in the pre-field TAB Engineering Report completed by TAB field team, reviewed and certified by the TAB supervisor. Bind the report with a waterproof front and back cover. Include a table of contents identifying by page number the location of each report. Report forms and report data must be typewritten. Handwritten report forms or report data are not acceptable.

b. System Diagrams: Provide updated diagrams with final installed locations of all terminals and devices, any numbering changes, and actual test locations. Use a key numbering system on the diagram which identifies each outlet contained in the outlet airflow report sheets.

c. Static Pressure Profiles: Report static pressure profiles for air duct systems. Report static pressure data for all supply, return, relief, exhaust and outside air ducts for the systems listed. Include the following in the static pressure report data, in addition to AABC/NEBB/TABB required data:

1. Report supply fan, and exhaust fan inlet and discharge static pressures.

2. Report static pressure drop across chilled water coils, DX coils, hot water coils, installed in unit cabinetry or the system ductwork.

3. Report static pressure drop across outside air, return air, and supply air automatic control dampers, both proportional and two-position, installed in unit cabinetry.

4. Report static pressure drop across air filters, air flow measuring stations or other pressure drop producing specialty items installed in unit cabinetry, or in the system ductwork. Examples of these specialty items are, white sound generators, RF shielding, wave guides, security bars, blast valves, small pipes passing through ductwork, and duct mounted humidifiers.

 Do not report static pressure drop across duct fittings provided for the sole purpose of conveying air, such as elbows, transitions, offsets, plenums, manual dampers, and branch takes-offs.

5. Report static pressure drop across outside air and relief/exhaust air louver.

d. Duct Traverses: Report duct traverses for main supply, return, exhaust, relief and outside air ducts. This includes all ducts, including those which lack 7 1/2 duct diameters upstream and 2 1/2 duct diameters downstream of straight duct unobstructed by duct fittings/offsets/elbows. The TAB Agency must evaluate and report findings on the duct traverses taken. Evaluate the suitability of the duct traverse measurement based on satisfying the qualifications for a pilot traverse plane as defined by AMCA 203, "Field Measurements", Section 8, paragraph 8.3, "Location of Traverse Plane."

f. Instruments: List the types of instruments actually used to measure the tab data. Include in the listing each instrument's unique identification number, calibration date, and calibration expiration date.
Instrumentation, used for taking wet bulb temperature readings must provide accuracy of plus or minus 5 percent at the measured face velocities.

g. Certification: Include the typed name of the TAB supervisor and the dated signature of the TAB supervisor.

h. Performance Curves: The TAB Supervisor must include, in the TAB Reports, factory pump curves and fan curves for pumps and fans TAB'd on the job.

i. Calibration Curves: The TAB Supervisor must include, in the TAB Reports, a factory calibration curve for installed flow control balancing valves, flow venturi's and flow orifices TAB'd on the job.

1.6 SEQUENCING AND SCHEDULING

1.6.1 DALT and TAB Submittal and Work Schedule

Submit this schedule, and TAB Schematic Drawings, adapted for this particular contract, to the Contracting Officer (CO) for review and approval. Include with the submittal the planned calendar dates for each submittal or work item. Resubmit an updated version for CO approval every 90 calendar days. Compliance with the following schedule is the Contractor's responsibility.

Qualify TAB Personnel: Within 45 calendar days after date of contract award, submit TAB agency and personnel qualifications.

Pre-DALT/TAB Meeting: Within 30 calendar days after the date of approval of the TAB agency and personnel, meet with the COTR.

Design Review Report: Within 60 calendar days after the date of the TAB agency personnel qualifications approval, submit design review report.

Submit Final DALT Report: Within 15 calendar days after completion of successful DALT Work Field Check, submit TAB report.

Pre-Field TAB Engineering Report: Within 21 calendar days after approval of the TAB agency Personnel Qualifications, submit the Pre-Field TAB Engineering Report.

Prerequisite HVAC Work Check Out List and Advanced Notice For TAB Field Work: At a minimum of 115 calendar days prior to CCD, submit prerequisite HVAC work check out list certified as complete, and submit advance notice of commencement of TAB field work.

TAB Field Work: At a minimum of 90 calendar days prior to CCD, and when the ambient temperature is within limits, accomplish TAB field work; submit TAB report; and conduct field check.

Complete TAB Work: Prior to CCD, complete all TAB work.

1.6.1.1 Design Review Report

Submit typed report describing omissions and deficiencies in the HVAC system's design that would preclude the TAB team from accomplishing the duct leakage testing work and the TAB work requirements of this section.
Provide a complete explanation including supporting documentation detailing the design deficiency. State that no deficiencies are evident if that is the case.

1.6.1.2 Pre-Field TAB Engineering Report

Submit report containing the following information:

a. Pre-field data: Submit AABC or NEBB or SMACNA 1780 data report forms with the following pre-field information filled in:

(1) Design data obtained from system drawings, specifications, and approved submittals.

(2) Notations detailing additional data to be obtained from the contract site by the TAB field team.

(3) Designate the actual data to be measured in the TAB field work.

(4) Provide a list of the types of instruments, and the measuring range of each, which are anticipated to be used for measuring in the TAB field work.

c. Prerequisite HVAC work checkout list: Provide a list of inspections and work items which are to be completed by the Contractor. This list must be acted upon and completed by the Contractor and then submitted and approved by the Contracting Officer prior to the TAB team coming to the contract site.

At a minimum, a list of the applicable inspections and work items listed in the NEBB PROCEDURAL STANDARDS, Section III, "Preliminary TAB Procedures" under paragraphs titled, "Air Distribution System Inspection" and "Hydronic Distribution System Inspection" must be provided for each separate system to be TAB'd.

1.7 WARRANTY

Furnish workmanship and performance warranty for the DALT and TAB system work performed for a period not less than 1 year from the date of Government acceptance of the work; issued directly to the Government. Include provisions that if within the warranty period the system shows evidence of major performance deterioration, or is significantly out of tolerance, resulting from defective TAB or DALT workmanship, the corrective repair or replacement of the defective materials and correction of the defective workmanship is the responsibility of the TAB firm. Perform corrective action that becomes necessary because of defective materials and workmanship while system TAB and DALT is under warranty 7 days after notification, unless additional time is approved by the Contracting Officer. Failure to perform repairs within the specified period of time constitutes grounds for having the corrective action and repairs performed by others and the cost billed to the TAB firm. The Contractor must also provide a 1 year contractor installation warranty.

PART 2 PRODUCTS

Not Used
PART 3 EXECUTION

3.1 PRE-DALT/TAB MEETING

Meet with the Contracting Officer's technical representative (COTR) to develop a mutual understanding relative to the details of the DALT work and TAB work requirements. Ensure that the TAB supervisor is present at this meeting. Requirements to be discussed include required submittals, work schedule, and field quality control.

3.2 DALT PROCEDURES

3.2.1 Instruments, Consumables and Personnel

Provide instruments, consumables and personnel required to accomplish the DALT field work. Follow the same basic procedure specified below for TAB Field Work, including maintenance and calibration of instruments, accuracy of measurements, preliminary procedures, field work, workmanship and treatment of deficiencies. Calibrate and maintain instruments in accordance with manufacturer's written procedures.

3.2.2 Advance Notice of Pre-Final DALT Field Work

On completion of the installation of each duct system indicated to be DALT'd, notify the Contracting Officer in writing prior to the COTR's duct selection field visit.

3.2.3 Ductwork To Be DALT'd

Testing is to be done on the medium pressure supply duct only. Test duct between AHU and VAV boxes.

It is acceptable for an entire medium pressure duct system to be DALT'd instead of disassembling that system in order to DALT the portion specified above.

3.2.4 DALT Testing

Perform DALT on the HVAC duct sections as selected above. Use the duct class, seal class, leakage class and the leak test pressure data indicated on the drawings, to comply with the procedures specified in SMACNA 1972 CD.

3.2.5 Pre-final DALT Report

After completion of the DALT work, prepare a Pre-final DALT Report using the reporting forms specified. TAB team to furnish data required by those data report forms. Prepare the report neatly and legibly; the Pre-final DALT report is the basis for the Final DALT Report. TAB supervisor must review and certify the Pre-final DALT Report and submit this report within one day of completion of DALT field work. Verbally notify the COTR that the field check of the Pre-final DALT Report data can commence.

3.2.6 Additional COTR Field Acceptance Testing

If any of the duct sections checked for a given system are determined to have a leakage rate measured that exceeds the leakage rate allowed by SMACNA Leak Test Manual for an indicated duct construction class and sealant class, terminate data checking for that section. The associated Pre-final DALT Report data for the given duct system will be disapproved.
Make the necessary corrections and prepare a revised Pre-final DALT Report. Reschedule a field check of the revised report data with the COTR.

3.2.7 Certified Final DALT Report

On successful completion of all field checks of the Pre-final DALT Report data for selected systems, the TAB Supervisor is to assemble, review, certify and submit the Final DALT Report to the Contracting Officer for approval.

3.3 TAB PROCEDURES

3.3.1 TAB Field Work

Test, adjust, and balance the HVAC systems until measured flow rates (air and water flow) are within plus or minus 5 percent of the design flow rates as specified or indicated on the contract documents.

That is, comply with the the requirements of AABC MN-1 or SMACNA 1780 (TABB) and SMACNA 1858 (TABB), except as supplemented and modified by this section.

Provide instruments and consumables required to accomplish the TAB work. Calibrate and maintain instruments in accordance with manufacturer's written procedures.

3.3.2 Preliminary Procedures

Use the approved pre-field engineering report as instructions and procedures for accomplishing TAB field work. TAB engineer is to locate, in the field, test ports required for testing. It is the responsibility of the sheet metal contractor to provide and install test ports as required by the TAB engineer.

3.3.3 TAB Air Distribution Systems

3.3.3.1 Units With Coils

Report heating and cooling performance capacity tests for hot water, chilled water, DX and steam coils for the purpose of verifying that the coils meet the indicated design capacity. Submit the following data and calculations with the coil test reports:

a. For air handlers with capacities greater than 7.5 tons (90,000 Btu) cooling, such as factory manufactured units, central built-up units and rooftop units, conduct capacity tests in accordance with AABC MN-4, procedure 3.5, "Coil Capacity Testing."

Do not determine entering and leaving wet and dry bulb temperatures by single point measurement, but by the average of multiple readings in compliance with paragraph 3.5-5, "Procedures", (in subparagraph d.) of AABC MN-4, Procedure 3.5, "Coil Capacity Testing."

Submit part-load coil performance data from the coil manufacturer converting test conditions to design conditions; use the data for the purpose of verifying that the coils meet the indicated design capacity in compliance with AABC MN-4, Procedure 3.5, "Coil Capacity Testing," paragraph 3.5.7, "Actual Capacity Vs. Design Capacity" (in subparagraph c.).
b. For units with capacities of 7.5 tons (90,000 Btu) or less, such as fan coil units, duct mounted reheat coils associated with VAV terminal units, and unitary units, such as through-the-wall heat pumps:

Determine the apparent coil capacity by calculations using single point measurement of entering and leaving wet and dry bulb temperatures; submit the calculations with the coil reports.

3.3.3.2 Air Handling Units

Air handling unit systems including fans (air handling unit fans, exhaust fans and winter ventilation fans), coils, ducts, plenums, mixing boxes, terminal units, variable air volume boxes, and air distribution devices for supply air, return air, outside air, mixed air relief air, and makeup air.

3.3.3.3 Exhaust Fans

Exhaust fan systems including fans, ducts, plenums, grilles, and hoods for exhaust air.

3.3.4 TAB Water Distribution Systems

3.3.4.1 Chilled Water

Chilled water systems including chillers, condensers, cooling towers, pumps, coils, system balance valves and flow measuring devices.

For water chillers, report data as required by AABC, NEBB and TABB standard procedures, including refrigeration operational data.

3.3.4.2 Heating Hot Water

Heating hot water systems including boilers, hot water converters (e.g., heat exchangers), pumps, coils, system balancing valves and flow measuring devices.

3.3.5 TAB Work on Performance Tests With Seasonal Limitations

3.3.5.1 Performance Tests

Accomplish proportionate balancing TAB work on the air distribution systems and water distribution systems, in other words, accomplish adjusting and balancing of the air flows and water flows, any time during the duration of this contract, subject to the limitations specified elsewhere in this section. However, accomplish, within the following seasonal limitations, TAB work on HVAC systems which directly transfer thermal energy.

3.3.5.2 Season Of Maximum Load

Visit the contract site for at least two TAB work sessions for TAB field measurements. Visit the contract site during the season of maximum heating load and visit the contract site during the season of maximum cooling load, the goal being to TAB the operational performance of the heating systems and cooling systems under their respective maximum outdoor environment-caused loading. During the seasonal limitations, TAB the operational performance of the heating systems and cooling systems.
3.3.5.3 Ambient Temperatures

On each tab report form used for recording data, record the outdoor and indoor ambient dry bulb temperature range and the outdoor and indoor ambient wet bulb temperature range within which the report form's data was recorded. Record these temperatures at beginning and at the end of data taking.

3.3.5.4 Water Chillers

Water chillers: For water chillers, report data as required by NEBB Form TAB 15-83, NEBB PROCEDURAL STANDARDS, including refrigeration operational data.

3.3.5.5 Coils

Report heating and cooling performance capacity tests for hot water and chilled water for the purpose of verifying that the coils meet the indicated design capacity. Submit the following data and calculations with the coil test reports:

a. For Central station air handlers with capacities greater than 7.5 tons (90,000 Btu) cooling, such as factory manufactured units, central built-up units and rooftop units, conduct capacity tests in accordance with AABC MN-4, procedure 3.5, "Coil Capacity Testing."

Entering and leaving wet and dry bulb temperatures are not determined by single point measurement, but by the average of multiple readings in compliance with paragraph 3.5-5, "Procedures", (in subparagraph d.) of AABC MN-4, Procedure 3.5, "Coil Capacity Testing."

Submit part-load coil performance data from the coil manufacturer converting test conditions to design conditions; use the data for the purpose of verifying that the coils meet the indicated design capacity in compliance with AABC MN-4, Procedure 3.5, "Coil Capacity Testing," paragraph 3.5.7, "Actual Capacity Vs. Design Capacity" (in subparagraph c.).

3.3.6 Workmanship

Conduct TAB work on the HVAC systems until measured flow rates are within plus or minus 5 percent of the design flow rates as specified or indicated on the contract documents. This TAB work includes adjustment of balancing valves, balancing dampers, and sheaves. Further, this TAB work includes changing out fan sheaves and pump impellers if required to obtain air and water flow rates specified or indicated. If, with these adjustments and equipment changes, the specified or indicated design flow rates cannot be attained, contact the Contracting Officer for direction.

3.3.7 Deficiencies

Strive to meet the intent of this section to maximize the performance of the equipment as designed and installed. However, if deficiencies in equipment design or installation prevent TAB work from being accomplished within the range of design values specified in the paragraph entitled "Workmanship," provide written notice as soon as possible to the Contractor and the Contracting Officer describing the deficiency and recommended correction.
Responsibility for correction of installation deficiencies is the Contractor's. If a deficiency is in equipment design, call the TAB team supervisor for technical assistance. Responsibility for reporting design deficiencies to Contractor is the TAB team supervisor's.

3.3.8 TAB Reports

After completion of the TAB work, prepare a pre-final TAB report using the reporting forms approved in the pre-field engineering report. Data required by those approved data report forms is to be furnished by the TAB team. Except as approved otherwise in writing by the Contracting Officer, the TAB work and the TAB report is considered incomplete until the TAB work is accomplished to within the accuracy range specified in the paragraph entitled "Workmanship" of this section.

Prepare the report neatly and legibly; the pre-final TAB report is the final TAB report minus the TAB supervisor's review and certification. Obtain, at the contract site, the TAB supervisor's review and certification of the TAB report.

Verbally notify the COTR that the field check of the TAB report data can commence; give this verbal notice 48 hours in advance of field check commencement. Do not schedule field check of the TAB report until the specified workmanship requirements have been met or written approval of the deviations from the requirements have been received from the Contracting Officer.

3.3.9 Quality Assurance - COTR TAB Field Acceptance Testing

3.3.9.1 TAB Field Acceptance Testing

During the field acceptance testing, verify, in the presence of the COTR, random selections of data (water, air quantities, air motion, recorded in the TAB Report. Points and areas for field acceptance testing are to be selected by the COTR. Measurement and test procedures are the same as approved for TAB work for the TAB Report.

Field acceptance testing includes verification of TAB Report data recorded for the following equipment groups:

Group 1: All chillers, boilers and air handling units (central station).

Group 2: 25 percent of the VAV terminal boxes and associated diffusers and registers.

Group 3: 25 percent of the return grilles, return registers, exhaust grilles and exhaust registers.

Group 4: 25 percent of the supply fans, exhaust fans, and pumps.

Further, if any data on the TAB Report for Groups 2 through 4 is found not to fall within the range of plus 5 to minus 5 percent of the TAB Report data, additional group data verification is required in the presence of the COTR. Verify TAB Report data for one additional piece of equipment in that group. Continue this additional group data verification until out-of-tolerance data ceases to be found.
3.3.9.2 Additional COTR TAB Field Acceptance Testing

If any of the acceptance testing measurements for a given equipment group is found not to fall within the range of plus 5 to minus 5 percent of the TAB Report data, terminate data verification for all affected data for that group. The affected data for the given group will be disapproved. Make the necessary corrections and prepare a revised TAB Report. Reschedule acceptance testing of the revised report data with the COTR. Further, if any data on the TAB Report for a given field acceptance test group is out-of-tolerance, then field test data for one additional field test group as specified herein. Continue this increase field test work until out-of-tolerance data ceases to to be found. This additional field testing is up and above the original 25 percent of the of reported data entries to be field tested.

If there are no more similar field test groups from which to choose, additional field testing from another, but different, type of field testing group must be tested.

3.3.9.3 Prerequisite for Approval

Compliance with the field acceptance testing requirements of this section is a prerequisite for the final Contracting Officer approval of the TAB Report submitted.

3.4 MARKING OF SETTINGS

Upon the final TAB work approval, permanently mark the settings of HVAC adjustment devices including valves, gauges, splitters, and dampers so that adjustment can be restored if disturbed at any time. Provide permanent markings clearly indicating the settings on the adjustment devices which result in the data reported on the submitted TAB report.

3.5 MARKING OF TEST PORTS

The TAB team is to permanently and legibly mark and identify the location points of the duct test ports. If the ducts have exterior insulation, make these markings on the exterior side of the duct insulation. Show the location of test ports on the as-built mechanical drawings with dimensions given where the test port is covered by exterior insulation.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only. At the discretion of the Government, the manufacturer of any material supplied will be required to furnish test reports pertaining to any of the tests necessary to assure compliance with the standard or standards referenced in this specification.

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASTM INTERNATIONAL (ASTM)

ASTM C612 (2014) Mineral Fiber Block and Board Thermal Insulation

ASTM E2231 (2015) Specimen Preparation and Mounting of Pipe and Duct Insulation Materials to Assess Surface Burning Characteristics

FM GLOBAL (FM)

FM APP GUIDE (updated on-line) Approval Guide
http://www.approvalguide.com/

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)
1.2 SYSTEM DESCRIPTION

1.2.1 General

Provide field-applied insulation and accessories on mechanical systems as specified herein; factory-applied insulation is specified under the piping, duct or equipment to be insulated.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

Submit the three SD types, SD-02 Shop Drawings, SD-03 Product Data, and SD-08 Manufacturer's Instructions at the same time for each system.

SD-02 Shop Drawings

Pipe Insulation Systems and Associated Accessories
Duct Insulation Systems and Associated Accessories
Equipment Insulation Systems and Associated Accessories

SD-03 Product Data

Pipe Insulation Systems; G, AFCEC
Duct Insulation Systems; G, AFCEC
Equipment Insulation Systems
1.4 QUALITY ASSURANCE

1.4.1 Installer Qualification

Qualified installers shall have successfully completed three or more similar type jobs within the last 5 years.

1.5 DELIVERY, STORAGE, AND HANDLING

Materials shall be delivered in the manufacturer's unopened containers. Materials delivered and placed in storage shall be provided with protection from weather, humidity, dirt, dust and other contaminants. The Contracting Officer may reject insulation material and supplies that become dirty, dusty, wet, or contaminated by some other means. Packages or standard containers of insulation, jacket material, cements, adhesives, and coatings delivered for use, and samples required for approval shall have manufacturer's stamp or label attached giving the name of the manufacturer and brand, and a description of the material, date codes, and approximate shelf life (if applicable). Insulation packages and containers shall be asbestos free.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Provide materials which are the standard products of manufacturers regularly engaged in the manufacture of such products and that essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Submit a complete list of materials, including manufacturer's descriptive technical literature, performance data, catalog cuts, and installation instructions. The product number, k-value, thickness and furnished accessories including adhesives, sealants and jackets for each mechanical system requiring insulation shall be included. The product data must be copyrighted, have an identifying or publication number, and shall have been published prior to the issuance date of this solicitation.

2.1.1 Insulation System

Provide insulation systems in accordance with this specification. Provide field-applied insulation for heating, ventilating, and cooling (HVAC) air distribution systems and piping systems that are located within, on, under, and adjacent to buildings; and for plumbing systems. Insulation shall be CFC and HCFC free.

2.1.2 Surface Burning Characteristics

Unless otherwise specified, insulation shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Flame spread, and smoke developed indexes, shall be determined by ASTM E84 or UL 723. Insulation shall be tested in the same density and installed thickness as the material to be used in the
actual construction. Test specimens shall be prepared and mounted according to ASTM E2231.

2.2 MATERIALS

Provide insulation that meets or exceed the requirements of ASHRAE 90.1 - IP. Insulation exterior shall be cleanable, grease resistant, non-flaking and non-peeling. Materials shall be compatible and shall not contribute to corrosion, soften, or otherwise attack surfaces to which applied in either wet or dry state. Materials to be used on stainless steel surfaces shall meet ASTM C795 requirements. Calcium silicate shall not be used on chilled or cold water systems. Materials shall be asbestos free. Provide product recognized under UL 94 (if containing plastic) and listed in FM APP GUIDE.

2.2.1 Adhesives

2.2.1.1 Acoustical Lining Insulation Adhesive

Adhesive shall be a nonflammable, fire-resistant adhesive conforming to ASTM C916, Type I.

2.2.1.2 Mineral Fiber Insulation Cement

Cement shall be in accordance with ASTM C195.

2.2.1.3 Lagging Adhesive

Lagging is the material used for thermal insulation, especially around a cylindrical object. This may include the insulation as well as the cloth/material covering the insulation. Lagging adhesives shall be nonflammable and fire-resistant and shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Adhesive shall be MIL-A-3316, Class I, pigmented white and be suitable for bonding fibrous glass cloth to faced and unfaced fibrous glass insulation board; for bonding cotton brattice cloth to faced and unfaced fibrous glass insulation board; for sealing edges of and bonding glass tape to joints of fibrous glass board; for bonding lagging cloth to thermal insulation; or Class 2 for attaching fibrous glass insulation to metal surfaces. Lagging adhesives shall be applied in strict accordance with the manufacturer's recommendations for pipe and duct insulation.

2.2.1.4 Contact Adhesive

Adhesives may be any of, but not limited to, the neoprene based, rubber based, or elastomeric type that have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. The adhesive shall not adversely affect, initially or in service, the insulation to which it is applied, nor shall it cause any corrosive effect on metal to which it is applied. Any solvent dispersing medium or volatile component of the adhesive shall have no objectionable odor and shall not contain any benzene or carbon tetrachloride. The dried adhesive shall not emit nauseous, irritating, or toxic volatile matters or aerosols when the adhesive is heated to any temperature up to 212 degrees F. The dried adhesive shall be nonflammable and fire resistant. Flexible Elastomeric Adhesive: Comply with MIL-A-24179, Type II, Class I.
2.2.2 Caulking

ASTM C920, Type S, Grade NS, Class 25, Use A.

2.2.3 Corner Angles

Nominal 0.016 inch aluminum 1 by 1 inch with factory applied kraft backing. Aluminum shall be **ASTM B209**, Alloy 3003, 3105, or 5005.

2.2.4 Fittings

Fabricated Fittings are the prefabricated fittings for flexible elastomeric pipe insulation systems in accordance with **ASTM C1710**. Together with the flexible elastomeric tubes, they provide complete system integrity for retarding heat gain and controlling condensation drip from chilled-water and refrigeration systems. Flexible elastomeric, fabricated fittings provide thermal protection (0.25 k) and condensation resistance (0.05 Water Vapor Transmission factor). For satisfactory performance, properly installed protective vapor retarder/barriers and vapor stops shall be used on high relative humidity and below ambient temperature applications to reduce movement of moisture through or around the insulation to the colder interior surface.

2.2.5 Finishing Cement

ASTM C450: Mineral fiber hydraulic-setting thermal insulating and finishing cement. All cements that may come in contact with Austenitic stainless steel must comply with **ASTM C795**.

2.2.6 Fibrous Glass Cloth and Glass Tape

Fibrous glass cloth, with 20X20 maximum mesh size, and glass tape shall have maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with **ASTM E84**. Tape shall be 4 inch wide rolls. Class 3 tape shall be 4.5 ounces/square yard. Elastomeric Foam Tape: Black vapor-retarder foam tape with acrylic adhesive containing an anti-microbial additive.

2.2.7 Jackets

2.2.7.1 Aluminum Jackets

Aluminum jackets shall be smooth sheet, 0.016 inch nominal thickness; **ASTM B209**, Temper H14, Temper H16, Alloy 3003, 5005, or 3105. Corrugated aluminum jacket shall not be used. Aluminum jacket securing bands shall be Type 304 stainless steel, 0.015 inch thick, 1/2 inch wide for pipe under 12 inch diameter and 3/4 inch wide for pipe over 12 inch and larger diameter. Aluminum jacket circumferential seam bands shall be 2 by 0.016 inch aluminum matching jacket material. Bands for insulation below ground shall be 3/4 by 0.020 inch thick stainless steel, or fiberglass reinforced tape. The jacket may, at the option of the Contractor, be provided with a factory fabricated Pittsburgh or "Z" type longitudinal joint. When the "Z" joint is used, the bands at the circumferential joints shall be designed by the manufacturer to seal the joints and hold the jacket in place.

2.2.7.2 Polyvinyl Chloride (PVC) Jackets
Polyvinyl chloride (PVC) jacket and fitting covers shall have high impact strength, ultraviolet (UV) resistant rating or treatment and moderate chemical resistance with minimum thickness 0.030 inch.

2.2.7.3 Vapor Barrier/Weatherproofing Jacket

Vapor barrier/weatherproofing jacket shall be laminated self-adhesive, greater than 3 plies standard grade, silver, white, black and embossed or greater than 8 ply (minimum 2.9 mils adhesive); with 0.0000 permeability when tested in accordance with ASTM E96/E96M, using the water transmission rate test method; heavy duty, white or natural; and UV resistant. Flexible Elastomeric exterior foam with factory applied, UV Jacket made with a cold weather acrylic adhesive. Construction of laminate designed to provide UV resistance, high puncture, tear resistance and excellent Water Vapor Transmission (WVT) rate.

2.2.7.4 Vapor Barrier/Vapor Retarder

Apply the following criteria to determine which system is required.

a. On ducts, piping and equipment operating below 70 degrees F or located outside shall be equipped with a vapor barrier.

b. Ducts, pipes and equipment that are located inside and that always operate above 70 degrees F shall be installed with a vapor retarder where required as stated in paragraph VAPOR RETARDER REQUIRED.

2.2.8 Vapor Retarder Required

ASTM C921, Type I, minimum puncture resistance 50 Beach units on all surfaces except concealed ductwork, where a minimum puncture resistance of 25 Beach units is acceptable. Minimum tensile strength, 35 pounds/inch width. ASTM C921, Type II, minimum puncture resistance 25 Beach units, tensile strength minimum 20 pounds/inch width. Jackets used on insulation exposed in finished areas shall have white finish suitable for painting without sizing. Based on the application, insulation materials that require manufacturer or fabricator applied pipe insulation jackets are cellular glass, when all joints are sealed with a vapor barrier mastic, and mineral fiber. All non-metallic jackets shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Flexible elastomerics require (in addition to vapor barrier skin) vapor retarder jacketing for high relative humidity and below ambient temperature applications.

2.2.8.1 White Vapor Retarder All Service Jacket (ASJ)

ASJ is for use on hot/cold pipes, ducts, or equipment indoors or outdoors if covered by a suitable protective jacket. The product shall meet all physical property and performance requirements of ASTM C1136, Type I, except the burst strength shall be a minimum of 85 psi. ASTM D2863 Limited Oxygen Index (LOI) shall be a minimum of 31.

In addition, neither the outer exposed surface nor the inner-most surface contacting the insulation shall be paper or other moisture-sensitive material. The outer exposed surface shall be white and have an emittance of not less than 0.80. The outer exposed surface shall be paintable.
2.2.8.2 Vapor Retarder/Vapor Barrier Mastic Coatings

2.2.8.2.1 Vapor Barrier

The vapor barrier shall be self adhesive (minimum 2 mils adhesive, 3 mils embossed) greater than 3 plies standard grade, silver, white, black and embossed white jacket for use on hot/cold pipes. Permeability shall be less than 0.02 when tested in accordance with ASTM E96/E96M. Products shall meet UL 723 or ASTM E84 flame and smoke requirements and shall be UV resistant.

2.2.8.2.2 Vapor Retarder

The vapor retarder coating shall be fire and water resistant and appropriately selected for either outdoor or indoor service. Color shall be white. The water vapor permeance of the compound shall be 0.013 perms or less at 43 mils dry film thickness as determined according to procedure B of ASTM E96/E96M utilizing apparatus described in ASTM E96/E96M. The coating shall be nonflammable, fire resistant type. Coating shall meet MIL-PRF-19565 Type II (if selected for indoor service) and be Qualified Products Database listed. All other application and service properties shall be in accordance with ASTM C647.

2.2.8.3 Laminated Film Vapor Retarder

ASTM C1136, Type I, maximum moisture vapor transmission 0.02 perms, minimum puncture resistance 50 Beach units on all surfaces except concealed ductwork; where Type II, maximum moisture vapor transmission 0.02 perms, a minimum puncture resistance of 25 Beach units is acceptable. Vapor retarder shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Flexible Elastomeric exterior foam with factory applied UV Jacket. Construction of laminate designed to provide UV resistance, high puncture, tear resistance and an excellent WVT rate.

2.2.8.4 Vapor Barrier/Weather Barrier

The vapor barrier shall be greater than 3 ply self adhesive laminate -white vapor barrier jacket- superior performance (less than 0.0000 permeability when tested in accordance with ASTM E96/E96M). Vapor barrier shall meet UL 723 or ASTM E84 25 flame and 50 smoke requirements; and UV resistant. Tensile strength 68 lb/inch width (PSTC-1000). Tape shall be as specified for laminated film vapor barrier above.

2.2.9 Vapor Retarder Not Required

ASTM C921, Type II, Class D, minimum puncture resistance 50 Beach units on all surfaces except ductwork, where Type IV, maximum moisture vapor transmission 0.10, a minimum puncture resistance of 25 Beach units is acceptable. Jacket shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84.

2.2.10 Wire

Soft annealed ASTM A580/A580M Type 302, 304 or 316 stainless steel, 16 or 18 gauge.
2.2.11 Insulation Bands

Insulation bands shall be 1/2 inch wide; 26 gauge stainless steel.

2.2.12 Sealants

Sealants shall be chosen from the butyl polymer type, the styrene-butadiene rubber type, or the butyl type of sealants. Sealants shall have a maximum permeance of 0.02 perms based on Procedure B for ASTM E96/E96M, and a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84.

2.3 PIPE INSULATION SYSTEMS

Insulation materials shall conform to Table 1. Insulation thickness shall be as listed in Table 2 and meet or exceed the requirements of ASHRAE 90.1-IP. Pipe insulation materials shall be limited to those listed herein and shall meet the following requirements:

2.3.1 Aboveground Cold Pipeline (-30 to 60 deg. F)

Insulation for outdoor, indoor, exposed or concealed applications, shall be as follows:

2.3.1.1 Cellular Glass

ASTM C552, Type II, and Type III. Supply the insulation from the fabricator with (paragraph WHITE VAPOR RETARDER ALL SERVICE JACKET (ASJ)) ASJ vapor retarder and installed with all longitudinal overlaps sealed and all circumferential joints ASJ taped or supply the insulation unfaced from the fabricator and install with all longitudinal and circumferential joints sealed with vapor barrier mastic.

2.3.2 Aboveground Hot Pipeline (Above 60 deg. F)

Insulation for outdoor, indoor, exposed or concealed applications shall meet the following requirements. Supply the insulation with manufacturer's recommended factory-applied jacket/vapor barrier.

2.3.2.1 Mineral Fiber

ASTM C547, Types I, II or III, supply the insulation with manufacturer's recommended factory-applied jacket.

2.4 DUCT INSULATION SYSTEMS

2.4.1 Factory Applied Insulation

Provide factory-applied ASTM C552, cellular glass thermal insulation according to manufacturer's recommendations for insulation with insulation manufacturer's standard reinforced fire-retardant vapor barrier, with identification of installed thermal resistance (R) value and out-of-package R value.

2.4.1.1 Rigid Insulation
Rigid mineral fiber in accordance with ASTM C612, Class 2 (maximum surface temperature 400 degrees F), 3 pcf average, 1-1/2 inch thick, Type IA, IB, II, III, and IV.

2.4.1.2 Blanket Insulation

Blanket flexible mineral fiber insulation conforming to ASTM C585, Type 1, Class B-3, 3/4 pcf nominal, 2.0 inches thick or Type II up to 250 degrees F. Also ASTM C1290 Type III may be used. Alternately, minimum thickness may be calculated in accordance with ASHRAE 90.1 - IP.

2.4.2 Duct Insulation Jackets

2.4.2.1 Vapor Barrier/Weatherproofing Jacket

Vapor barrier/weatherproofing jacket shall be laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) less than 0.0000 permeability, (greater than 3 ply, standard grade, silver, white, black and embossed or greater than 8 ply (minimum 2.9 mils adhesive), heavy duty white or natural).

2.4.3 Weatherproof Duct Insulation

Provide ASTM C553, cellular glass thermal insulation, and weatherproofing as specified in manufacturer's instruction. Multi-ply, Polymeric Blend Laminate Jacketing: Construction of laminate designed to provide UV resistance, high puncture, tear resistance and an excellent WVT rate.

2.5 EQUIPMENT INSULATION SYSTEMS

Select insulation types best suited for the equipment which it is to be installed, as recommended by insulation manufacturer. Insulation shall have a neat appearance and provide protection against heat loss or gain and condensation. Provide vapor barriers at all equipment below ambient temperature. Insulation shall be a minimum 2 inches thick. Equipment shall be provided from the manufacture with insulation which has documentation that the equipment will not condensate.

PART 3 EXECUTION

3.1 APPLICATION - GENERAL

Insulation shall only be applied to unheated and uncooled piping and equipment. Flexible elastomeric cellular insulation shall not be compressed at joists, studs, columns, ducts, hangers, etc. The insulation shall not pull apart after a one hour period; any insulation found to pull apart after one hour, shall be replaced.

3.1.1 Installation

Except as otherwise specified, material shall be installed in accordance with the manufacturer's written instructions. Insulation materials shall not be applied until tests specified in other sections of this specification are completed. Material such as rust, scale, dirt and moisture shall be removed from surfaces to receive insulation. Insulation shall be kept clean and dry. Insulation shall not be removed from its shipping containers until the day it is ready to use and shall be returned to like containers or
equally protected from dirt and moisture at the end of each workday. Insulation that becomes dirty shall be thoroughly cleaned prior to use. If insulation becomes wet or if cleaning does not restore the surfaces to like new condition, the insulation will be rejected, and shall be immediately removed from the jobsite. Joints shall be staggered on multi-layer insulation. Mineral fiber thermal insulating cement shall be mixed with demineralized water when used on stainless steel surfaces. Insulation, jacketing and accessories shall be installed in accordance with the drawings.

3.1.2 Painting and Finishing

Painting shall be as specified in Section 09 90 00 PAINTS AND COATINGS.

3.1.3 Installation of Flexible Elastomeric Cellular Insulation

Install flexible elastomeric cellular insulation with seams and joints sealed with rubberized contact adhesive. Flexible elastomeric cellular insulation shall not be used on surfaces greater than 220 degrees F. Stagger seams when applying multiple layers of insulation. Protect insulation exposed to weather and not shown to have vapor barrier weatherproof jacketing with two coats of UV resistant finish or PVC or metal jacketing as recommended by the manufacturer after the adhesive is dry and cured.

3.1.3.1 Adhesive Application

Apply a brush coating of adhesive to both butt ends to be joined and to both slit surfaces to be sealed. Allow the adhesive to set until dry to touch but tacky under slight pressure before joining the surfaces. Insulation seals at seams and joints shall not be capable of being pulled apart one hour after application. Insulation that can be pulled apart one hour after installation shall be replaced.

3.1.3.2 Adhesive Safety Precautions

Use natural cross-ventilation, local (mechanical) pickup, and/or general area (mechanical) ventilation to prevent an accumulation of solvent vapors, keeping in mind the ventilation pattern must remove any heavier-than-air solvent vapors from lower levels of the workspaces. Gloves and spectacle-type safety glasses are recommended in accordance with safe installation practices.

3.1.4 Welding

No welding shall be done on piping, duct or equipment without written approval of the Contracting Officer. The capacitor discharge welding process may be used for securing metal fasteners to duct.

3.1.5 Pipes/Ducts/Equipment That Require Insulation

Insulation is required on all pipes, ducts, or equipment, except for omitted items as specified.

3.2 PIPE INSULATION SYSTEMS INSTALLATION
3.2.1 Pipe Insulation

3.2.1.1 General

Pipe insulation shall be installed on aboveground hot and cold pipeline systems as specified below to form a continuous thermal retarder/barrier, including straight runs, fittings and appurtenances unless specified otherwise. Installation shall be with full length units of insulation and using a single cut piece to complete a run. Cut pieces or scraps abutting each other shall not be used. Pipe insulation shall be omitted on the following:

a. Pipe used solely for fire protection.

b. Chromium plated pipe to plumbing fixtures. However, fixtures for use by the physically handicapped shall have the hot water supply and drain, including the trap, insulated where exposed.

c. Sanitary drain lines.

d. Air chambers.

e. Adjacent insulation.

f. ASME stamps.

g. Access plates of fan housings.

h. Cleanouts or handholes.

3.2.1.2 Pipes Passing Through Walls, Roofs, and Floors

Pipe insulation shall be continuous through the sleeve.

An aluminum jacket or vapor barrier/weatherproofing - self adhesive jacket (minimum 2 mils adhesive, 3 mils embossed) less than 0.0000 permeability, greater than 3 ply standard grade, silver, white, black and embossed with factory applied moisture retarder shall be provided over the insulation wherever penetrations require sealing.

3.2.1.2.1 Penetrate Interior Walls

The aluminum jacket or vapor barrier/weatherproofing - self adhesive jacket (minimum 2 mils adhesive, 3 mils embossed) less than 0.0000 permeability, greater than 3 plies standard grade, silver, white, black and embossed shall extend 2 inches beyond either side of the wall and shall be secured on each end with a band.

3.2.1.2.2 Penetrating Floors

Extend the aluminum jacket from a point below the backup material to a point 10 inches above the floor with one band at the floor and one not more than 1 inch from the end of the aluminum jacket.
3.2.1.2.3 Penetrating Waterproofed Floors

Extend the aluminum jacket rom below the backup material to a point 2 inches above the flashing with a band 1 inch from the end of the aluminum jacket.

3.2.1.2.4 Penetrating Exterior Walls

Continue the aluminum jacket required for pipe exposed to weather through the sleeve to a point 2 inches beyond the interior surface of the wall.

3.2.1.3 Pipes Passing Through Hangers

Insulation, whether hot or cold application, shall be continuous through hangers. All horizontal pipes 2 inches and smaller shall be supported on hangers with the addition of a Type 40 protection shield to protect the insulation in accordance with MSS SP-69. Whenever insulation shows signs of being compressed, or when the insulation or jacket shows visible signs of distortion at or near the support shield, insulation inserts as specified below for piping larger than 2 inches shall be installed, or factory insulated hangers (designed with a load bearing core) can be used.

3.2.1.3.1 Inserts

Covered with a jacket material of the same appearance and quality as the adjoining pipe insulation jacket, overlap the adjoining pipe jacket 1-1/2 inches, and seal as required for the pipe jacket. The jacket material used to cover inserts in flexible elastomeric cellular insulation shall conform to ASTM C1136, Type 1, and is allowed to be of a different material than the adjoining insulation material.

3.2.1.4 Flexible Elastomeric Cellular Pipe Insulation

Flexible elastomeric cellular pipe insulation shall be tubular form for pipe sizes 6 inches and less. Grade 1, Type II sheet insulation used on pipes larger than 6 inches shall not be stretched around the pipe. On pipes larger than 12 inches, the insulation shall be adhered directly to the pipe on the lower 1/3 of the pipe. Seams shall be staggered when applying multiple layers of insulation. Sweat fittings shall be insulated with miter-cut pieces the same size as on adjacent piping. Screwed fittings shall be insulated with sleeved fitting covers fabricated from miter-cut pieces and shall be overlapped and sealed to the adjacent pipe insulation. Type II requires an additional exterior vapor retarder/barrier covering for high relative humidity and below ambient temperature applications.

3.2.1.5 Pipes in high abuse areas.

In high abuse areas such as janitor closets and traffic areas in equipment rooms, kitchens, and mechanical rooms, welded PVC, aluminum or flexible laminate cladding (comprised of elastomeric, plastic or metal foil laminate) laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) vapor barrier/weatherproofing jacket, - less than 0.0000 permeability; (greater than 3 ply, standard grade, silver, white, black and embossed) jackets shall be utilized. Pipe insulation to the 6 foot level shall be protected.

3.2.1.6 Pipe Insulation Material and Thickness
TABLE 1

Insulation Material for Piping

<table>
<thead>
<tr>
<th>Service</th>
<th>Material</th>
<th>Specification</th>
<th>Type</th>
<th>Class</th>
<th>VR/VB Req’d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilled Water (Mechanical Cooling)</td>
<td>Cellular Glass</td>
<td>ASTM C552</td>
<td>II</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Chilled Drinking Water</td>
<td>Cellular Foam</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Heating Hot Water Supply & Return, Heated Oil (Max 250 F)</td>
<td>Glass Fiber</td>
<td>ASTM C547</td>
<td>I</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Exposed Lavatory Drains, Exposed Domestic Water Piping & Drains to Areas for Handicapped Personnel</td>
<td>Glass Fiber</td>
<td>ASTM C547</td>
<td>I</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Condensate Drain Located Inside Building</td>
<td>Cellular Foam</td>
<td>ASTM C534/C534M</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: VR/VB = Vapor Retarder/Vapor Barrier

TABLE 2

Piping Insulation Thickness (inch)

Do not use integral wicking material in Chilled water applications exposed to outdoor ambient conditions in climatic zones 1 through 4.

<table>
<thead>
<tr>
<th>Service</th>
<th>Material</th>
<th>Tube And Pipe Size (inch)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilled Water (Supply & Return, Dual Temperature Piping, 40 Degrees F nominal)</td>
<td>Cellular Glass</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>Chilled Drinking Water</td>
<td>Cellular Foam</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Exposed Lavatory Drains, Exposed Domestic Water Piping & Drains to Areas for Handicapped Personnel</td>
<td>Glass Fiber</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
TABLE 2

Piping Insulation Thickness (inch)
Do not use integral wicking material in Chilled water applications exposed to outdoor ambient conditions in climatic zones 1 through 4.

<table>
<thead>
<tr>
<th>Service</th>
<th>Material</th>
<th>Tube And Pipe Size (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><1</td>
</tr>
<tr>
<td>Horizontal Roof Drain Leaders (Including Underside of Roof Drain Fittings)</td>
<td>Glass Fiber</td>
<td>1</td>
</tr>
<tr>
<td>Condensate Drain Located Inside Building and Chilled Drinking Water</td>
<td>Glass Fiber</td>
<td>1</td>
</tr>
<tr>
<td>Material</td>
<td>Tube And Pipe Size (inch)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.5-1.25</td>
<td>1.5-2</td>
</tr>
<tr>
<td>Heating Hot Water Supply & Return, Heated Oil (Max 250 F)</td>
<td>Glass Fiber</td>
<td>1</td>
</tr>
</tbody>
</table>

3.2.2 Aboveground Cold Pipelines

The following cold pipelines for minus 30 to plus 60 degrees F, shall be insulated in accordance with Table 2 except those piping listed in subparagraph Pipe Insulation in PART 3 as to be omitted. This includes but is not limited to the following:

a. Air conditioner condensate drains.

3.2.2.1 Insulation Material and Thickness

Insulation thickness for cold pipelines shall be determined using Table 2.

3.2.2.2 Factory or Field applied Jacket

Insulation shall be covered with a factory applied vapor retarder jacket/vapor barrier or field applied seal welded PVC jacket or greater than 3 ply laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) vapor barrier/weatherproofing jacket - less than 0.0000 permeability, standard grade, sliver, white, black and embossed for use with Mineral Fiber, Cellular Glass, and Phenolic Foam Insulated Pipe. Insulation inside the building, to be protected with an aluminum jacket or greater than 3ply
vapor barrier/weatherproofing self-adhesive (minimum 2 mils adhesive, 3 mils embossed) product, less than 0.0000 permeability, standard grade, Embossed Silver, White & Black, shall have the insulation and vapor retarder jacket installed as specified herein. The aluminum jacket or greater than 3ply vapor barrier/weatherproofing self-adhesive (minimum 2 mils adhesive, 3 mils embossed) product, less than 0.0000 permeability, standard grade, embossed silver, White & Black, shall be installed as specified for piping exposed to weather, except sealing of the laps of the aluminum jacket is not required. In high abuse areas such as janitor closets and traffic areas in equipment rooms, kitchens, and mechanical rooms, aluminum jackets or greater than 3ply vapor barrier/weatherproofing self-adhesive (minimum 2 mils adhesive, 3 mils embossed) product, less than 0.0000 permeability, standard grade, embossed silver, white & black, shall be provided for pipe insulation to the 6 ft level.

3.2.2.3 Installing Insulation for Straight Runs Hot and Cold Pipe

Apply insulation to the pipe with tight butt joints. Seal all butted joints and ends with joint sealant and seal with a vapor retarder coating, greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape or PVDC adhesive tape.

3.2.2.3.1 Longitudinal Laps of the Jacket Material

Overlap not less than 1-1/2 inches. Provide butt strips 3 inches wide for circumferential joints.

3.2.2.3.2 Laps and Butt Strips

Secure with adhesive on 4 inch centers if not factory self-sealing.

3.2.2.3.3 Factory Self-Sealing Lap Systems

May be used when the ambient temperature is between 40 and 120 degrees F during installation. Install the lap system in accordance with manufacturer's recommendations. Use a stapler only if specifically recommended by the manufacturer. Where gaps occur, replace the section or repair the gap by applying adhesive under the lap and then stapling.

3.2.2.3.4 Breaks and Punctures in the Jacket Material

Patch by wrapping a strip of jacket material around the pipe and secure it with adhesive and coat with vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape. Extend the patch not less than 1-1/2 inches past the break.

3.2.2.3.5 Penetrations Such as Thermometers

Fill the voids in the insulation and seal with vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape.

3.2.2.3.6 Flexible Elastomeric Cellular Pipe Insulation

Install by slitting the tubular sections and applying them onto the piping or tubing. Alternately, whenever possible slide un-slit sections over the open ends of piping or tubing. Secure all seams and butt joints and seal
with adhesive. When using self seal products only the butt joints shall be secured with adhesive. Push insulation on the pipe, never pulled. Stretching of insulation may result in open seams and joints. Clean cut all edges. Rough or jagged edges of the insulation are not permitted. Use proper tools such as sharp knives. Do not stretch Grade 1, Type II sheet insulation around the pipe when used on pipe larger than 6 inches. On pipes larger than 12 inches, adhere sheet insulation directly to the pipe on the lower 1/3 of the pipe.

3.2.2.4 Insulation for Fittings and Accessories

a. Pipe insulation shall be tightly butted to the insulation of the fittings and accessories. The butted joints and ends shall be sealed with joint sealant and sealed with a vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket – less than 0.0000 perm adhesive tape.

b. Precut or preformed insulation shall be placed around all fittings and accessories except as modified herein: 5 for anchors; 10, 11, and 13 for fittings; 14 for valves; and 17 for flanges and unions. Insulation shall be the same insulation as the pipe insulation, including same density, thickness, and thermal conductivity. Where precut/preformed is unavailable, rigid preformed pipe insulation sections may be segmented into the shape required. Insulation of the same thickness and conductivity as the adjoining pipe insulation shall be used. If nesting size insulation is used, the insulation shall be overlapped 2 inches or one pipe diameter.

c. Upon completion of insulation installation on flanges, unions, valves, anchors, fittings and accessories, terminations, seams, joints and insulation not protected by factory vapor retarder jackets or PVC fitting covers shall be protected with PVDC or greater than 3 ply laminate jacket – less than 0.0000 perm adhesive tape or two coats of vapor retarder coating with a minimum total thickness of 1/16 inch, applied with glass tape embedded between coats. Tape seams shall overlap 1 inch. The coating shall extend out onto the adjoining pipe insulation 2 inches. Fabricated insulation with a factory vapor retarder jacket shall be protected with either greater than 3 ply laminate jacket – less than 0.0000 perm adhesive tape, standard grade, silver, white, black and embossed or PVDC adhesive tape or two coats of vapor retarder coating with a minimum thickness of 1/16 inch and with a 2 inch wide glass tape embedded between coats. Where fitting insulation butts to pipe insulation, the joints shall be sealed with a vapor retarder coating and a 4 inch wide ASJ tape which matches the jacket of the pipe insulation.

d. Anchors attached directly to the pipe shall be insulated for a sufficient distance to prevent condensation but not less than 6 inches from the insulation surface.

e. Insulation shall be marked showing the location of unions, strainers, and check valves.

3.2.2.5 Optional PVC Fitting Covers

At the option of the Contractor, premolded, one or two piece PVC fitting covers may be used in lieu of the vapor retarder and embedded glass tape.
Factory precut or premolded insulation segments shall be used under the fitting covers for elbows. Insulation segments shall be the same insulation as the pipe insulation including same density, thickness, and thermal conductivity. The covers shall be secured by PVC vapor retarder tape, adhesive, seal welding or with tacks made for securing PVC covers. Seams in the cover, and tacks and laps to adjoining pipe insulation jacket, shall be sealed with vapor retarder tape to ensure that the assembly has a continuous vapor seal.

3.2.3 Aboveground Hot Pipelines

3.2.3.1 General Requirements

All hot pipe lines above 60 degrees F, except those piping listed in subparagraph Pipe Insulation in PART 3 as to be omitted, shall be insulated in accordance with Table 2. This includes but is not limited to the following:

a. Hot water heating.

Insulation shall be covered, in accordance with manufacturer's recommendations, with a factory applied Type I jacket or field applied aluminum where required or seal welded PVC.

3.2.3.2 Insulation for Fittings and Accessories

Pipe insulation shall be tightly butted to the insulation of the fittings and accessories. The butted joints and ends shall be sealed with joint sealant. Insulation shall be marked showing the location of unions, strainers, check valves and other components that would otherwise be hidden from view by the insulation.

3.2.3.2.1 Precut or Preformed

Place precut or preformed insulation around all fittings and accessories. Insulation shall be the same insulation as the pipe insulation, including same density, thickness, and thermal conductivity.

3.2.3.2.2 Rigid Preformed

Where precut/preformed is unavailable, rigid preformed pipe insulation sections may be segmented into the shape required. Insulation of the same thickness and conductivity as the adjoining pipe insulation shall be used. If nesting size insulation is used, the insulation shall be overlapped 2 inches or one pipe diameter.

3.2.4 Piping Exposed to Weather

Piping exposed to weather shall be insulated and jacketed as specified for the applicable service inside the building. After this procedure, a laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) vapor barrier/weatherproofing jacket - less than 0.0000 permeability (greater than 3 ply, standard grade, silver, white, black and embossed aluminum jacket or PVC jacket shall be applied. PVC jacketing requires no factory-applied jacket beneath it, however an all service jacket shall be applied if factory applied jacketing is not furnished. Flexible elastomeric cellular
insulation exposed to weather shall be treated in accordance with paragraph INSTALLATION OF FLEXIBLE ELASTOMERIC CELLULAR INSULATION in PART 3.

3.2.4.1 Aluminum Jacket

The jacket for hot piping may be factory applied. The jacket shall overlap not less than 2 inches at longitudinal and circumferential joints and shall be secured with bands at not more than 12 inch centers. Longitudinal joints shall be overlapped down to shed water and located at 4 or 8 o'clock positions. Joints on piping 60 degrees F and below shall be sealed with metal jacketing/flashing sealant while overlapping to prevent moisture penetration. Where jacketing on piping 60 degrees F and below abuts an uninsulated surface, joints shall be caulked to prevent moisture penetration. Joints on piping above 60 degrees F shall be sealed with a moisture retarder.

3.2.4.2 Insulation for Fittings

Flanges, unions, valves, fittings, and accessories shall be insulated and finished as specified for the applicable service. Two coats of breather emulsion type weatherproof mastic (impermeable to water, permeable to air) recommended by the insulation manufacturer shall be applied with glass tape embedded between coats. Tape overlaps shall be not less than 1 inch and the adjoining aluminum jacket not less than 2 inches. Factory preformed aluminum jackets may be used in lieu of the above. Molded PVC fitting covers shall be provided when PVC jackets are used for straight runs of pipe. PVC fitting covers shall have adhesive welded joints and shall be weatherproof laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) vapor barrier/weatherproofing jacket - less than 0.0000 permeability, (greater than 3 ply, standard grade, silver, white, black and embossed, and UV resistant.

3.2.4.3 PVC Jacket

PVC jacket shall be ultraviolet resistant and adhesive welded weather tight with manufacturer's recommended adhesive. Installation shall include provision for thermal expansion.

3.3 DUCT INSULATION SYSTEMS INSTALLATION

Install duct insulation systems in accordance with the approved manufacturer's published installation instructions.

Except for oven hood exhaust duct insulation, corner angles shall be installed on external corners of insulation on ductwork in exposed finished spaces before covering with jacket.

3.3.1 Duct Insulation Thickness

Duct insulation thickness shall be in accordance with Table 4.

<table>
<thead>
<tr>
<th>Duct Type</th>
<th>Insulation Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Air Ducts</td>
<td>2.0</td>
</tr>
<tr>
<td>Relief Ducts</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Table 4 - Minimum Duct Insulation (inches)
3.3.2 Insulation and Vapor Retarder/Vapor Barrier for Cold Air Duct

Insulation and vapor retarder/vapor barrier shall be provided for the following cold air ducts and associated equipment.

- a. Supply ducts.
- b. Return air ducts.
- c. Relief ducts.
- d. Flexible run-outs (field-insulated).
- e. Plenums.
- f. Duct-mounted coil casings.
- g. Coil headers and return bends.
- h. Coil casings.
- i. Fresh air intake ducts.
- j. Filter boxes.
- k. Mixing boxes (field-insulated).
- l. Supply fans (field-insulated).
- m. Site-erected air conditioner casings.
- n. Ducts exposed to weather.
- o. Combustion air intake ducts.

Insulation for rectangular ducts shall be flexible type where concealed, minimum density 3/4 pcf, and rigid type where exposed, minimum density 3 pcf. Insulation for both concealed or exposed round/oval ducts shall be flexible type, minimum density 3/4 pcf or a semi rigid board, minimum density 3 pcf, formed or fabricated to a tight fit, edges beveled and joints tightly butted and staggered. Insulation for all exposed ducts shall be provided with either a white, paint-able, factory-applied Type I jacket or a field applied vapor retarder/vapor barrier jacket coating finish as specified, the total field applied dry film thickness shall be approximately 1/16 inch. Insulation on all concealed duct shall be provided with a factory-applied Type I or II vapor retarder/vapor barrier jacket. Duct insulation shall be continuous through sleeves and prepared openings except...
firewall penetrations. Duct insulation terminating at fire dampers, shall be continuous over the damper collar and retaining angle of fire dampers, which are exposed to unconditioned air and which may be prone to condensate formation. Duct insulation and vapor retarder/vapor barrier shall cover the collar, neck, and any un-insulated surfaces of diffusers, registers and grills. Vapor retarder/vapor barrier materials shall be applied to form a complete unbroken vapor seal over the insulation. Sheet Metal Duct shall be sealed in accordance with Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM.

3.3.2.1 Installation on Concealed Duct

a. For rectangular, oval or round ducts, flexible insulation shall be attached by applying adhesive around the entire perimeter of the duct in 6 inch wide strips on 12 inch centers.

b. For rectangular and oval ducts, 24 inches and larger insulation shall be additionally secured to bottom of ducts by the use of mechanical fasteners. Fasteners shall be spaced on 16 inch centers and not more than 16 inches from duct corners.

c. For rectangular, oval and round ducts, mechanical fasteners shall be provided on sides of duct risers for all duct sizes. Fasteners shall be spaced on 16 inch centers and not more than 16 inches from duct corners.

d. Insulation shall be impaled on the mechanical fasteners (self stick pins) where used and shall be pressed thoroughly into the adhesive. Care shall be taken to ensure vapor retarder/vapor barrier jacket joints overlap 2 inches. The insulation shall not be compressed to a thickness less than that specified. Insulation shall be carried over standing seams and trapeze-type duct hangers.

e. Where mechanical fasteners are used, self-locking washers shall be installed and the pin trimmed and bent over.

f. Jacket overlaps shall be secured with staples and tape as necessary to ensure a secure seal. Staples, tape and seams shall be coated with a brush coat of vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate (minimum 2 mils adhesive, 3 mils embossed) - less than 0.0000 perm adhesive tape.

g. Breaks in the jacket material shall be covered with patches of the same material as the vapor retarder jacket. The patches shall extend not less than 2 inches beyond the break or penetration in all directions and shall be secured with tape and staples. Staples and tape joints shall be sealed with a brush coat of vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate (minimum 2 mils adhesive, 3 mils embossed) - less than 0.0000 perm adhesive tape.

h. At jacket penetrations such as hangers, thermometers, and damper operating rods, voids in the insulation shall be filled and the penetration sealed with a brush coat of vapor retarder coating or PVDC adhesive tape greater than 3 ply laminate (minimum 2 mils adhesive, 3 mils embossed) - less than 0.0000 perm adhesive tape.
i. Insulation terminations and pin punctures shall be sealed and flashed with a reinforced vapor retarder coating finish or tape with a brush coat of vapor retarder coating. The coating shall overlap the adjoining insulation and un-insulated surface 2 inches. Pin puncture coatings shall extend 2 inches from the puncture in all directions.

j. Where insulation standoff brackets occur, insulation shall be extended under the bracket and the jacket terminated at the bracket.

3.3.2.2 Installation on Exposed Duct Work

a. For rectangular ducts, rigid insulation shall be secured to the duct by mechanical fasteners on all four sides of the duct, spaced not more than 12 inches apart and not more than 3 inches from the edges of the insulation joints. A minimum of two rows of fasteners shall be provided for each side of duct 12 inches and larger. One row shall be provided for each side of duct less than 12 inches. Mechanical fasteners shall be as corrosion resistant as G60 coated galvanized steel, and shall indefinitely sustain a 50 lb tensile dead load test perpendicular to the duct wall.

b. Form duct insulation with minimum jacket seams. Fasten each piece of rigid insulation to the duct using mechanical fasteners. When the height of projections is less than the insulation thickness, insulation shall be brought up to standing seams, reinforcing, and other vertical projections and shall not be carried over. Vapor retarder/barrier jacket shall be continuous across seams, reinforcing, and projections. When height of projections is greater than the insulation thickness, insulation and jacket shall be carried over. Apply insulation with joints tightly butted. Neatly bevel insulation around name plates and access plates and doors.

c. Impale insulation on the fasteners; self-locking washers shall be installed and the pin trimmed and bent over.

d. Seal joints in the insulation jacket with a 4 inch wide strip of tape. Seal taped seams with a brush coat of vapor retarder coating.

e. Breaks and ribs or standing seam penetrations in the jacket material shall be covered with a patch of the same material as the jacket. Patches shall extend not less than 2 inches beyond the break or penetration and shall be secured with tape and stapled. Staples and joints shall be sealed with a brush coat of vapor retarder coating.

f. At jacket penetrations such as hangers, thermometers, and damper operating rods, the voids in the insulation shall be filled and the penetrations sealed with a flashing sealant.

g. Insulation terminations and pin punctures shall be sealed and flashed with a reinforced vapor retarder coating finish. The coating shall overlap the adjoining insulation and un-insulated surface 2 inches. Pin puncture coatings shall extend 2 inches from the puncture in all directions.

h. Oval and round ducts, flexible type, shall be insulated with factory Type I jacket insulation with minimum density of 3/4 pcf, attached.
3.3.3 Insulation for Warm Air Duct

Insulation and vapor barrier shall be provided for the following warm air ducts and associated equipment:

a. Supply ducts.
b. Return air ducts.
c. Relief air ducts
d. Flexible run-outs (field insulated).
e. Plenums.
f. Duct-mounted coil casings.
g. Coil-headers and return bends.
h. Coil casings.
i. Fresh air intake ducts.
j. Filter boxes.
k. Mixing boxes.
l. Supply fans.
m. Site-erected air conditioner casings.
n. Ducts exposed to weather.

Insulation for rectangular ducts shall be flexible type where concealed, and rigid type where exposed. Insulation on exposed ducts shall be provided with a white, paint-able, factory-applied Type II jacket, or finished with adhesive finish. Flexible type insulation shall be used for round ducts, with a factory-applied Type II jacket. Insulation on concealed duct shall be provided with a factory-applied Type II jacket. Adhesive finish where indicated to be used shall be accomplished by applying two coats of adhesive with a layer of glass cloth embedded between the coats. The total dry film thickness shall be approximately 1/16 inch. Duct insulation shall be continuous through sleeves and prepared openings. Duct insulation shall terminate at fire dampers and flexible connections.

3.3.3.1 Installation on Concealed Duct

a. For rectangular, oval and round ducts, insulation shall be attached by applying adhesive around the entire perimeter of the duct in 6 inch wide strips on 12 inch centers.

b. For rectangular and oval ducts 24 inches and larger, insulation shall be secured to the bottom of ducts by the use of mechanical fasteners. Fasteners shall be spaced on 18 inch centers and not more than 18 inches from duct corner.
c. For rectangular, oval and round ducts, mechanical fasteners shall be provided on sides of duct risers for all duct sizes. Fasteners shall be spaced on 18 inch centers and not more than 18 inches from duct corners.

d. The insulation shall be impaled on the mechanical fasteners where used. The insulation shall not be compressed to a thickness less than that specified. Insulation shall be carried over standing seams and trapeze-type hangers.

e. Self-locking washers shall be installed where mechanical fasteners are used and the pin trimmed and bent over.

f. Insulation jacket shall overlap not less than 2 inches at joints and the lap shall be secured and stapled on 4 inch centers.

3.3.3.2 Installation on Exposed Duct

a. For rectangular ducts, the rigid insulation shall be secured to the duct by the use of mechanical fasteners on all four sides of the duct, spaced not more than 16 inches apart and not more than 6 inches from the edges of the insulation joints. A minimum of two rows of fasteners shall be provided for each side of duct 12 inches and larger and a minimum of one row for each side of duct less than 12 inches.

b. Duct insulation with factory-applied jacket shall be formed with minimum jacket seams, and each piece of rigid insulation shall be fastened to the duct using mechanical fasteners. When the height of projection is less than the insulation thickness, insulation shall be brought up to standing seams, reinforcing, and other vertical projections and shall not be carried over the projection. Jacket shall be continuous across seams, reinforcing, and projections. Where the height of projections is greater than the insulation thickness, insulation and jacket shall be carried over the projection.

c. Insulation shall be impaled on the fasteners; self-locking washers shall be installed and pin trimmed and bent over.

d. Joints on jacketed insulation shall be sealed with a 4 inch wide strip of tape and brushed with vapor retarder coating.

e. Breaks and penetrations in the jacket material shall be covered with a patch of the same material as the jacket. Patches shall extend not less than 2 inches beyond the break or penetration and shall be secured with adhesive and stapled.

f. Insulation terminations and pin punctures shall be sealed with tape and brushed with vapor retarder coating.

g. Oval and round ducts, flexible type, shall be insulated with factory Type I jacket insulation, minimum density of 3/4 pcf attached by staples spaced not more than 16 inches and not more than 6 inches from the degrees of joints. Joints shall be sealed in accordance with item "d." above.

3.3.4 Duct Test Holes
After duct systems have been tested, adjusted, and balanced, breaks in the insulation and jacket shall be repaired in accordance with the applicable section of this specification for the type of duct insulation to be repaired.

3.3.5 Duct Exposed to Weather

3.3.5.1 Installation

Ducts exposed to weather shall be insulated and finished as specified for the applicable service for exposed duct inside the building. After the above is accomplished, the insulation shall then be further finished as detailed in the following subparagraphs.

3.3.5.2 Round Duct

Laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) vapor barrier/weatherproofing jacket - Less than 0.0000 permeability, (greater than 3 ply, standard grade, silver, white, black and embossed or greater than 8 ply, heavy duty, white and natural) membrane shall be applied overlapping material by 3 inches no bands or caulking needed - see manufacturer's recommended installation instructions. Aluminum jacket with factory applied moisture retarder shall be applied with the joints lapped not less than 3 inches and secured with bands located at circumferential laps and at not more than 12 inch intervals throughout. Horizontal joints shall lap down to shed water and located at 4 or 8 o'clock position. Joints shall be sealed with metal jacketing sealant to prevent moisture penetration. Where jacketing abuts an un-insulated surface, joints shall be sealed with metal jacketing sealant.

3.3.5.3 Fittings

Fittings and other irregular shapes shall be finished as specified for rectangular ducts.

3.3.5.4 Rectangular Ducts

Two coats of weather barrier mastic reinforced with fabric or mesh for outdoor application shall be applied to the entire surface. Each coat of weatherproof mastic shall be 1/16 inch minimum thickness. The exterior shall be a metal jacketing applied for mechanical abuse and weather protection, and secured with screws or vapor barrier/weatherproofing jacket less than 0.0000 permeability greater than 3 ply, standard grade, silver, white, black, and embossed or greater than 8 ply, heavy duty white and natural. Membrane shall be applied overlapping material by 3 inches. No bands or caulking needed-see manufacturing recommend installation instructions.

3.4 EQUIPMENT INSULATION SYSTEMS INSTALLATION

Install equipment insulation systems in accordance with the approved manufacturer's published installation instructions.

3.4.1 General

Removable insulation sections shall be provided to cover parts of equipment that must be opened periodically for maintenance including vessel covers.
fasteners, flanges and accessories. Equipment insulation shall be omitted on the following:

b. Boiler manholes.
c. Cleanouts.
d. ASME stamps.
e. Manufacturer's nameplates.
f. Duct Test/Balance Test Holes.

3.4.2 Insulation for Equipment

Select insulation types best suited for the equipment which it is to be installed, as recommended by insulation manufacturer. Insulation shall have a neat appearance and provide protection against heat loss or gain and condensation. Provide vapor barriers at all equipment below ambient temperature. Insulation shall be a minimum 2 inches thick. Equipment shall be provided from the manufacture with insulation which has documentation that the equipment will not condensate.

3.4.2.1 Other Equipment

a. Insulation shall be formed or fabricated to fit the equipment. To ensure a tight fit on round equipment, edges shall be beveled and joints shall be tightly butted and staggered.

b. Insulation shall be secured in place with bands or wires at intervals as recommended by the manufacturer but not more than 12 inch centers except flexible elastomeric cellular which shall be adhered with contact adhesive. Insulation corners shall be protected under wires and bands with suitable corner angles.

c. Cellular glass shall be installed in accordance with manufacturer's instructions. Joints and ends shall be sealed with joint sealant, and sealed with a vapor retarder coating.

d. Insulation on heads of heat exchangers shall be removable. Removable section joints shall be fabricated using a male-female shiplap type joint. The entire surface of the removable section shall be finished by applying two coats of vapor retarder coating with a layer of glass cloth embedded between the coats. The total dry thickness of the finish shall be 1/16 inch.

e. Exposed insulation corners shall be protected with corner angles.

f. Insulation on equipment with ribs shall be applied over 6 by 6 inches by 12 gauge welded wire fabric which has been cinched in place, or if approved by the Contracting Officer, spot welded to the equipment over the ribs. Insulation shall be secured to the fabric with J-hooks and 2 by 2 inches washers or shall be securely banded or wired in place on 12 inch centers.
3.4.2.2 Vapor Retarder/Vapor Barrier

Upon completion of installation of insulation, penetrations shall be caulked. Two coats of vapor retarder coating or vapor barrier jacket shall be applied over insulation, including removable sections, with a layer of open mesh synthetic fabric embedded between the coats. The total dry thickness of the finish shall be 1/16 inch. Flashing sealant or vapor barrier tape shall be applied to parting line between equipment and removable section insulation.

3.4.3 Equipment Exposed to Weather

3.4.3.1 Installation

Equipment exposed to weather shall be insulated and finished in accordance with the requirements for ducts exposed to weather in paragraph DUCT INSULATION INSTALLATION.

3.4.3.2 Optional Panels

At the option of the Contractor, prefabricated metal insulation panels may be used in lieu of the insulation and finish previously specified. Thermal performance shall be equal to or better than that specified for field applied insulation. Panels shall be the standard catalog product of a manufacturer of metal insulation panels. Fastenings, flashing, and support system shall conform to published recommendations of the manufacturer for weatherproof installation and shall prevent moisture from entering the insulation. Panels shall be designed to accommodate thermal expansion and to support a 250 pound walking load without permanent deformation or permanent damage to the insulation. Exterior metal cover sheet shall be aluminum and exposed fastenings shall be stainless steel or aluminum.

-- End of Section --
PART 1 GENERAL

1.01 WORK INCLUDED

B. Software.

1.02 REFERENCES
The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

A. AIR-MOVEMENT AND CONTROL ASSN, INC (AMCA)
 AMCA 500 - Test Methods for Louvers, Dampers and Shutters

B. AMERICAN NATIONAL STANDARDS INSTITUTE, INC (ANSI)
 ANSI B40.1 - Gauges-Pressure Indicating Dial Type-Elastic Element

C. AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)
 1. ASTM A 269 - Seamless and Welded Austenitic Stainless Steel Tubing for General Service
 2. ASTM B 88 - Seamless Copper Water Tube
 3. ASTM D 635 Rate of Burning and/or Extent of Time of Burning of Self-Supporting Plastics in a Horizontal Position
 4. ASTM D 1693 - Environmental Stress-Cracking of Ethylene Plastics

D. FEDERAL COMMUNICATIONS COMMISSION (FCC)
 FCC Part 15 - (Vol II) Radio Frequency Devices

E. FEDERAL SPECIFICATIONS (FS)
 FS GG-T-321 - (Rev D; Am 2) Thermometers, Self-Indicating Liquid-in-Glass for Machinery and Piping Systems

F. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC (IEEE)
 IEEE No. 587 - Guide for Surge Voltage in Low Voltage AC Power Circuits

G. NATIONAL ELECTRICAL MANUFACTURERS ASSN (NEMA)
 NEMA 250 - Enclosures for Electrical Equipment Incl Rev 1 (1000 Volts Maximum)

H. UNDERWRITERS LABORATORIES, INC (UL)
 1. UL 94 - Test for Flammability of Plastic Materials for Parts in Devices and Appliances
 2. UL 916 - Energy Management Equipment

1.03 GENERAL REQUIREMENTS
A. Standard Products: Material and equipment shall be standard products of a manufacturer regularly engaged in the manufacturing of such products, which are of a similar material, design and workmanship. The standard products shall have been in a satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year use shall include applications of equipment and materials under similar circumstances and of similar size. The 2 years experience must be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturers’ catalogs, or brochures. Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown. The equipment items shall be supported by a service organization. The Contractor shall submit a certified list of qualified permanent service organizations and qualifications. These service organizations shall be reasonably convenient to the equipment on a regular and emergency basis during the warranty period of the contract.

B. Identical Items: Items of the same classification as specified in PART 2 - PRODUCTS shall be identical, including equipment, assemblies, parts, and components.

C. Nameplates, Lens Caps, and Tags: Nameplates and lens caps bearing legends as shown and tags bearing device unique identifiers as shown shall have engraved or stamped characters. Nameplates shall
be mechanically attached to HVAC control panel interior doors. A plastic or metal tag shall be mechanically attached directly to each field-mounted device or attached by a metal chain or wire. Each air flow measurement station shall have a tag showing flow rate range for signal output range, duct size, and identifier as shown.

D. Verification of Dimensions: The Contractor shall become familiar with all details of the work, shall verify all dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing any work.

E. Drawings: Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. The Contractor shall carefully investigate the mechanical, electrical, and finish conditions that could affect the work to be performed, shall arrange such work accordingly, and shall furnish all work necessary to meet such conditions.

F. Power-Line Surge Protection: All equipment connected to ac circuits shall be protected from power-line surges. Equipment protection shall meet the requirements of IEEE No. 587. Fuses shall not be used for surge protection.

G. System Support: The contractor shall provide 1 year of system support for all hardware in the control system at no additional cost to the building owner. System support shall include trouble-shooting, calibration, hardware replacement and other required services to maintain fully functioning, calibrated HVAC control systems. The system support service shall be available 5 days per week between 9 am and 4 pm. During the 1 year system support period, the contractor shall maintain a duplicate set of HVAC control drawings. At the owner's option, control problems will be solved by verbal instruction or on-site correction by the contractor. The number of system support calls and site visits shall be unlimited during the 1 year support period.

1.04 SUBMITTALS

A. Submit shop drawings and product data.

B. Detail Drawings

1. Detail drawings shall be submitted. Detail drawings shall include: a drawing index; a list of symbols; a series of drawings for each HVAC control system using abbreviations, symbols, nomenclature and identifiers as shown on the contract drawings; valve schedules; damper schedules; and a compressed-air station schematic on 34-inch by 22-inch sheets. Detail drawings shall also include: equipment data, product specific catalog cuts, and an ASME air-storage tank certificate. All detail drawings shall be delivered together as a complete submittal. Valve and damper schedules may be submitted in advance but shall be included in the complete submittal.

2. Each control-system element on a drawing shall have a unique identifier as shown.

3. Each series of drawings for an HVAC control system shall include a schematic as shown, a ladder diagram as shown, an equipment schedule as shown, a wiring diagram, a list of equipment with manufacturer and model number, a control-panel arrangement drawing, and an HVAC control-system sequence of operation.

4. The wiring diagram shall show the interconnection of conductors and cables to HVAC control-panel terminal blocks and to the identified terminals of starters and packaged equipment, with all necessary jumpers and ground connections. The wiring diagram shall show the labels of all conductors. All sources of power required for HVAC control systems and for packaged-equipment control systems shall be identified back to the panel board circuit breaker number, HVAC system control panel, magnetic starter, or packaged control equipment circuit. Each power supply and transformer not integral to a controller, starter, or packaged equipment shall be shown. The connected volt-ampere load and the power supply volt-ampere rating shall be shown.

5. The HVAC control-panel arrangement drawing shall show nameplate legends, fabrication details, and enclosure operating temperature-rise calculations. Fabrication details shall include interior door front and rear views, back panel layout and terminal block layout.

6. The sequence of operation for each HVAC control system shall be in the language and format shown on the drawings. No operational deviations from specified sequences will be permitted without prior written approval of the Contracting Officer. The sequence of operation shall refer to each device by its unique identifier.

7. The valve schedule shall include each valve's unique identifier, size, flow coefficient (Cv), pressure drop at specified flow rate, spring range, positive-positioner range, and actuator size, supported by close-off pressure data, dimensions, operation rate, and access and clearance requirements data.

8. The damper schedule shall contain each damper's and each actuator's identifier, nominal and actual sizes, orientation of axis and frame, direction of blade rotation, spring ranges, operation rate, positive-
positioner ranges, locations of actuators and damper end switches, arrangement of sections in multi-
section dampers, and methods of connecting dampers, actuators, and linkages. The damper
schedule shall include the maximum expected velocity through the damper at the intended location
and the maximum leakage rate at the operating static-pressure differential. The damper schedule
shall contain actuator selection data supported by calculations of the torque required to move and seal
the dampers, access and clearance requirements.

9. The equipment data shall be in booklet form, and indexed to the unique identifiers, and shall consist of
data sheets that document compliance with the specification and a copy of each HVAC control system
bill of materials. Catalog cuts shall be in booklet form indexed by device type. Where multiple
components are show on a catalog cut, the application specific component shall be marked.

C. Test Reports
1. The Contractor shall submit 4 copies of the site testing procedures. The site testing procedures shall
identify each item to be tested and shall clearly describe each test. The test procedures shall include
a list of the test equipment to be used for site testing, manufacturer and model number, and the date
of calibration and accuracy of calibration within 6 months of the test date.
2. The Contractor shall submit 4 copies of the site testing data. Original copies of all data produced
during site testing, including results of each test procedure, shall be turned over to the Government
after Government approval of the site tests.
3. The Contractor shall furnish 4 copies of the performance verification test plans and procedures. The
test plan and procedures for the performance verification test shall be indexed and submitted in
booklet form 60 days before the Contractor's scheduled test dates.
4. The Contractor shall furnish 4 copies of the performance verification test report after completion of a
successful test. Documentation of test results for the entire HVAC control system shall be submitted
complete, in booklet form and indexed, within 30 days after each test.

D. Training Data
1. The Contractor shall furnish a training course in the maintenance and operation of the HVAC control
systems specified 60 days prior to the start of training. The training shall be oriented to the specific
systems being installed under this contract. One training manual shall be furnished for each trainee,
plus two additional copies delivered for archival storage at the project site. The manuals shall include
the agenda, the defined objectives for each lesson, and a detailed description of the subject matter
for each lesson. Two copies of audiovisual materials shall be delivered to the Government for archival
storage at the project site, either as a part of the printed training manuals or on the same media as
that to be used during the training session.

E. Operation and Maintenance Manuals
1. The Contractor shall furnish 4 complete copies of operation manuals for each HVAC control system,
in booklet form and indexed, outlining the step-by-step procedures required for each HVAC control
system's startup, operation, and shutdown. The manuals shall include all detail drawings, equipment
data, each controller's configuration check sheet and manufacturer supplied operation manuals for all
equipment.
2. The Contractor shall furnish 4 complete copies of maintenance manuals, indexed in booklet form
listing maintenance procedures. The maintenance instructions shall include a maintenance check list
for each HVAC control system. Maintenance manuals shall include spare parts data and
recommended maintenance tool kits for all control devices. Maintenance instructions shall include
recommended repair methods, either field repair, factory repair, or whole-item replacement.
3. If operation and maintenance manuals are provided in a common volume, they shall be clearly
differentiated and separately indexed.

F. Operating Instructions
1. Commissioning Procedures shall be provided for each HVAC control system, and for each type of
terminal-unit control system. The procedures shall reflect the language and format shown. The
commissioning procedures shall refer to the devices by their unique identifiers as shown. The
commissioning procedures shall include step-by-step configuration procedures for each controller.
The configuration procedures shall be product specific and shall include a configuration check sheet
showing all configuration parameters, dip switch settings, initial recommended P, I and D constants.
2. The Contractor shall provide 4 copies of Commissioning Procedures, in booklet form and indexed, for
each type of control device provided, such as controllers, pilot positioners, adjustable relays, and
transmitters. Commissioning procedures shall include general instructions on how to set control
parameters, including: setpoints; proportional, integral, and derivative mode constants; contact output
settings for the specific devices provided. Commissioning procedures shall be specific to each HVAC
system, shall detail the steps involved, and shall refer to the procedures in the booklet for specific
devices. Commissioning procedures shall be submitted 60 days prior to system commissioning.

G. Records
1. The Contractor shall furnish 4 copies of the calibration, adjustment and commissioning report which shall include controller setpoints and proportional, integral and derivative-mode constant settings, calibration data for all instruments and controls, and all the data resulting from adjusting the control-system devices and commissioning HVAC control system.
2. The Contractor shall furnish 4 copies of a list of service organizations qualified to service the HVAC control system. The list shall include the service organization name and telephone number.

1.05 DELIVERY AND STORAGE
A. Products shall be stored with protection from the weather, humidity and temperature variations, dirt and dust, and other contaminants, within the storage-condition limits published by the equipment manufacturer. Dampers shall be stored so that seal integrity, blade alignment and frame alignment are maintained.

1.06 INTEGRATION OF EQUIPMENT PROVIDED BY OTHERS
A. Where products provided by others are required to interface to the DDC system the Equipment provider shall be responsible for providing a Bacnet MSTP interface. The Equipment provider is responsible for providing a product that will properly interface with all specified points exposed and a table of points and point names to the DDC contractor. The Equipment provider may provide a demo unit to the DDC contractor for testing. The DDC contractor shall then test the interface and provide the Equipment provider with feedback that it works, works with deficiencies, or does not work. It is the Equipment provider’s responsibility to provide a working system. It is the DDC contractor’s responsibility to make every effort to help verify compatibility and work with the Equipment provider to accomplish a certification that it will work. Field installation of the Equipment provider’s interfaces will not be acceptable unless this is approved by all parties before Equipment delivery.

PART 2 PRODUCTS

2.01 GENERAL EQUIPMENT REQUIREMENTS: The contractor shall provide a Schneider Electric I/A Network 8000 Direct Digital Control System as specified below.
A. Schneider Electric I/A Network 8000 Direct Digital Control System: Schneider Electric I/A Network 8000 Direct Digital Control System, hereinafter referred to as I/A DDC, shall consist of a G3 Building Controller with Web page engineering and graphics, Microzone II, MNL or MNB for air handling units, Microzone II, MNL or MNB for the boiler and chiller, and Variable Air Volume Box Controllers for variable air volume terminals. The system shall be set up for connection to the Base's dedicated area network, VLAN 466, this system as specified is the ONLY system that has undergone the stringent CTO/RTO process. The system shall be complete with all sensors, wiring, software, and hardware to form a functional HVAC automation system. Sensors, sensor wiring, gauges, thermometers and other accessories which are not part of the packaged I/A Network 8000 system shall be as specified hereinafter. Training shall be provided in accordance with paragraph 3.06 TRAINING. Control system submittals shall be made in accordance with paragraph 1.04 SUBMITTALS. In addition to the hardware and software required at the building, the contractor shall also provide the following software development for the existing I/A Network 8000 Host System located in the Energy Management Control System (EMCS) section of Base Civil Engineering.
1. Graphical Building Representation: A graphical building representation with room names and room numbers shall be created for the Web based System. The software shall allow logical routing from the room to the boiler and/or chiller through all intermediate items of equipment. At each level, the user shall be able to route to the previous display, the next logical equipment item, or the main building plan. User interface shall be web based for use with roller mouse or digitizer for this operation. All building related attributes such as room setpoints, occupied schedules, etc. shall be displayed real-time and accessible from the graphic screen for modification.
2. Graphical System Schematics: A graphical system schematic for each air handling unit, chiller, pump, boiler, and variable air volume terminal shall be supplied with all sensed parameters displayed. In addition to the sensed parameters, system schematics including water coils shall display the chilled water or hot water supply temperature as measured at the chiller or boiler respectively. All system related attributes such as equipment control setpoints, throttling ranges, operating schedules, etc. shall be displayed real-time and accessible from the graphic screen for modification.
3. System Support: The contractor shall provide 1 year system support for all hardware and software in the control system at no additional cost to the building owner. The system support service shall be available 5 days per week between 9 am and 4 pm. During the 1 year system support period, the
contractor shall maintain a duplicate set of building software on his support computer. At the owner’s option, software problems will be solved by verbal instruction, or on site correction by the contractor. The number of system support calls shall be unlimited during the 1 year period.

B. Electrical and Electronic Devices
1. All electrical, electronic, and electro-pneumatic devices not located within an HVAC control panel shall have an enclosure NEMA 1 in accordance with NEMA 250 unless otherwise shown.
2. Standard Signals: The output of all analog transmitters and the analog input and output of all single-loop controllers and function modules shall be 4-to-20 mAdc signals. The signal shall originate from current-sourcing devices and shall be received by current-sinking devices.

C. Ambient Temperature Limits
1. Actuators and positive positioners, and transmitters shall operate within temperature limit ratings of plus 35 to 150 degrees F. All panel-mounted instruments shall operate within limit ratings of 35 to 120 degrees F and 10 percent to 95 percent relative humidity, noncondensing. All devices installed outdoors shall operate within limit ratings of minus 35 to 150 degrees F.

2.02 MATERIALS
A. Tubing
1. Copper: Copper tubing shall conform to ASTM B 88 and shall have sweat fittings and valves. Plastic tubing shall have barbed fittings and valves. Plastic tubing shall have the burning characteristics of linear low-density polyethylene tubing, shall be self-extinguishing when tested in accordance with ASTM D 635, shall have UL 94 V-2 flammability classification, and shall withstand stress cracking when tested in accordance with ASTM D 1693. Plastic-tubing bundles shall be provided with mylar barrier and flame-retardant polyethylene jacket.
2. Stainless Steel: Stainless steel tubing shall conform to ASTM A 269, and shall have stainless steel compression fittings.

B. Wiring
1. Terminal Blocks: Terminal blocks shall be insulated, modular, feed-through, clamp style with recessed captive screw-type clamping mechanism, shall be suitable for rail mounting, and shall have end plates and partition plates for separation or shall have enclosed sides.
2. Control Wiring for 24-Volt Circuits: Control wiring for 24-volt circuits shall be 18 AWG minimum and shall be rated for 300-volt service.
3. Wiring for 120-Volt Circuits: Wiring for 120-volt circuits shall be 14 AWG minimum and shall be rated for 600-volt service.
4. Analog Signal Wiring Circuits: Analog signal wiring circuits within control panels shall not be less than 20 AWG and shall be rated for 300-volt service.
5. Instrumentation Cable: Instrumentation cable shall be 18 AWG, stranded copper, single or multiple-twisted, minimum 2-inch lay of twist, 100% shielded pairs, and shall have a 300-volt insulation. Each pair shall have a 20-AWG tinned-copper drain wire and individual overall pair insulation. Cables shall have an overall aluminum-polyester or tinned-copper cable-shield tape, overall 20-AWG tinned-copper cable drain wire, and overall cable insulation.
6. Non-conducting Wiring: Non-conducting wiring duct in control panels shall have slotted sides, snap-on duct covers, fittings for connecting ducts, mounting clips for securing ducts, and wire-retaining clips.

2.03 ACTUATORS
A. General Requirements: Actuators shall fail to their spring-return positions as shown on signal or power failure and shall have a visible position indicator. Actuators shall open or close the devices to which they are applied within 60 seconds after a full scale input signal change. Electric or electronic actuators operating in parallel or in sequence shall have an auxiliary actuator driver. Actuators shall be electronic.
1. Damper Actuators: Damper actuators shall be rated for at least 125 percent of the motive power necessary to operate against the pressure shown. The actuator stroke shall be limited by an adjustable stop in the direction of power stroke. The actuators shall be provided with mounting and connecting hardware.
2. Valve Actuators: Valve actuators shall be rated for at least 125 percent of the motive power necessary to operate the valves over their full range of operation against the total and differential pressures shown.

2.04 AUTOMATIC CONTROL VALVES
A. Valve Assembly: Valves shall have stainless-steel stems and stuffing boxes with extended necks to clear the piping insulation. Valve bodies shall be designed for not less than 125 psig working pressure or 150
percent of the system operating pressure, whichever is greater. Valve leakage rating shall be .01 percent of rated Cv.

B. Butterfly-Valve Assembly: Butterfly valves shall be threaded lug type suitable for dead-end service, and for modulation to the fully-closed position, with carbon-steel bodies and non-corrosive discs, stainless steel shafts supported by bearings, and EPDM seats suitable for temperatures from minus 20 degrees to plus 250 degrees F. Valves shall have a manual means of operation independent of the actuator.

C. Two-Way Valves: Two-way modulating valves shall have equal-percentage characteristics.

D. Three-Way Valves: Three-way valves shall provide linear flow control with constant total flow throughout full plug travel.

E. Duct-Coil and Terminal-Unit-Coil Valves: Control valves with flare-type ends shall be provided for duct or terminal-unit coils. Flare nuts shall be furnished for each flare-type end valve.

F. Valves for Chilled-Water, Condenser-Water, and Glycol Service:
 1. Bodies for valves 1-1/2 inches and smaller shall be brass or bronze, with threaded or union ends. Bodies for valves from 2 inches to 3 inches inclusive shall be of brass, bronze or iron. Bodies for 2-inch valves shall have threaded ends. Bodies for valves from 2-1/2 inches to 3 inches shall have flanged-end connections. Valve Cv shall be 100 percent to 110 percent of the Cv shown. Internal valve trim shall be brass or bronze except that valve stems may be type 316 stainless steel.
 2. Valves 4 inches and larger shall be butterfly valves.

G. Valves for Hot-Water Service Below 250 Degrees F:
 1. Bodies for valves 1-1/2 inches and smaller shall be brass or bronze, with threaded or union ends. Bodies for 2-inch valves shall have threaded ends. Bodies for valves 2-1/2 inches to 3 inches shall have flanged-end connections. Valve Cv shall be 100 percent to 110 percent of the Cv shown.
 2. Internal trim (including seats, seat rings, modulating plugs, and springs) of valves controlling water hotter than 210 degrees F shall be Type 316 stainless steel.
 3. Internal trim for valves controlling water 210 degrees F or less shall be brass or bronze.
 4. Nonmetallic parts of hot-water control valves shall be suitable for a minimum continuous operating temperature of 250 degrees F or 50 degrees F above the system design temperature, whichever is higher.
 5. Valves 4 inches and larger shall be butterfly valves.

2.05 DAMPERS
A. Damper Assembly
 1. A single damper section shall have blades no longer than 48 inches and shall be no higher than 72 inches. Maximum damper blade width shall be 8 inches. Larger sizes shall be made from a combination of sections. Dampers shall be steel, or other materials where shown. Flat blades shall be made rigid by folding the edges. All blade-operating linkages shall be within the frame so that blade-connecting devices within the same damper section will not be located directly in the air stream. Damper axles shall be 0.5-inch (minimum) plated steel rods supported in the damper frame by stainless steel or bronze bearings. Blades mounted vertically shall be supported by thrust bearings. Pressure drop through dampers shall not exceed 0.04 inch water gauge at 1,000 fpm in the wide-open position. Frames shall not be less than 2 inches in width. Dampers shall be tested in accordance with AMCA 500.
 2. Operating links external to dampers (such as crankarms, connecting rods, and line shafting for transmitting motion from damper actuators to dampers) shall withstand a load equal to at least twice the maximum required damper-operating force. Rod lengths shall be adjustable. Links shall be brass, bronze, zinc-coated steel, or stainless steel. Working parts of joints and clevises shall be brass, bronze, or stainless steel.
 3. Adjustments of crankarms shall control the open and closed positions of dampers.
 4. Modulating dampers shall be opposed-blade type and two-position dampers shall be parallel-blade type.

B. Outside-Air, Return-Air, and Relief-Air Dampers: The dampers shall be as shown. Blades shall have interlocking edges and shall be provided with compressible seals at points of contact. The channel frames of the dampers shall be provided with jamb seals to minimize air leakage. Dampers shall not leak in excess of 20 cfm per square foot at 4 inches water gauge static pressure when closed. Seals shall be suitable for an operating temperature range of minus 40 degrees F to 200 degrees F. Dampers shall be
rated at not less than 2000 fpm air velocity.

C. Mechanical and Electrical Space Ventilation Dampers: The dampers shall be as shown. Dampers shall not leak in excess of 80 cfm per square foot at 4 inches water gauge static pressure when closed. Dampers shall be rated at not less than 1500 fpm air velocity.

D. Damper End Switches: Each end switch shall be a hermetically-sealed switch with a trip lever and over-travel mechanism. The switch enclosure shall be suitable for mounting on the duct exterior and shall permit setting the position of the trip lever that actuates the switch. The trip lever shall be aligned with the damper blade.

2.06 SMOKE DETECTORS

A. FIRE DETECTING DEVICES: Fire detecting devices shall comply with the applicable requirements of NFPA 72E, NFPA 90A, UL 268, and UL 521. The detectors shall be provided as indicated. Detector base shall be detachable and have screw terminals for making connections. No solder connections will be allowed. Detectors shall be connected into alarm initiating circuits. Installed devices shall conform to the classification of the area. All fire detecting devices and or detector bases with the exception of flame detectors shall be addressable and shall be dynamically supervised and uniquely identified in the control panel.

1. Smoke Detectors: Detectors shall be designed for detection of abnormal smoke densities. Smoke detectors shall be photoelectric type. Detectors shall contain a visible indicator LED that shows when the unit is in alarm condition. Detectors shall not be adversely affected by vibration or pressure. Detectors shall be the plug-in type in which the detector base contains terminals for making all wiring connections. Smoke detectors shall be addressable and remotely adjustable from the control panel.

 a. Duct Detectors: Duct-mounted photoelectric smoke detectors shall be furnished and installed where indicated. Units shall consist of a Photoelectric Detector, mounted in a special housing fitted with duct sampling tubes. Sampling tubes shall run the full width of the duct. The duct detector package shall conform to the requirements of NFPA 90A and shall be UL listed for use in air-handling systems. The control functions, operation, reset, and bypass shall be controlled from the fire alarm control panel. All LED'S to indicate the operation and alarm condition and the test and reset buttons shall be visible and accessible with the unit installed and the cover in place. Detector mounted above 6 feet and those mounted below 6 feet shall be readily accessible. Detectors shall have auxiliary contacts to provide control, interlock, and shutdown functions by the fire alarm control panel. Duct detector shall be addressable and controlled by the fire alarm control panel. The detectors shall be supplied by the fire alarm vendor to ensure complete system compatibility.

2.07 INSTRUMENTATION

A. Measurements: Transmitters shall be calibrated to provide the following measurements, over the indicated ranges, for an output of 4 to 20 mAdc:

 1. Conditioned space temperature, from 50 to 85 degrees F.
 2. Duct temperature, from 40 to 140 degrees F except that return-air temperature for economizer operation shall be minus 30 to plus 130 degrees F.
 3. Chilled-water temperature, from 30 to 100 degrees F.
 4. Heating hot-water temperature, from 100 to 250 degrees F.
 5. Outside-air temperature, from minus 30 to 130 degrees F.
 6. Relative humidity, 0 to 100 percent for high-limit applications; from 20 to 80 percent for space applications.
 7. Differential pressure for VAV supply-duct static pressure from 0 to 2.0 inches water gauge.

B. Temperature Instruments

 1. Resistance Temperature Detectors (RTD): Each RTD shall be platinum with a tolerance of plus or minus 0.1 percent at 32 degrees F, and shall be encapsulated in epoxy, series 300 stainless steel, anodized aluminum, or copper. Each RTD shall be furnished with an RTD transmitter as specified, integrally-mounted unless otherwise shown.

 a. Continuous-Averaging RTD: Continuous-averaging RTDs shall have a tolerance of plus or minus 1.0 degree F at the reference temperature, and shall be of sufficient length to ensure that the resistance represents an average over the cross-section in which it is installed. The sensing element shall have a bendable copper sheath. Each averaging RTD shall be furnished with an RTD transmitter as specified, to match the resistance range of the averaging RTD.

 b. RTD Transmitter: The RTD transmitter shall be selected to match the resistance range of the RTD. The transmitter shall be a 2-wire, loop-powered device. The transmitter shall produce a linear 4-to-20 mAdc output corresponding to the required temperature measurement. The output
error shall not exceed 0.1 percent of the calibrated measurement. The transmitter shall include offset and span adjustments.

C. Relative-Humidity Instruments: Relative-humidity sensing element shall use non-saturating sensing elements capable of withstanding a saturated condition without permanently affecting calibration or sustaining damage. Sensing elements shall have an accuracy of plus or minus 5 percent of full scale within the range of 20 to 80 percent relative humidity. A 2-wire, loop-powered transmitter located at the sensing elements shall be provided to convert the sensing elements output to a linear 4-to-20 mA dc output corresponding to the required humidity measurement. The transmitter shall be a 2-wire, loop-powered device. The output error shall not exceed 0.1 percent of calibrated measurement. The transmitter shall include offset and span adjustments.

D. Pressure Instruments: The instrument shall be a pressure transmitter with an integral sensing element. The instrument over pressure rating shall be 25 psig. The sensing elements accuracy shall be plus or minus 2 percent of full scale. Transmitter accuracy shall be plus or minus 0.25 percent of the calibrated measurement. The transmitter shall be a 2-wire, loop-powered device. The transmitter shall produce a linear 4-to-20 mA dc output corresponding to the required pressure measurement. Each transmitter shall have offset and span adjustments.

E. Thermowells: Thermowells shall be Series 300 stainless steel with threaded brass plug and chain, 2-inch lagging neck and extension-type well, and inside diameter and insertion length as required for the application.

F. Sunshields: Sunshields for outside-air temperature sensing elements shall prevent the sun from directly striking the temperature sensing elements. The sunshields shall be provided with adequate ventilation so that the sensing element responds to the ambient temperature of the surroundings. The top of each sunshield shall have a galvanized-metal rainshield projecting over the face of the sunshield. The sunshields shall be painted white or shall be unpainted aluminum.

G. Water Flow Meters: Flow meter type shall be magnetic type unless drawings allow turbine or ultrasonic types. All flow meters shall output a 4-20 ma signal. All meters shall have a flow range of 3 to 30 FPS. Magnetic flow meters shall have an accuracy of 0.2% at 1.64 FPS velocity and have SCADA ready outputs. Ultrasonic and turbine type meters shall have a +/- 2% accuracy.

H. Meters: Utility meters shall be provided with BACnet interface and a NIPR drop.

2.08 THERMOSTATS

A. Ranges: Thermostat ranges shall be selected so that the setpoint is adjustable without tools between plus or minus 10 degrees F of the setpoint shown.

B. Space Low Limit Thermostats: Contacts shall be single-pole double-throw (SPDT), hermetically sealed, and wired to identified terminals. Maximum differential shall be 2 degrees F unless otherwise specified. Thermostat covers shall be made of locking metal or heavy-duty plastic, and shall be capable of being locked by an allen-head wrench or a special tool. Thermostats shall have manual switches as required by the application.

C. Low-Temperature-Protection Thermostats: Low-temperature-protection thermostats shall be manual reset, low-temperature safety thermostats, with NO and NC contacts and a 20-foot element which shall respond to the coldest 18-inch segment.

D. Standard Unit Heater and Exhaust Fan Thermostats: Thermostat contacts shall be SPDT and wired to identified terminals. Thermostat housing shall be a NEMA 4X waterproof enclosure which will tolerate continuous spraying with water, high humidity, and airborne contaminants. Temperature scale and adjusting knob shall be mounted on the face of the thermostat such that setpoint adjustment can be made without tools. Adjusting knob penetration shall be sealed with a lubricated 0-ring or other positive sealing method to maintain the integrity of the enclosure. Temperature range of thermostats shall be 40 to 100 degrees F. Temperature differential shall be not greater than 3 degrees F. Contact rating shall be sufficient to switch the connected load.

2.09 PRESSURE SWITCHES AND SOLENOID VALVES

A. Pressure Switches: Each switch shall have an adjustable setpoint with visible setpoint scale. Range shall be as shown. Differential adjustment shall span 20 to 40 percent of the range of the device.
B. Differential-Pressure Switches: Each switch shall be an adjustable diaphragm-operated device with 2 SPDT contacts, with taps for sensing lines to be connected to duct pressure fittings designed to sense air pressure. These fittings shall be of the angled-tip type with tips pointing into the air stream. Range shall be 0.5 to 6.0 inches water gauge. Differential shall be a maximum of 0.15 inch water gauge at the low end of the range and 0.35 inch water gauge at the high end of the range.

2.10 INDICATING DEVICES
A. Thermometers
1. Ductwork Insertion and Piping Systems: Thermometers for insertion in ductwork and piping systems shall have brass, malleable iron, or aluminum alloy case and frame, clear protective face, permanently stabilized glass tube with indicating-fluid column, white face, black numbers, and a 9-inch scale.
2. Thermometers for piping systems shall have rigid stems with straight, angular, or inclined pattern, and shall conform to FS GG-T-321.
3. Thermometer Stems: All thermometer stems shall have expansion heads as required to prevent breakage at extreme temperatures. On rigid-stem thermometers, the space between bulb and stem shall be filled with a heat-transfer medium.
4. Air-Duct Thermometers: Air-duct thermometers shall have perforated stem guards and 45-degree adjustable duct flanges with locking mechanism.
5. Averaging Thermometers: Averaging thermometers shall have 3-1/2 inch (nominal) dial, with black legend on white background, and pointer traveling through a 270-degree arc.
6. Accuracy: Thermometers shall have an accuracy of plus or minus 1 percent of scale range.
 a. Mixed-air temperature: 0 to 100 degrees F in 1-degree F graduations.
 b. Return-air temperature: 0 to 100 degrees F in 1-degree F graduations.
 c. Cooling-coil-discharge temperature: 0 to 100 degrees F in 1-degree F graduations.
 d. Heating-coil-discharge temperature: 30 to 180 degrees F in 2-degree F graduations.
 e. Hydronic-heating systems below 220 degrees F: 40 to 240 degrees F in 2-degree graduations.
 f. Hydronic-System Applications: Gauges for hydronic-system applications shall be 4-1/2 inch (nominal) size and have ranges and graduations as shown below.
 a. Pump Suction - 30 psi range, 1 psi graduations, 5 psi figure interval.
 b. Pump Discharge - 60 psi range, 2 psi graduations, 10 psi figure interval.
 c. Coil Supply - 60 psi range, 2 psi graduations, 10 psi figure interval.
 d. Coil Return - 30 psi range, 1 psi graduations, 5 psi figure interval.
 e. Chiller Inlet and Outlet - 60 psi range, 2 psi graduations, 10 psi figure interval.
 f. Boiler Inlet and Outlet - 60 psi range, 2 psi graduations, 10 psi figure interval.
2. Low Differential Pressure Gauges: Gauges for low differential-pressure measurements shall be 4-1/2 inch (nominal) size with two sets of pressure taps, and shall have a diaphragm-actuated pointer, white dial with black figures, and pointer zero adjustment. Gauges shall have ranges and graduations as shown. Accuracy shall be plus or minus 2 percent of scale range.

2.11 CONTROL DEVICES AND ACCESSORIES
A. Relays: Relays shall be 2-pole, double-throw (2PDT) with a 10-ampere resistive rating at 120 Vac, and shall have an enclosed 120-Vac coil with 11-pin blade connectors, and a matching rail-mounted socket. Power consumption shall not be greater than 3 watts.
B. Time-Delay Relays: Time delay relays shall be 2PDT with 8-pin connectors, dust cover, and a matching rail-mounted socket. Adjustable timing range shall be 0 to 5 minutes. Power consumption shall not be greater than 3 watts.
C. Regulated Power Supplies: Each power supply shall provide a 24-Vdc linear supply at not less than 2 amperes, with regulation to 0.05 percent of output voltage. Each power supply shall have a fused input, and shall be protected from voltage surges and power-line transients. The power supply output shall be protected against overvoltage and short circuits. Power supply loading shall not be greater than 1.2 amperes.

2.12 PILOT LIGHTS AND MANUAL SWITCHES
A. Pilot Lights, Illuminated Switches, and Non-Illuminated Switches: Pilot lights, illuminated switches, and non-illuminated switches shall be rectangular devices arranged in a horizontal matrix as shown. Switch action shall be as shown. Device illumination shall be by light-emitting diode lamp or by neon lamp.
B. Manual Timed Override Switches: Manual timed override switches shall be spring-wound mechanical type, with timer range as specified on the drawings. Switches shall be furnished with a faceplate with time intervals permanently etched or engraved in the faceplate at the time of manufacture. Timer knob shall have a pointer to indicate setting position. Switches shall be suitable for mounting in a standard 2” x 4” outlet box. Contacts shall be rated for 20 amp resistive load at 125 volts. Switches shall be UL listed.

2.13 HVAC SYSTEM CONTROL PANELS
A. Panel Assembly: The panel shall be fabricated as shown, and the devices shall be mounted as shown. Each panel shall be fabricated as a bottom-entry connection point for control-system electric power, control-system main air source, control-system wiring, pneumatic tubing, interconnection of control systems, interconnection of starters and external shutdown devices, and energy monitoring and control systems (EMCS) interface. Each panel shall have an operating temperature rise of not greater than 20 degrees F above an ambient temperature of 100 degrees F.

B. Panel Electrical Requirements: Each control panel shall be powered by nominal 120 volts ac terminating at the panel on terminal blocks. Instrument cases shall be grounded. Interior panel, interior door, and exterior panel enclosure shall be grounded.

C. Enclosure: The enclosure for each panel shall be a NEMA 12 single-door wall-mounted box conforming to NEMA 250, with continuous hinged and gasketed exterior door with print pocket and key lock, continuous hinged interior door, interior back panel, and ventilation louvers in back surface as shown. Inside finish shall be white enamel, and outside finish shall be gray primer over phosphatized surfaces.

D. Mounting and Labeling: Controllers, pilot lights and switches, shall be mounted on the interior door as shown. Power conditioner, fuses and duplex outlet shall be mounted on the interior of the cabinet as shown. All other components housed in the panel shall be mounted on the interior back panel surface of the enclosure, behind the door on rails as shown. Controllers and gauges shall be identified by a plastic or metal nameplate that is mechanically attached to the panel. The nameplate shall have the inscription as shown. Lettering shall be cut or stamped into the nameplate to a depth of not less than 1/64 inch, and shall show a contrasting color, produced by filling with enamel or lacquer or by the use of a laminated material. Painting of lettering directly on the surface of the interior door or panel is not permitted.

E. Wiring and Tubing
1. Wiring Interconnections: Wiring shall be installed in wiring ducts in such a way that devices can be added or replaced without disturbing wiring that is not affected by the change. Wiring to single-loop controllers shall have a 4-inch wiring loop in the horizontal wiring duct at each wiring connection. There shall be no wiring splices within the control panel. All interconnections required for power or signals shall be made on device terminals or panel terminal blocks, with not more than 2 wires connected to a terminal.

2. Terminal Blocks: Terminal blocks shall be arranged in groups as shown. Instrument signal grounds at the same ground reference level shall end at a grounding terminal for connection to a common ground point. Wiring-shield grounds at the same reference level shall end at a grounding terminal for connection to a common ground point. Grounding terminal blocks shall be identified by reference level.

3. Wiring Identification: All wiring connected to controller shall be identified by function and polarity, i.e., process variable, input, remote setpoint input and output.

F. EMCS Terminal Blocks: Terminal blocks shall be provided for connections to EMCS as shown. Analog signals shall require only the removal of jumpers to interface to EMCS.

2.14 ELECTRONIC VARIABLE AIR VOLUME (VAV) TERMINAL UNIT CONTROLS
A. VAV Terminal Units:

B. Terminal-Unit Controls
1. Vav Box Controller: Controls for pressure-independent boxes shall consist of a velocity- sensing device in the primary air entering the box, a room temperature sensing element, a damper actuator, a duct temperature sensor, and an adjustable microprocessor-based VAV box controller. Each controller shall operate a damper for cooling and, if required, a duct coil valve for heating. Actuators shall open and close the device to which it is applied within 6 minutes. The controller shall be compatible with the existing Schneider Electric I/A Network 8000 EMCS system. The controller shall be capable of reading cfm, duct temperature, room temperature, cooling setpoint, and damper position. Terminal unit controls shall have the requirements of UL 916 and FCC Part 15.
2. Communication-and-Programming Device: One hand-held communication-and-programming device with instruction manuals shall be provided. The communication-and-programming device shall connect to the VAV box controller directly or to a jack at the room temperature sensing element location. The communication-and-programming device shall be used to read and set minimum velocity, maximum velocity, cooling setpoint, and space temperature.

PART 3 EXECUTION

3.01 GENERAL INSTALLATION CRITERIA: The HVAC control system shall be completely installed and ready for operation, as specified and shown. Dielectric isolation shall be provided where dissimilar metals are used for connection and support. Penetrations through and mounting holes in the building exterior shall be made watertight. The HVAC control-system installation shall provide clearance for control-system maintenance by maintaining access space between coils, access space to mixed-air plenums, and other access space required to calibrate, remove, repair, or replace control-system devices. The control-system installation shall not interfere with the clearance requirements for mechanical and electrical system maintenance.

A. Device-Mounting Criteria: Devices mounted in or on piping or ductwork, on building surfaces, in mechanical/electrical spaces, or in occupied space ceilings shall be installed in accordance with manufacturers’ recommendations and as shown. Control devices to be installed in piping and ductwork shall be provided with all required gaskets, flanges, thermal compounds, insulation, piping, fittings, and manual valves for shutoff, equalization, purging, and calibration. Strap-on temperature sensing elements shall not be used except as specified.

B. Wiring Criteria: Wiring external to control panels, including low-voltage wiring, shall be installed in metallic raceways. Wiring shall be installed without splices between control devices and HVAC control panels. Instrumentation grounding shall be installed as necessary to prevent ground loops, noise, and surges from adversely affecting operation of the system. Cables and conductors wires shall be tagged at both ends, with the identifier shown on the shop drawings, in accordance with the requirements shown in the electrical division of this specification. Other electrical work shall be as specified in applicable sections of the electrical division of this specification.

C. Controller Output Loop Impedance Limitation: Controller output loops shall be constructed so that total circuit impedance connected to the analog output of a single-loop controller shall not exceed 600 ohms.

3.02 CONTROL-SYSTEM INSTALLATION

A. Damper Actuators
 1. Actuators shall not be mounted in the air stream.
 2. Multiple actuators operating a common damper shall be connected to a common drive shaft.
 3. Actuators shall be installed so that their action shall seal the damper to the extent required to maintain leakage at or below the specified rate and shall move the blades smoothly.

B. Room-Instrument Mounting: Room instruments shall be mounted so that their sensing elements are 5 feet above the finished floor unless otherwise shown.

C. Low-Temperature-Protection Thermostats: For each 20 square feet of coil-face area, or fraction thereof, a thermostat shall be provided to sense the temperature at the location shown. The thermostat sensing element shall be installed in a serpentine pattern.

D. Averaging-Temperature Sensing Elements: Sensing elements shall have a total-element minimum length equal to one linear foot per square foot of duct cross-sectional area.

E. Duct Static-Pressure Sensing Elements and Transmitters: The duct static-pressure sensing element and transmitter sensing point shall be located approximately two-thirds of the distance from the supply fan to the end of the duct with the greatest pressure drop.

F. Indication Devices Installed in Piping and Liquid Systems: Gauges in piping systems subject to pulsation shall have snubbers. Thermometers and temperature sensing elements installed in liquid systems shall be installed in thermowells.

G. Tubing
 1. Control System Installation: The control system shall be installed so that pneumatic lines are not
exposed to outside-air temperatures. All tubes and tube bundles exposed to view shall be installed neatly in lines parallel to the lines of the building. Tubing in mechanical/electrical spaces shall be routed so that the lines are easily traceable.

2. Pneumatic Lines: In mechanical/electrical spaces, pneumatic lines shall be plastic tubing or copper tubing. Horizontal and vertical runs of plastic tubes or soft copper tubes shall be installed in raceways dedicated to tubing. The dedicated raceways shall be supported every 6 feet for horizontal runs and every 8 feet for vertical runs. Tubing not installed in raceways shall be hard-drawn copper tubing with sweat fittings and valves, supported every 6 feet for horizontal runs and every 8 feet for vertical runs.

3. Connection to Liquid Lines: Tubing for connection of sensing elements and transmitters to liquid lines shall be copper with brass compression fittings.

4. Connection to Ductwork: Tubing for connection of sensing elements and transmitters to ductwork shall be plastic tubing.

5. External Tubing: Tubing external to mechanical/electrical spaces, when run in plenum ceilings, shall be soft copper with sweat fittings, supported every 8 feet. Tubing not in plenum spaces shall be soft copper with sweat fittings supported every 8 feet or shall be plastic tubing in raceways dedicated to tubing.

3.03 CONTROL SEQUENCES OF OPERATION
A. General Requirements: These requirements shall apply to all primary HVAC systems unless modified herein. The sequences describe the actions of the control system for one direction of change in the HVAC process analog variable, such as temperature, humidity or pressure. The reverse sequence shall occur when the direction of change is reversed.

1. HVAC System Sequences of Operation: HVAC system sequences of operation shall be as shown on the drawings and as specified herein.

3.04 COMMISSIONING PROCEDURES
A. General Procedure

1. Evaluations: The Contractor shall make the observations, adjustments, calibrations, measurements, and tests of the control systems, tune the controllers, set the clock schedule, and make any necessary control-system corrections to ensure that the systems function as described in the Sequence of Operation. The Contractor shall permanently record, on system equipment schedule, the final setting of controller proportional, integral and derivative constant settings, setpoint, manual reset setting, maximum and minimum controller output, and ratio and bias settings, in units and terminology specific to the controller.

2. Item Check: An item-by-item check of the Sequence of Operation requirement shall be performed using Steps 1 through 4 in the specified Control System Commissioning Procedures. Steps 1, 2, and 3 shall be performed with the HVAC system shut down; Step 4 shall be performed after the HVAC systems have been started. Signals used to change the mode of operation shall originate from the actual HVAC control device intended for the purpose, such as the time clock. External input signals to the HVAC control panel (such as EMCS, starter auxiliary contacts, and external systems) may be simulated in Steps 1, 2, and 3. With each operational-mode change signal, observe that the proper pilot lights and HVAC-panel output-relay contacts function. Check all terminals assigned to EMCS and observe that the proper signals are available.

3. Weather-Dependent Test Procedures: Weather-dependent test procedures that cannot be performed by simulation shall be performed in the appropriate climatic season. When simulation is used, the Contractor shall verify the actual results in the appropriate season.

4. Configuration: The Contractor shall configure each controller for its specified service.

5. Two-Point Accuracy Check: A two-point accuracy check of the calibration of each HVAC control-system sensing element and transmitter shall be performed by comparing the HVAC control-panel readout to the actual value of the variable measured at the sensing element and transmitter or air-flow measurement station location. Digital indicating test instruments shall be used, such as digital thermometers, motor-driven psychrometers, and tachometers. The test instruments shall be at least twice as accurate as the specified sensing element-to-controller readout accuracy. The calibration of the test instruments shall be traceable to NBS standards. The first check point shall be with the HVAC system in the shutdown condition, and the second check point shall be with the HVAC system in an operational condition. Calibration checks shall verify that the sensing element-to-controller readout accuracies at two points are within the specified product accuracy tolerances. If not, recalibrate or replace the inaccurate device and repeat the calibration check.

6. Insertion, Immersion Temperature Sensing Element: Insertion-temperature and immersion-temperature sensing element and transmitter-to-controller readout calibration accuracy shall be checked at one physical location along the axis of the sensing element.

7. Averaging-Temperature: Averaging-temperature-sensing element and transmitter-to-controller readout calibration accuracy shall be checked every 2 feet along the axis of the sensing element in
the proximity of the sensing element, for a maximum of 10 readings. These readings shall then be averaged.

3.05 TESTING, COMMISSIONING, AND COORDINATION WITH HVAC BALANCING

A. Site Testing: The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all site testing, calibration, adjusting and commissioning. Wiring shall be tested for continuity and for ground, open, and short circuits. Tubing systems shall be tested for leaks. HVAC control panels shall be pretested off-site as a functioning assembly ready for field connections, calibration, adjustment, and commissioning of the operational HVAC control system. The Contractor shall obtain written Government approval of the specific site-testing procedures prior to any test. Written notification of any planned site-testing, commissioning or tuning shall be given to the Government at least 14 calendar days prior to any test.

B. Control System Calibration, Adjustments, and Commissioning:
 1. Calibrate all instrumentation and controls and verify the specified accuracy using test equipment with calibration traceable to NIST standards.
 2. Mechanical control devices shall be adjusted to operate as specified.
 3. Control system commissioning shall be performed for each HVAC system.

C. Performance Verification Test: The Contractor shall demonstrate compliance of the HVAC control system with the contract documents. Using test plans and procedures previously approved by the Government, the Contractor shall demonstrate all physical and functional requirements of the project. The performance verification test procedures shall explain, step-by-step, the actions and expected results that will demonstrate that the control systems perform in accordance with the sequences of operation. The performance verification test shall not be started until after receipt by the Contractor of written permission by the Government, based on the Contractor’s written certification of successful completion of Contractor site testing as specified.

D. Coordination with HVAC System Balancing: The Contractor shall tune the controllers after all air-system and hydronic-system balancing has been completed, minimum damper positions set and a report has been issued. Commissioning, except for tuning of controllers, shall be performed simultaneous with HVAC system balancing. The control subcontractor shall be responsible for placing all systems and subsystems in the correct mode during the performance of HVAC testing and balancing.

E. Posted Instructions: Instructions on 8-1/2 by 11 inch sheets and half-size plastic laminated drawings for each system showing the final installed conditions shall be placed in each HVAC control panel. The posted instructions shall include the control sequence, control schematic, ladder diagram, wiring diagram, valve schedules, damper schedules, panel arrangement drawings, commissioning procedures, controller configuration check sheet with final configuration record, preventive maintenance instructions and single-loop controller operators manual. Additionally, half-size drawings showing the mechanical floor plan duct distribution and VAV box location shall be posted in each mechanical room.

3.06 TRAINING

A. Training-Course Requirements: A training course shall be conducted for 6 operating staff members designated by the Contracting Officer. The training period, for a total of 32 hours of normal working time, shall be conducted within 30 days after successful completion of the performance verification test. The Contractor shall be responsible for furnishing all audiovisual equipment and 6 sets of all other training materials and supplies. A training day is defined as 8 hours of classroom instruction, including two 15-minute breaks and excluding lunchtime, Monday through Friday, during the daytime shift in effect at the training facility. The Contractor shall submit an outline for the course, with a proposed time schedule. Approval of the planned training schedule shall be obtained from the Government at least 30 days prior to the start of the training.

B. Training-Course Content: For guidance in planning the required instruction, the Contractor should assume that attendees will have a high school education or equivalent, and are familiar with HVAC systems. The training course shall cover all of the material contained in the Operating and Maintenance Instructions, the layout and location of each HVAC control panel, the layout of one of each type of unitary equipment and the locations of each, the location of each system-control device external to the panels, preventive maintenance, troubleshooting, diagnostics, calibration, adjustment, commissioning, tuning, and repair procedures. Typical systems and similar systems may be treated as a group, with instruction on the physical layout of one such system. The results of the performance verification test and the calibration, adjustment and commissioning report shall be presented as benchmarks of HVAC control-system performance by which to measure operation and maintenance effectiveness.
3.07 QUALITY CONTROL
 A. The Contractor shall establish and maintain quality control for operations under this section to assure compliance with contract requirements and maintain records of his quality control for materials, equipment, and construction operations.

END OF SECTION
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

AMERICAN WELDING SOCIETY (AWS)

ASTM INTERNATIONAL (ASTM)

ASTM D520 (2000; R 2011) Zinc Dust Pigment

ASTM F104 (2011) Standard Classification System for Nonmetallic Gasket Materials

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA MG 1 (2016; SUPP 2016) Motors and Generators

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Water Chiller; G

Manufacturer's standard catalog data, at least highlighted to show material, size, options, performance charts and curves, etc. in adequate detail to demonstrate compliance with contract requirements. Data shall include manufacturer's recommended installation instructions and procedures. Data shall be adequate to demonstrate compliance with contract requirements as specified within the paragraphs:

a. Water Chiller

b. Chiller Components

c. Accessories

If vibration isolation is specified for a unit, vibration isolator literature shall be included containing catalog cuts and certification that the isolation characteristics of the isolators provided meet the manufacturer's recommendations.

Posted Instructions

Posted instructions, including equipment layout, wiring and control diagrams, piping, valves and control sequences, and typed condensed operation instructions. The condensed operation instructions shall include preventative maintenance procedures, methods of checking the system for normal and safe operation, and procedures for safely starting and stopping the system. The posted instructions shall be framed under glass or laminated plastic and be posted where indicated by the Contracting Officer.

Verification of Dimensions

A letter including the date the site was visited, conformation of existing conditions, and any discrepancies found.

MANUFACTURER'S MULTI-YEAR COMPLETE UNIT WARRANTY

Manufacturer's multi-year warranty for compressor(s) in air-cooled water chillers as specified.

System Performance Tests

A schedule, at least 2 weeks prior to the start of related testing, for the system performance tests. The schedules shall identify the proposed date, time, and location for each test.

Demonstrations
A schedule, at least 2 weeks prior to the date of the proposed training course, which identifies the date, time, and location for the training.

Water Chiller - field acceptance test plan

SD-06 Test Reports

Field Acceptance Testing

Water Chiller - field acceptance test report

System Performance Tests

Six copies of the report shall be provided in bound 8 1/2 by 11 inch booklets.

SD-08 Manufacturer's Instructions

Water Chiller - Installation Instruction

SD-10 Operation and Maintenance Data

Operation and Maintenance Manuals; G

Six complete copies of an operation manual in bound 8 1/2 by 11 inch booklets listing step-by-step procedures required for system startup, operation, abnormal shutdown, emergency shutdown, and normal shutdown at least 4 weeks prior to the first training course. The booklets shall include the manufacturer's name, model number, and parts list. The manuals shall include the manufacturer's name, model number, service manual, and a brief description of all equipment and their basic operating features. Six complete copies of maintenance manual in bound 8 1/2 by 11 inch booklets listing routine maintenance procedures, possible breakdowns and repairs, and a trouble shooting guide. The manuals shall include piping and equipment layouts and simplified wiring and control diagrams of the system as installed.

1.3 SAFETY REQUIREMENTS

Exposed moving parts, parts that produce high operating temperature, parts which may be electrically energized, and parts that may be a hazard to operating personnel shall be insulated, fully enclosed, guarded, or fitted with other types of safety devices. Safety devices shall be installed so that proper operation of equipment is not impaired. Welding and cutting safety requirements shall be in accordance with AWS Z49.1.

1.4 DELIVERY, STORAGE, AND HANDLING

Stored items shall be protected from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Proper protection and care of all material both before and during installation shall be the Contractor's responsibility. Any materials found to be damaged shall be replaced at the Contractor's expense. During installation, piping and similar openings shall be capped to keep out dirt and other foreign matter.
1.5 PROJECT REQUIREMENTS

1.5.1 Verification of Dimensions

The Contractor shall become familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work.

1.6 Warranty

In addition to the warranty requirements specification in Division 00, Contract Requirements, the following major components of the chiller shall be covered by a warranty of a duration period of five years: Whole unit.

1.7 MANUFACTURER'S MULTI-YEAR COMPLETE UNIT WARRANTY

The Contractor shall provide a 5 year parts and labor (includes refrigerant) manufacturer's warranty on the complete unit. This warranty shall be directly from the chiller manufacturer to the Government and shall be in addition to the standard one-year warranty of construction. The manufacturer's warranty shall provide for the repair or replacement of any chiller parts that become inoperative as a result of defects in material or workmanship within 5 years after the date of final acceptance. When the manufacturer determines that a compressor requires replacement, the manufacturer shall furnish new compressor(s) at no additional cost to the Government. Upon notification that a chiller compressor has failed under the terms of the warranty, the manufacturer shall respond in no more than 24 hours. Response shall mean having a manufacturer-qualified technician onsite to evaluate the extent of the needed repairs. The warranty period shall begin on the same date as final acceptance and shall continue for the full product warranty period.

1.7.1 Indexed Notebook

The Contractor shall furnish to the Contracting Officer a bound and indexed notebook containing a complete listing of all water chillers covered by a manufacturer's multi-year warranty. The chiller list shall state the duration of the warranty thereof, start date of the warranty, ending date of the warranty, location of the warranted equipment, and the point of contact for fulfillment of the warranty. This information shall be provided for each chiller and the recorded chiller serial numbers shall identify each chiller. Point of contact shall include the name of the service representative along with the day, night, weekend, and holiday phone numbers for a service call. The completed bound and indexed notebook shall be delivered to the Contracting Office prior to final acceptance of the facility. The Contractor shall furnish with each manufacturer's multi-year warranty the name, address, and telephone number (day, night, weekend, and holiday) of the service representative nearest to the location where the equipment is installed. Upon a request for service under the multi-year warranty, the service representative shall honor the warranty during the warranty period, and shall provide the services prescribed by the terms of the warranty.

1.7.2 Equipment Warranty Tags

At the time of installation, each item of manufacturer's multi-year warranted equipment shall be tagged with a durable, oil- and water-resistant tag, suitable for interior and exterior locations, resistant to solvents, abrasion, and fading due to sunlight. The tag shall
be attached with copper wire or a permanent, pressure-sensitive, adhesive
backing. The tag shall be installed in an easily noticed location attached
to the warranted equipment. The tag for this equipment shall be similar to
the following in format, and shall contain all of the listed information:

MANUFACTURER'S MULTI-YEAR WARRANTY EQUIPMENT TAG

Equipment/Product Covered: __________________________
Manufacturer:______ Model No.:______ Serial No.:______
Warranty Period: From ______ to ______
Contract No.: ______
Warranty Contact: __________________________________
Name: __
Address: __
Telephone: ___

STATION PERSONNEL SHALL PERFORM PREVENTIVE
MAINTENANCE AND OPERATIONAL MAINTENANCE

PART 2 PRODUCTS

2.1 STANDARD COMMERCIAL PRODUCTS

Materials and equipment shall be standard Commercial cataloged products of
a manufacturer regularly engaged in the manufacturing of such products,
which are of a similar material, design and workmanship.

These products shall have a two year record of satisfactory field service
prior to bid opening. the two year record of service shall include
applications of equipment and materials under similar circumstances and of
similar size.

Products having less than a two year record of satisfactory field service
shall be acceptable if a certified record of satisfactory field service for
not less than 6000 hours can be shown. The 6000 hour service record shall
not include any manufacturer's prototype or factory testing.

Satisfactory field service shall have been completed by a product that has
been, and presently is being sold or offered for sale on the commercial
market through the following copyrighted means: advertisements,
manufacturer's catalogs, or brochures.

2.2 MANUFACTURER'S STANDARD NAMEPLATES

Major equipment including chillers, compressors, compressor drivers,
condensers, water coolers, receivers, refrigerant leak detectors, heat
exchanges, fans, and motors shall have the manufacturer's name, address,
type or style, model or serial number, and catalog number on a plate
secured to the item of equipment. Plates shall be durable and legible
throughout equipment life. Plates shall be fixed in prominent locations
with nonferrous screws or bolts.

2.3 ELECTRICAL WORK

a. Provide motors, controllers, integral disconnects, contactors, and
controls with their respective pieces of equipment, except controllers
indicated as part of motor control centers. Provide electrical
equipment, including motors and wiring, as specified in Section 26 20 00
INTERIOR DISTRIBUTION SYSTEM. Manual or automatic control and
protective or signal devices required for controls and devices
specified, but not shown, shall be provided. For packaged equipment,
the manufacturer shall provide controllers including the required monitors and timed restart.

b. For single-phase motors, provide high-efficiency type, fractional-horsepower alternating-current motors, including motors that are part of a system, in accordance with NEMA MG 11.

c. For polyphase motors, provide squirrel-cage medium induction motors, including motors that are part of a system, and that meet the efficiency ratings for premium efficiency motors in accordance with NEMA MG 1.

d. Provide motors in accordance with NEMA MG 1 and of sufficient size to drive the load at the specified capacity without exceeding the nameplate rating of the motor. Motors shall be rated for continuous duty with the enclosure specified. Motor duty requirements shall allow for maximum frequency start-stop operation and minimum encountered interval between start and stop. Motor torque shall be capable of accelerating the connected load within 20 seconds with 80 percent of the rated voltage maintained at motor terminals during one starting period. Provide motor starters complete with thermal overload protection and other necessary appurtenances. Motor bearings shall be fitted with grease supply fittings and grease relief to outside of the enclosure.

e. Provide inverter duty premium efficiency motors for use with variable frequency drives.

2.4 SELF-CONTAINED WATER CHILLERS, VAPOR COMPRESSION TYPE

Unless necessary for delivery purposes, units shall be assembled, leak-tested, charged (refrigerant and oil), and adjusted at the factory. In lieu of delivery constraints, a chiller may be assembled, leak-tested, charged (refrigerant and oil), and adjusted at the job site by a factory representative. Unit components delivered separately shall be sealed and charged with a nitrogen holding charge. Parts weighing 50 pounds or more which must be removed for inspection, cleaning, or repair, such as motors, gear boxes, cylinder heads, casing tops, condenser, and cooler heads, shall have lifting eyes or lugs. Chiller shall be provided with a single point wiring connection for incoming power supply. Chiller's condenser and water cooler shall be provided with standard water boxes with flanged connections.

2.4.1 Scroll Type

Chiller shall be rated in accordance with AHRI 550/590 I-P. Chiller shall conform to ANSI/ASHRAE 15 & 34. As a minimum, chiller shall include the following components as defined in paragraph CHILLER COMPONENTS.

a. Refrigerant and oil
b. Structural base
c. Chiller refrigerant circuit
d. Controls package
e. Scroll compressor
f. Compressor driver, electric motor
g. Compressor driver connection

h. Water cooler (evaporator)

i. Air-cooled condenser coil

j. Tools

2.5 CHILLER COMPONENTS

2.5.1 Refrigerant and Oil

Refrigerants shall be one of the fluorocarbon gases. Refrigerants shall have number designations and safety classifications in accordance with ANSI/ASHRAE 15 & 34. Refrigerants classified by the EPA as Class 2 shall not be allowed.

2.5.2 Structural Base

Chiller and individual chiller components shall be provided with a factory-mounted structural steel base (welded or bolted) or support legs. Chiller and individual chiller components shall be isolated from the building structure by means of molded neoprene isolation pads.

2.5.3 Chiller Refrigerant Circuit

Chiller refrigerant circuit shall be completely piped and factory leak tested. For multicompressor units, not less than 2 independent refrigerant circuits shall be provided. Circuit shall include as a minimum a combination filter and drier, combination sight glass and moisture indicator, liquid-line solenoid valve for reciprocating, an electronic or thermostatic expansion valve with external equalizer or float valve, charging ports, compressor service valves for field-serviceable compressors, and superheat adjustment.

2.5.4 Controls Package

Chiller shall be provided with a complete factory-mounted, prewired electric or microprocessor based operating and safety control system. Controls package shall contain as a minimum a digital display or acceptable gauges, an on-auto-off switch, motor starters, disconnect switches, power wiring, and control wiring. Controls package shall provide operating controls, monitoring capabilities, programmable setpoints, safety controls, and EMCS interfaces as defined below.

2.5.4.1 Operating Controls

Chiller shall be provided with the following adjustable operating controls as a minimum.

a. Leaving chilled water temperature control

b. Adjustable timer or automated controls to prevent a compressor from short cycling

c. Automatic lead/lag controls (adjustable) for multi-compressor units

d. Load limiting
e. System capacity control to adjust the unit capacity in accordance with the system load and the programmable setpoints. Controls shall automatically re-cycle the chiller on power interruption.

f. Startup and head pressure controls to allow system operation at all ambient temperatures down to 0 degrees F

g. Fan sequencing for air-cooled condenser

2.5.4.2 Monitoring Capabilities

During normal operations, the control system shall be capable of monitoring and displaying the following operating parameters. Access and operation of display shall not require opening or removing any panels or doors.

a. Entering and leaving chilled water temperatures

b. Self diagnostic

c. Operation status

d. Operating hours

e. Number of starts

f. Compressor status (on or off)

g. Refrigerant discharge and suction pressures

h. Oil pressure

i. Number of purge cycles over the last 7 days

2.5.4.3 Programmable Setpoints

The control system shall be capable of being reprogrammed directly at the unit. No parameters shall be capable of being changed without first entering a security access code. The programmable setpoints shall include the following as a minimum.

a. Leaving Chilled Water Temperature

b. Time Clock/Calendar Date

2.5.4.4 Safety Controls with Manual Reset

Chiller shall be provided with the following safety controls which automatically shutdown the chiller and which require manual reset.

a. Low chilled water temperature protection

b. High condenser refrigerant discharge pressure protection

c. Low evaporator pressure protection

d. Chilled water flow detection

e. High motor winding temperature protection
f. Low oil flow protection if applicable

g. Motor current overload and phase loss protection

2.5.4.5 Safety Controls with Automatic Reset

Chiller shall be provided with the following safety controls which automatically shutdown the chiller and which provide automatic reset.

a. Over/under voltage protection

b. Chilled water flow interlock

c. Phase reversal protection

2.5.4.6 Remote Alarm

During the initiation of a safety shutdown, a chiller's control system shall be capable of activating a remote alarm bell. In coordination with the chiller, the Contractor shall provide an alarm circuit (including transformer if applicable) and a minimum 4 inch diameter alarm bell. Alarm circuit shall activate bell in the event of machine shutdown due to the chiller's monitoring of safety controls. The alarm bell shall not sound for a chiller that uses low-pressure cutout as an operating control.

2.5.4.7 Energy Management Control System (EMCS) Interface

The control system shall be capable of communicating all data to a remote integrated DDC processor through a single shielded cable. The data shall include as a minimum all system operating conditions, capacity controls, and safety shutdown conditions. The control system shall also be capable of receiving at a minimum the following operating commands.

a. Remote Unit Start/Stop

b. Remote Chilled Water Reset

2.5.5 Compressor(s)

2.5.5.1 Scroll Compressor(s)

Compressors shall be of the hermetically sealed design. Compressors shall be mounted on vibration isolators to minimize vibration and noise. Rotating parts shall be statically and dynamically balanced at the factory to minimize vibration. Lubrication system shall be centrifugal pump type equipped with a means for determining oil level and an oil charging valve. Crankcase oil heater shall be provided if standard or if available as an option. If provided, the crankcase oil heater shall be controlled as recommended by the manufacturer.

2.5.6 Compressor Driver, Electric Motor

Motors, starters, variable speed drives, wiring, etc. shall be in accordance with paragraph ELECTRICAL WORK. Motor starter shall be unit mounted as indicated with starter type, wiring, and accessories coordinated with the chiller manufacturer.
2.5.7 Air-Cooled Condenser Coil

Condenser coils shall be either microchannel coil technology or fin and tube type. If the condenser coil is the extended-surface fin-and-tube type and shall be constructed of seamless copper tubes with compatible copper or aluminum fins. Fins shall be soldered or mechanically bonded to the tubes and installed in a metal casing. Coils shall be circuited and sized for a minimum of 5 degrees F subcooling and full pumpdown capacity. Coil shall be factory leak and pressure tested after assembly in accordance with ANSI/ASHRAE 15 & 34. Coil shall be entirely coated with the manufacturer's standard epoxy or vinyl coating.

2.5.8 Tools

One complete set of special tools, as recommended by the manufacturer for field maintenance of the system, shall be provided. Tools shall be mounted on a tool board in the equipment room or contained in a toolbox as directed by the Contracting Officer.

2.6 ACCESSORIES

2.6.1 Gaskets

Gaskets shall conform to ASTM F104 - classification for compressed sheet with nitrile binder and acrylic fibers for maximum 700 degrees F service.

2.6.2 Bolts and Nuts

Bolts and nuts, except as required for piping applications, shall be in accordance with ASTM A307. The bolt head shall be marked to identify the manufacturer and the standard with which the bolt complies in accordance with ASTM A307.

2.7 FABRICATION

2.7.1 Factory Coating

Unless otherwise specified, equipment and component items, when fabricated from ferrous metal, shall be factory finished with the manufacturer's standard finish, except that items located outside of buildings shall have weather resistant finishes that will withstand 125 hours exposure to the salt spray test specified in ASTM B117 using a 5 percent sodium chloride solution. Immediately after completion of the test, the specimen shall show no signs of blistering, wrinkling, cracking, or loss of adhesion and no sign of rust creepage beyond 1/8 inch on either side of the scratch mark. Cut edges of galvanized surfaces where hot-dip galvanized sheet steel is used shall be coated with a zinc-rich coating conforming to ASTM D520, Type I.

2.7.2 Factory Applied Insulation

Chiller shall be provided with factory installed insulation on surfaces subject to sweating including the water cooler, suction line piping, economizer, and cooling lines. Insulation on heads of coolers may be field applied, however it shall be installed to provide easy removal and replacement of heads without damage to the insulation. Where motors are the gas-cooled type, factory installed insulation shall be provided on the cold-gas inlet connection to the motor per manufacturer's standard practice. Factory insulated items installed outdoors are not required to
be fire-rated. As a minimum, factory insulated items installed indoors shall have a flame spread index no higher than 75 and a smoke developed index no higher than 150. Factory insulated items (no jacket) installed indoors and which are located in air plenums, in ceiling spaces, and in attic spaces shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50. Flame spread and smoke developed indexes shall be determined by ASTM E84. Insulation shall be tested in the same density and installed thickness as the material to be used in the actual construction. Material supplied by a manufacturer with a jacket shall be tested as a composite material. Jackets, facings, and adhesives shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50 when tested in accordance with ASTM E84.

2.8 SUPPLEMENTAL COMPONENTS/SERVICES

2.8.1 Chilled Water Piping and Accessories

Chilled water piping and accessories shall be provided and installed in accordance with Section 23 64 26 CHILLED WATER PIPING SYSTEMS.

2.8.2 Temperature Controls

Chiller control packages shall be fully coordinated with and integrated into the temperature control system specified in Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM and 23 09 23 DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS.

PART 3 EXECUTION

3.1 INSTALLATION

Installation of water chiller systems including materials, installation, workmanship, fabrication, assembly, erection, examination, inspection, and testing shall be in accordance with the manufacturer's written installation instructions, including the following:

1. Water chiller - installation instructions

3.1.1 Refrigeration System

3.1.1.1 Field Refrigerant Charging

a. Initial Charge: Upon completion of all the refrigerant pipe tests, the vacuum on the system shall be broken by adding the required charge of dry refrigerant for which the system is designed, in accordance with the manufacturer's recommendations. Contractor shall provide the complete charge of refrigerant in accordance with manufacturer's recommendations. Upon satisfactory completion of the system performance tests, any refrigerant that has been lost from the system shall be replaced. After the system is fully operational, service valve seal caps and blanks over gauge points shall be installed and tightened.

b. Refrigerant Leakage: If a refrigerant leak is discovered after the system has been charged, the leaking portion of the system shall immediately be isolated from the remainder of the system and the refrigerant shall be pumped into the system receiver or other suitable container. The refrigerant shall not be discharged into the atmosphere.
c. Contractor's Responsibility: The Contractor shall, at all times during
the installation and testing of the refrigeration system, take steps to
prevent the release of refrigerants into the atmosphere. The steps
shall include, but not be limited to, procedures which will minimize
the release of refrigerants to the atmosphere and the use of
refrigerant recovery devices to remove refrigerant from the system and
store the refrigerant for reuse or reclaim. At no time shall more than
3 ounces of refrigerant be released to the atmosphere in any one
occurrence. Any system leaks within the first year shall be repaired
in accordance with the specified requirements including material,
labor, and refrigerant if the leak is the result of defective
equipment, material, or installation.

3.1.1.2 Oil Charging

Except for factory sealed units, two complete charges of lubricating oil
for each compressor crankcase shall be furnished. One charge shall be used
during the performance testing period, and upon the satisfactory completion
of the tests, the oil shall be drained and replaced with the second charge.

3.1.2 Field Applied Insulation

Field installed insulation shall be as specified in Section 23 07 00
THERMAL INSULATION FOR MECHANICAL SYSTEMS, except as defined differently
herein.

3.1.3 Field Painting

Painting required for surfaces not otherwise specified, and finish painting
of items only primed at the factory are specified in Section 09 90 00
PAINTS AND COATINGS.

3.2 MANUFACTURER'S FIELD SERVICE

The services of a factory-trained representative shall be provided for 2
days. The representative shall advise on the following:

a. Hermetic machines:

 (1) Testing hermetic water-chilling unit under pressure for
 refrigerant leaks; evacuation and dehydration of machine to an
 absolute pressure of not over 300 micrometers.

 (2) Charging the machine with refrigerant.

 (3) Starting the machine.

b. Open Machines:

 (1) Erection, alignment, testing, and dehydrating.

 (2) Charging the machine with refrigerant.

 (3) Starting the machine.

3.3 CLEANING AND ADJUSTING

Equipment shall be wiped clean, with all traces of oil, dust, dirt, or
paint spots removed. Temporary filters shall be provided for all fans that
are operated during construction, and new filters shall be installed after all construction dirt has been removed from the building. System shall be maintained in this clean condition until final acceptance. Bearings shall be properly lubricated with oil or grease as recommended by the manufacturer. Belts shall be tightened to proper tension. Control valves and other miscellaneous equipment requiring adjustment shall be adjusted to setting indicated or directed. Fans shall be adjusted to the speed indicated by the manufacturer to meet specified conditions. At least one week before the official equipment warranty start date, all condenser coils on air-cooled water chillers and split-system water chillers shall be cleaned in accordance with the chiller manufacturer's instructions. This work covers two coil cleanings. The condenser coils shall be cleaned with an approved coil cleaner by a service technician, factory trained by the chiller manufacturer. The condenser coil cleaner shall not have any detrimental affect on the materials or protective coatings on the condenser coils. Testing, adjusting, and balancing shall be as specified in Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC.

3.4 Field Acceptance Testing

3.4.1 Test Plans

a. Manufacturer's Test Plans: Within 60 calendar days after contract award, submit the following plans:

 (1) Water chiller - field acceptance test plan

 Field acceptance test plans shall be developed by the chiller manufacturer detailing recommended field test procedures for that particular type and size of equipment. Field acceptance test plans developed by the installing Contractor, or the equipment sales agency furnishing the equipment, will not be acceptable.

 The Contracting Officer will review and approve the field acceptance test plan for each of the listed equipment prior to commencement of field testing of the equipment. The approved field acceptance tests of the chiller and subsequent test reporting.

b. Coordinated testing: Indicate in each field acceptance test plan when work required by this section requires coordination with test work required by other specification sections. Furnish test procedures for the simultaneous or integrated testing of tower system controls which interlock and interface with controls factory prewired or external controls for the equipment provided under Section 23 09 23 DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS.

c. Prerequisite testing: Chillers for which performance testing is dependent upon the completion of the work covered by Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC must have that work completed as a prerequisite to testing work under this section. Indicate in each field acceptance test plan when such prerequisite work is required.

d. Test procedure: Indicate in each field acceptance test plan each equipment manufacturers published installation, start-up, and field acceptance test procedures. Include in each test plan a detailed step-by-step procedure for testing automatic controls provided by the manufacturer.
Each test plan shall include the required test reporting forms to be completed by the Contractor's testing representatives. Procedures shall be structured to test the controls through all modes of control to confirm that the controls are performing with the intended sequence of control.

Controller shall be verified to be properly calibrated and have the proper set point to provide stable control of their respective equipment.

e. Performance variables: Each test plan shall list performance variables that are required to be measured or tested as part of the field test.

Include in the listed variables performance requirements indicated on the equipment schedules on the design drawings. Chiller manufacturer shall furnish with each test procedure a description of acceptable results that have been verified.

Chiller manufacturer shall identify the acceptable limits or tolerance within which each tested performance variable shall acceptably operate.

f. Job specific: Each test plan shall be job specific and shall address the particular cooling towers and particular conditions which exist in this contract. Generic or general preprinted test procedures are not acceptable.

g. Specialized components: Each test plan shall include procedures for field testing and field adjusting specialized components, such as hot gas bypass control valves, or pressure valves.

3.4.2 Testing

a. Each water chiller system shall be field acceptance tested in compliance with its approved field acceptance test plan and the resulting following field acceptance test report submitted for approval:

1. Water chiller - field acceptance test report

b. Manufacturer's recommended testing: Conduct the manufacturer's recommended field testing in compliance with the approved test plan. Furnish a factory trained field representative authorized by and to represent the equipment manufacturer at the complete execution of the field acceptance testing.

c. Operational test: Conduct a continuous 24 hour operational test for each item of equipment. Equipment shutdown before the test period is completed shall result in the test period being started again and run for the required duration. For the duration of the test period, compile an operational log of each item of equipment. Use the test report forms for logging the operational variables.

d. Notice of tests: Conduct the manufacturer's recommended tests and the operational tests; record the required data using the approved reporting forms. Notify the Contracting Officer in writing at least 15 calendar days prior to the testing. Within 30 calendar days after acceptable completion of testing, submit each test report for review and approval.
e. Report forms: Type data entries and writing on the test report forms. Completed test report forms for each item of equipment shall be reviewed, approved, and signed by the Contractor's test director. The manufacturer's field test representative shall review, approve, and sign the report of the manufacturer's recommended test. Signatures shall be accompanied by the person's name typed.

f. Deficiency resolution: The test requirements acceptably met; deficiencies identified during the tests shall be corrected in compliance with the manufacturer's recommendations and corrections retested in order to verify compliance.

3.5 System Performance Tests

3.5.1 General Requirements

Before each refrigeration system is accepted, tests to demonstrate the general operating characteristics of all equipment shall be conducted by a registered professional engineer or an approved manufacturer's start-up representative experienced in system start-up and testing, at such times as directed. Tests shall cover a period of not less than 48 hours for each system and shall demonstrate that the entire system is functioning in accordance with the drawings and specifications. Corrections and adjustments shall be made as necessary and tests shall be re-conducted to demonstrate that the entire system is functioning as specified. Prior to acceptance, service valve seal caps and blanks over gauge points shall be installed and tightened. Any refrigerant lost during the system startup shall be replaced. If tests do not demonstrate satisfactory system performance, deficiencies shall be corrected and the system shall be retested. Tests shall be conducted in the presence of the Contracting Officer. Water and electricity required for the tests will be furnished by the Government. Any material, equipment, instruments, and personnel required for the test shall be provided by the Contractor. Field tests shall be coordinated with Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC.

3.5.2 Test Report

The report shall document compliance with the specified performance criteria upon completion and testing of the system. The report shall indicate the number of days covered by the tests and any conclusions as to the adequacy of the system. The report shall also include the following information and shall be taken at least three different times at outside dry-bulb temperatures that are at least 5 degrees F apart:

a. Date and outside weather conditions.

b. The load on the system based on the following:

(1) The refrigerant used in the system.
(2) Condensing temperature and pressure.
(3) Suction temperature and pressure.
(4) Running current, voltage and proper phase sequence for each phase of all motors.
(5) The actual on-site setting of all operating and safety controls.
(6) Chilled water pressure, flow and temperature in and out of the chiller.
(7) The position of the capacity-reduction gear at machine off,
one-third loaded, one-half loaded, two-thirds loaded, and fully loaded.

3.6 Demonstrations

Contractor shall conduct a training course for the operating staff as designated by the Contracting Officer. The training period shall consist of a total 4 hours of normal working time and start after the system is functionally completed but prior to final acceptance tests. The field posted instructions shall cover all of the items contained in the approved operation and maintenance manuals as well as demonstrations of routine maintenance operations.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE)

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C606 (2015) Grooved and Shouldered Joints

AMERICAN WELDING SOCIETY (AWS)

AWS A5.8/A5.8M (2011; Amendment 2012) Specification for Filler Metals for Brazing and Braze Welding

AWS D1.1/D1.1M (2015; Errata 1 2015; Errata 2 2016) Structural Welding Code - Steel

ASME INTERNATIONAL (ASME)

ASME B1.20.1 (2013) Pipe Threads, General Purpose (Inch)

ASME B16.11 (2016) Forged Fittings, Socket-Welding and Threaded

ASME B16.18 (2012) Cast Copper Alloy Solder Joint
Pressure Fittings

ASME B16.21 (2011) Nonmetallic Flat Gaskets for Pipe Flanges

ASME B16.3 (2011) Malleable Iron Threaded Fittings, Classes 150 and 300

ASME B31.9 (2014; Errata 2015) Building Services Piping

ASME B40.100 (2013) Pressure Gauges and Gauge Attachments

ASME BPVC SEC IX (2010) BPVC Section IX-Welding and Brazing Qualifications

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2017) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

Solder Metal

ASTM B42

ASTM B75/B75M

ASTM B813

ASTM B88

ASTM D2000
(2012; R 2017) Standard Classification System for Rubber Products in Automotive Applications

ASTM D3308
(2012; R 2017) PStandard Specification for TFE Resin Skived Tape

ASTM D520
(2000; R 2011) Zinc Dust Pigment

ASTM E84

ASTM F1007
(1986; R 2014) Pipeline Expansion Joints of the Packed Slip Type for Marine Application

ASTM F1120

ASTM F1199
(1988; R 2015) Cast (All Temperatures and Pressures) and Welded Pipe Line Strainers (150 psig and 150 degrees F Maximum)

EXPANSION JOINT MANUFACTURERS ASSOCIATION (EJMA)

EJMA Stds
(10th Ed) EJMA Standards

HYDRAULIC INSTITUTE (HI)

HI 1.1-1.2
(2014) Rotodynamic (Centrifugal) Pump for Nomenclature and Definitions

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-110
(2010) Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

MSS SP-25

MSS SP-67 (2017; Errata 1 2017) Butterfly Valves

MSS SP-70 (2011) Gray Iron Gate Valves, Flanged and Threaded Ends

MSS SP-71 (2011; Errata 2013) Gray Iron Swing Check Valves, Flanged and Threaded Ends

MSS SP-72 (2010a) Ball Valves with Flanged or Butt-Welding Ends for General Service

MSS SP-78 (2011) Cast Iron Plug Valves, Flanged and Threaded Ends

MSS SP-80 (2013) Bronze Gate, Globe, Angle and Check Valves

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA 250 (2014) Enclosures for Electrical Equipment (1000 Volts Maximum)

NEMA MG 1 (2016; SUPP 2016) Motors and Generators

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

1.2 SYSTEM DESCRIPTION

Provide the water systems having the minimum service (design) temperature-pressure rating indicated. Provision of the piping systems, including materials, installation, workmanship, fabrication, assembly, erection, examination, inspection, and testing shall be in accordance with the required and advisory provisions of ASME B31.9 except as modified or supplemented by this specification section or design drawings. This specification section covers the water systems piping which is located within, on, and adjacent to building(s) within the building(s) 5 foot line.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When
used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Grooved Mechanical Connections For Steel; G
Calibrated Balancing Valves; G
Pump Discharge Valve
Water Temperature Mixing Valve; G
Water Temperature Regulating Valves; G
Water Pressure Reducing Valve
Pressure Relief Valve
Combination Pressure and Temperature Relief Valves
Expansion Joints; G
Pumps; G
Combination Strainer and Pump Suction Diffuser
Expansion Tanks
Air Separator Tanks

SD-06 Test Reports

Piping welds NDE report
Pressure tests reports; G

Report shall be provided in bound 8-1/2 by 11 inch booklets. In the reports, document all phases of the tests performed. Include initial test summaries, all repairs/adjustments made, and the final test results.

SD-07 Certificates

Employer's Record Documents (For Welding)
Welding Procedures and Qualifications

Certificates shall be submitted for the following items showing conformance with the referenced standards contained in this section.

SD-08 Manufacturer's Instructions

Lesson plan for the Instruction Course

SD-10 Operation and Maintenance Data
Requirements for data packages are specified Section 01 78 23
OPERATION AND MAINTENANCE DATA, except as supplemented and
modified by this specification section.

Submit spare parts data for each different item of equipment
specified, with operation and maintenance data packages. Include
a complete list of parts and supplies, with current unit prices
and source of supply, a recommended spare parts list for 1 year of
operation, and a list of the parts recommended by the manufacturer
to be replaced on a routine basis.

Submit a list of qualified permanent service organizations with
operation and maintenance data packages. Include service
organization addresses and service area or expertise. The service
organizations shall be reasonably convenient to the equipment
installation and be able to render satisfactory service to the
equipment on a regular and emergency basis during the warranty
period of the contract.

Calibrated Balancing Valves, Data Package 3; G
Pump Discharge Valve, Data Package 2; G
Water Temperature Mixing Valve, Data Package 3; G
Water Temperature Regulating Valves, Data Package 3; G
Water Pressure Reducing Valve, Data Package 3; G
Pressure Relief Valve, Data Package 2; G
Combination Pressure and Temperature Relief Valves, Data Package
2; G
Expansion Joints, Data Package 2; G
Pumps, Data Package 3; G
Combination Strainer and Pump Suction Diffuser, Data Package 2; G
Expansion Tanks, Data Package 2; G
Air Separator Tanks, Data Package 2; G

1.4 MODIFICATIONS TO REFERENCES

In each of the publications referred to herein, consider the advisory
provisions to be mandatory, as though the word, "shall" had been
substituted for "should" wherever it appears. Interpret references in
these publications to the "authority having jurisdiction", or words of
similar meaning, to mean the Contracting Officer.

1.4.1 Definitions

For the International Code Council (ICC) Codes referenced in the contract
documents, advisory provisions shall be considered mandatory, the word
"should" shall be interpreted as "shall." Reference to the "code official"
shall be interpreted to mean the "Contracting Officer." For Navy owned
property, references to the "owner" shall be interpreted to mean the
"Contracting Officer." For leased facilities, references to the "owner" shall be interpreted to mean the "lessor." References to the "permit holder" shall be interpreted to mean the "Contractor."

1.4.2 Administrative Interpretations

For ICC Codes referenced in the contract documents, the provisions of Chapter 1, "Administrator," do not apply. These administrative requirements are covered by the applicable Federal Acquisition Regulations (FAR) included in this contract and by the authority granted to the Officer in Charge of Construction to administer the construction of this project. References in the ICC Codes to sections of Chapter 1, shall be applied appropriately by the Contracting Officer as authorized by his administrative cognizance and the FAR.

1.5 SAFETY REQUIREMENTS

Exposed moving parts, parts that produce high operating temperature, parts which may be electrically energized, and parts that may be a hazard to operating personnel shall be insulated, fully enclosed, guarded, or fitted with other types of safety devices. Safety devices shall be installed so that proper operation of equipment is not impaired.

1.6 DELIVERY, STORAGE, AND HANDLING

Protect stored items from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Proper protection and care of all material both before and during installation shall be the Contractor's responsibility. Any materials found to be damaged shall be replaced at the Contractor's expense. During installation, cap piping and similar openings to keep out dirt and other foreign matter. Any porous materials found to be contaminated with mold or mildew will be replaced at the Contractor's expense. Non-porous materials found to be contaminated with mold or mildew will be disinfected and cleaned prior to installation.

1.7 PROJECT/SITE CONDITIONS

1.7.1 Verification of Dimensions

The Contractor shall become familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work.

1.7.2 Drawings

Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. The Contractor shall carefully investigate the plumbing, fire protection, electrical, structural and finish conditions that would affect the work to be performed and shall arrange such work accordingly, furnishing required offsets, fittings, and accessories to meet such conditions.

1.7.3 Accessibility

Install all work so that parts requiring periodic inspection, operation, maintenance, and repair are readily accessible. Install concealed valves, expansion joints, controls, dampers, and equipment requiring access, in locations freely accessible through access doors.
PART 2 PRODUCTS

2.1 STANDARD COMMERCIAL PRODUCTS

Materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacturing of such products, which are of a similar material, design and workmanship. The standard products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening.

The two year use shall include applications of equipment and materials under similar circumstances and of similar size. The 2 years experience shall be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturer's catalogs, or brochures.

Products having less than a 2 year field service record shall be acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown. System components shall be environmentally suitable for the indicated locations.

The equipment items shall be supported by service organizations. These service organizations shall be reasonably convenient to the equipment installation and able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

2.2 STEEL PIPING

Water piping shall be steel pipe or copper tubing. Provide steel piping with a ANSI/ASME Class 125 service rating, which for 150 degrees F, the pressure rating is 175 psig.

2.2.1 Pipe

Steel pipe, conform to ASTM A53/A53M, Schedule 40, Type E or S, Grades A or B. Do not use Type F pipe.

2.2.2 Fittings and End Connections (Joints)

Piping and fittings 1 inch and smaller shall have threaded connections. Piping and fittings larger than 1 inch and smaller than 3 inches shall have either threaded, grooved, or welded connections. Piping and fittings 3 inches and larger shall have grooved, welded, or flanged connections. The manufacturer of each fitting shall be permanently identified on the body of the fitting in accordance with MSS SP-25.

2.2.2.1 Threaded Connections

Use threaded valves and pipe connections conforming to ASME B1.20.1. Use threaded fitting conforming to ASME B16.3. Use threaded unions conforming to ASME B16.39. Use threaded pipe nipples conforming to ASTM A733.

2.2.2.2 Flanged Connections

Flanges shall conform to ASME B16.1, Class 125. Gaskets shall be nonasbestos compressed material in accordance with ASME B16.21, 1/16 inch thickness, full face or self-centering flat ring type. These gaskets shall contain aramid fibers bonded with styrene butadiene rubber (SBR) or nitrile
butadine rubber (NBR). Bolts, nuts, and bolt patterns shall conform to ASME B16.1.

2.2.2.3 Welded Connections

Welded valves and pipe connections (both butt-welds and socket-welds types) shall conform to ASME B31.9. Butt-welded fittings shall conform to ASME B16.9. Socket-welded fittings shall conform to ASME B16.11. Welded fittings shall be identified with the appropriate grade and marking symbol.

2.2.2.4 Grooved Mechanical Connections For Steel

Rigid grooved mechanical connections may only be used in serviceable aboveground locations where the temperature of the circulating medium does not exceed 230 degrees F. Flexible grooved connections shall be used only as a flexible connector with grooved pipe system. Unless otherwise specified, grooved piping components shall meet the corresponding criteria specified for the similar welded, flanged, or threaded component specified herein.

Each grooved mechanical joint shall be a system, including coupling housing, gasket, fasteners, all furnished by the same manufacturer. Joint installation shall be in compliance with joint manufacturer's written instructions.

Use fitting and coupling houses of malleable iron conforming to ASTM A47/A47M, Grade 32510; ductile iron conforming to ASTM A536, Grade 65-45-12; or steel conforming ASTM A106/A106M, Grade B or ASTM A53/A53M. Use gaskets of molded synthetic rubber with central cavity, pressure responsive configuration and conforming to ASTM D2000 Grade No. 2CA615A15B44F17Z for circulating medium up to 230 degrees F or Grade No. M3BA610A15B44Z for circulating medium up to 200 degrees F. Grooved mechanical connections shall conform to AWWA C606. Coupling nuts and bolts shall be steel and shall conform to ASTM A183. Pipe connections and fittings shall be the product of the same manufacturer. Provide joint installation be in compliance with joint manufacturer's written instructions.

2.2.2.5 Dielectric Waterways and Flanges

Provide dielectric waterways with a water impervious insulation barrier capable of limiting galvanic current to 1 percent of short circuit current in a corresponding bimetallic joint. When dry, insulation barrier shall be able to withstand a 600-volt breakdown test. Provide dielectric waterways constructed of galvanized steel and have threaded end connections to match connecting piping. Dielectric waterways shall be suitable for the required operating pressures and temperatures. Provide dielectric flanges with the same pressure ratings as standard flanges and provide complete electrical isolation between connecting pipe and/or equipment as described herein for dielectric waterways.

2.3 COPPER TUBING

Provide copper tubing and fittings with a ANSI/ASME Class 125 service rating, which for 150 degrees F., the pressure rating is 175 psig.

2.3.1 Tube

Use copper tube conforming to ASTM B88, Type L for aboveground tubing, and
2.3.2 Fittings and End Connections (Solder Joints)

Wrought copper and bronze solder joint pressure fittings, including unions and flanges, shall conform to ASME B16.22 and ASTM B75/B75M. Provide adapters as required. Cast copper alloy solder-joint pressure fittings, including unions and flanges, shall conform to ASME B16.18. ASTM B42 copper pipe nipples with threaded end connections shall conform to ASTM B42. Flared fittings are not allowed.

Copper tubing of sizes larger than 4 inches shall have brazed joints. Brass or bronze adapters for brazed tubing may be used for connecting tubing to flanges and to threaded ends of valves and equipment.

Extracted brazed tee joints may be used if produced with an acceptable tool and installed in accordance with tool manufacturer's written procedures.

2.3.3 Solder

Provide solder in conformance with ASTM B32, grade Sb5, tin-antimony alloy. Solder flux shall be liquid or paste form, non-corrosive and conform to ASTM B813.

2.3.4 Brazing Filler Metal

Filler metal shall conform to AWS A5.8/A5.8M, Type BAg-5 with AWS Type 3 flux, except Type BCuP-5 or BCuP-6 may be used for brazing copper-to-copper joints.

2.4 VALVES

Provide valves with a ANSI/ASME Class 125 service rating, which for 150 degrees F, the pressure rating is 175 psig.

Valves in sizes larger than 1 inch and used on steel pipe systems, may be provided with rigid grooved mechanical joint ends. Such grooved end valves shall be subject to the same requirements as rigid grooved mechanical joints and fittings and, shall be furnished by the same manufacturer as the grooved pipe joint and fitting system.

2.4.1 Gate Valve

Gate valves 2-1/2 inches and smaller shall conform to MSS SP-80 Class 125 and shall be bronze with wedge disc, rising stem and threaded, soldered, or flanged ends. Gate valves 3 inches and larger shall conform to MSS SP-70, Class 125, cast iron with bronze trim, outside screw and yoke, and flanged or threaded ends.

2.4.2 Globe and Angle Valve

Globe and angle valves 2-1/2 inches and smaller shall conform to MSS SP-80, Class 125. Globe and angle valves 3 inches and larger shall conform to MSS SP-85, Class 125.

2.4.3 Check Valve

Check valves 2-1/2 inches and smaller shall conform to MSS SP-80. Check valves 3 inches and larger shall conform to MSS SP-71, Class 125.
2.4.4 Butterfly Valve

Butterfly valves shall conform to MSS SP-67, Type 1 and shall be either the wafer or lug type. Valves smaller than 8 inches shall have throttling handles with a minimum of two locking positions. Valves 8 inches and larger shall have totally enclosed manual gear operators with adjustable balance return stops and position indicators.

2.4.5 Plug Valve

Plug valves 2 inches and larger shall conform to MSS SP-78, have flanged or threaded ends, and have cast iron bodies with bronze trim. Valves 2 inches and smaller shall be bronze with NPT connections for black steel pipe and brazed connections for copper tubing. Valve shall be lubricated, non-lubricated, or tetrafluoroethylene resin-coated type. Valve shall be resilient, double seated, trunnion mounted with tapered lift plug capable of 2-way shutoff. Valve shall operate from fully open to fully closed by rotation of the handwheel to lift and turn the plug. Valves 8 inches or larger shall be provided with manual gear operators with position indicators.

2.4.6 Ball Valve

Full port design. Ball valves 1/2 inch and larger shall conform to MSS SP-72 or MSS SP-110 and shall be cast iron or bronze with threaded, soldered, or flanged ends. Valves 8 inches or larger shall be provided with manual gear operators with position indicators. Ball valves may be provided in lieu of gate valves.

2.4.7 Square Head Cocks

Provide copper alloy or cast-iron body with copper alloy plugs, suitable for 125 psig water working pressure.

2.4.8 Calibrated Balancing Valves

Copper alloy or cast iron body, copper alloy or stainless internal working parts. Provide valve calibrated so that flow can be determined when the temperature and pressure differential across valve is known. Valve shall have an integral pointer which registers the degree of valve opening. Valve shall function as a service valve when in fully closed position. Valve shall be constructed with internal seals to prevent leakage and shall be supplied with preformed insulation.

Provide valve bodies with tapped openings and pipe extensions with positive shutoff valves outside of pipe insulation. The pipe extensions shall be provided with quick connecting hose fittings for a portable differential pressure meter connections to verify the pressure differential. Provide metal tag on each valve showing the gallons per minute flow for each differential pressure reading.

2.4.9 Pump Discharge Valve

Valve shall shall perform the functions of a nonslam check valve, a manual balancing valve, and a shutoff. Valve shall be of cast iron or ductile iron construction with bronze and/or stainless steel accessories. Provide an integral pointer on the valve which registers the degree of valve opening. Flow through the valve shall be manually adjustable from bubble
tight shutoff to full flow. Valves smaller than 2 inches shall have NPT connections. Valves 2 inches and larger shall have flanged or grooved end connections. Valve design shall allow the back seat for the stem to be replaced in the field under full line pressure.

2.4.10 Water Temperature Mixing Valve
Valve, ASSE 1017 for water service.

2.4.11 Water Temperature Regulating Valves
Provide copper alloy body, direct acting, pilot operated, for the intended service.

2.4.12 Water Pressure Reducing Valve
Valve, ASSE 1003 for water service, copper alloy body.

2.4.13 Pressure Relief Valve
Valve shall prevent excessive pressure in the piping system when the piping system reaches its maximum heat buildup. Valve, ANSI Z21.22/CSA 4.4 and shall have cast iron bodies with corrosion resistant internal working parts. The discharge pipe from the relief valve shall be the size of the valve outlet unless otherwise indicated.

2.4.14 Combination Pressure and Temperature Relief Valves
ANSI Z21.22/CSA 4.4, copper alloy body, automatic re-seating, test lever, and discharge capacity based on AGA temperature steam rating.

2.4.15 Float Valve
Angle pattern or Globe pattern. Valve bodies 3 inches nominal pipe size and smaller shall be bronze. Valve bodies larger than 3 inches shall be cast iron or bronze. Steel parts shall be corrosion resistant. Where float rods are extended for tank applications, extension shall be properly supported and guided to avoid bending of float rod or stressing of valve pilot linkage.

2.4.16 Drain Valves
Valves, MSS SP-80 gate valves. Valve shall be manually-operated, 3/4 inch pipe size and above with a threaded end connection. Provide valve with a water hose nipple adapter. Freeze-proof type valves shall be provided in installations exposed to freezing temperatures.

2.4.17 Air Venting Valves
Manually-operated general service type air venting valves, brass or bronze valves that are furnished with threaded plugs or caps. Automatic type air venting shall be the ball-float type with brass/bronze or brass bodies, 300 series corrosion-resistant steel float, linkage and removable seat. Air venting valves on water coils shall have not less than 1/8 inch threaded end connections. Air venting valves on water mains shall have not less than 3/4 inch threaded end connections. Air venting valves on all other applications shall have not less than 1/2 inch threaded end connections.
2.4.18 Vacuum Relief Valves

ANSI Z21.22/CSA 4.4

2.5 PIPING ACCESSORIES

2.5.1 Strainer

Strainer, ASTM F1199, except as modified and supplemented in this specification. Strainer shall be the cleanable, basket or "Y" type, the same size as the pipeline. Strainer bodies shall be fabricated of cast iron with bottoms drilled, and tapped. Provide blowoff outlet with pipe nipple, gate valve, and discharge pipe nipple. The bodies shall have arrows clearly cast on the sides indicating the direction of flow.

Provide strainer with removable cover and sediment screen. The screen shall be made of minimum 22 gauge brass sheet, with small perforations numbering not less than 400 per square inch to provide a net free area through the basket of at least 3.30 times that of the entering pipe. The flow shall be into the screen and out through the perforations.

2.5.2 Cyclonic Separator

Metal- bodied, with removal capability of removing solids 45 microns/325 mesh in size and heavier than 1.20 specific gravity, maximum pressure drop of 5 psid, with cleanout connection.

2.5.3 Combination Strainer and Pump Suction Diffuser

Angle type body with removable strainer basket and internal straightening vanes, a suction pipe support, and a blowdown outlet and plug. Strainer shall be in accordance with ASTM F1199, except as modified and supplemented by this specification. Unit body shall have arrows clearly cast on the sides indicating the direction of flow.

Strainer screen shall be made of minimum 22 gauge brass sheet, with small perforations numbering not less than 400 per square inch to provide a net free area through the basket of at least 3.30 times that of the entering pipe. Flow shall be into the screen and out through the perforations. Provide an auxiliary disposable fine mesh strainer which shall be removed 30 days after start-up. Provide warning tag for operator indicating scheduled date for removal.

Casing shall have connection sizes to match pump suction and pipe sizes, and be provided with adjustable support foot or support foot boss to relieve piping strains at pump suction. Provide unit casing with blowdown port and plug. Provide a magnetic insert to remove debris from system.

2.5.4 Flexible Pipe Connectors

Provide flexible bronze or stainless steel piping connectors with single braid. Equip flanged assemblies with limit bolts to restrict maximum travel to the manufacturer's standard limits. Unless otherwise indicated, the length of the flexible connectors shall be as recommended by the manufacturer for the service intended. Internal sleeves or liners, compatible with circulating medium, shall be provided when recommended by the manufacturer. Provide covers to protect the bellows where indicated.
2.5.5 Pressure and Vacuum Gauges

Gauges, ASME B40.100 with throttling type needle valve or a pulsation dampener and shut-off valve. Provide gauges with 4.5 inch dial, brass or aluminum case, bronze tube, and siphon. Gauge shall have a range from 0 psig to approximately 1.5 times the maximum system working pressure. Each gauge range shall be selected so that at normal operating pressure, the needle is within the middle-third of the range.

2.5.6 Temperature Gauges

Temperature gauges, shall be the industrial duty type and be provided for the required temperature range. Provide gauges with fixed thread connection, dial face gasketed within the case; and an accuracy within 2 percent of scale range. Gauges shall have Fahrenheit scale in 2 degree graduations scale (black numbers) on a white face. The pointer shall be adjustable. Rigid stem type temperature gauges shall be provided in thermal wells located within 5 feet of the finished floor. Universal adjustable angle type or remote element type temperature gauges shall be provided in thermal wells located 5 to 7 feet above the finished floor or in locations indicated. Remote element type temperature gauges shall be provided in thermal wells located 7 feet above the finished floor or in locations indicated.

2.5.6.1 Stem Cased-Glass

Stem cased-glass case shall be polished stainless steel or cast aluminum, 9 inches long, with clear acrylic lens, and non-mercury filled glass tube with indicating-fluid column.

2.5.6.2 Bimetallic Dial

Bimetallic dial type case shall be not less than 3-1/2 inches, stainless steel, and shall be hermetically sealed with clear acrylic lens. Bimetallic element shall be silicone dampened and unit fitted with external calibrator adjustment.

2.5.6.3 Liquid-, Solid-, and Vapor-Filled Dial

Liquid-, solid-, and vapor-filled dial type cases shall be not less than 3-1/2 inches, stainless steel or cast aluminum with clear acrylic lens. Fill shall be nonmercury, suitable for encountered cross-ambients, and connecting capillary tubing shall be double-braided bronze.

2.5.6.4 Thermal Well

Thermal well shall be identical size, 1/2 or 3/4 inch NPT connection, brass or stainless steel. Where test wells are indicated, provide captive plug-fitted type 1/2 inch NPT connection suitable for use with either engraved stem or standard separable socket thermometer or thermostat. Mercury shall not be used in thermometers. Extended neck thermal wells shall be of sufficient length to clear insulation thickness by 1 inch.

2.5.7 Pipe Hangers, Inserts, and Supports

Pipe hangers, inserts, guides, and supports: to MSS SP-58 and MSS SP-69.
2.5.8 Escutcheons

Provide one piece or split hinge metal plates for piping entering floors, walls, and ceilings in exposed spaces. Secure plates in place by internal spring tension or set screws. Provide polished stainless steel plates or chromium-plated finish on copper alloy plates in finished spaces. Provide paint finish on metal plates in unfinished spaces.

2.5.9 Expansion Joints

2.5.9.1 Slip-Tube Type

Slip-tube expansion joints, ASTM F1007, Class I or II. Joints shall be provided with internally-externally alignment guides, injected semi-plastic packing, and service outlets. End connections shall be flanged or beveled for welding as indicated. Initial settings shall be made in accordance with the manufacturer's recommendations to compensate for ambient temperature at time of installation. Pipe alignment guides shall be installed as recommended by the joint manufacturer.

2.5.9.2 Flexible Ball Type

Flexible ball expansion joints shall be capable of 360 degrees rotation plus 15 degrees angular flex movement. Joints shall be constructed of carbon steel with the exterior spherical surface of carbon steel balls plated with a minimum 5 mils of hard chrome in accordance with EJMA Stds. Joint end connections shall be threaded for piping 2 inches or smaller. Joint end connections larger than 2 inches shall be grooved, flanged, or beveled for welding. Provide joint with pressure-molded composition gaskets suitable for continuous operation at twice design temperature.

2.5.9.3 Bellows Type

Bellows expansion type joints, ASTM F1120 with Type 304 stainless steel corrugated bellows, reinforced with equalizing rings, internal sleeves, and external protective covers. Joint end connections shall be grooved, flanged, or beveled for welding. Guiding of piping on both sides of expansion joint shall be in accordance with the published recommendations of the manufacturer of the expansion joint.

2.6 PUMPS

Pumps shall be the electrically driven, non-overloading, centrifugal type which conform to HI 1.1-1.2. Pumps shall be selected at or within 5 percent of peak efficiency. Pump curve shall rise continuously from maximum capacity to shutoff. Pump motor shall conform to NEMA MG 1 and have sufficient horsepower for the service required. Pump motor shall have the required capacity to prevent overloading with pump operating at any point on its characteristic curve. Pump speed shall not exceed 1,750 rpm. Pump motor shall be equipped with an across-the-line magnetic controller in a NEMA 250, Type 1 enclosure with "START-STOP" switch in the cover.

2.6.1 Construction

Each pump casing shall be designed to withstand the discharge head specified plus the static head on system plus 50 percent of the total, but not less than 125 psig. Pump casing and bearing housing shall be close grained cast iron. High points in the casing shall be provided with manual air vents; low points shall be provided with drain plugs. Provide threaded
suction and discharge pressure gage tapping with square-head plugs.

Impeller shall be statically and dynamically balanced. Impeller, impeller wearing rings, glands, casing wear rings, and shaft sleeve shall be bronze. Shaft shall be carbon or alloy steel, turned and ground. Bearings shall be ball-bearings, roller-bearings, or oil-lubricated bronze-sleeve type bearings, and be efficiently sealed or isolated to prevent loss of oil or entrance of dirt or water.

For end suction frame mounted pumps, the pump and motor shall be mounted on a common cast iron base having lipped edges and tapped drainage openings or structural steel base with lipped edges or drain pan and tapped drainage openings. Pump shall be provided with steel shaft coupling guard. Base-mounted pump, coupling guard, and motor shall each be bolted to a fabricated steel base which shall have bolt holes for securing base to supporting surface. Close-coupled pump shall be provided with integrally cast or fabricated steel feet with bolt holes for securing feet to supporting surface. Close-coupled pumps shall be provided with drip pockets and tapped openings. Pump shall be accessible for servicing without disturbing piping connections. Shaft seals shall be mechanical-seals or stuffing-box type.

2.6.2 Mechanical Shaft Seals

Seals shall be single, inside mounted, end-face-elastomer bellows type with stainless steel spring, brass or stainless steel seal head, carbon rotating face, and tungsten carbide or ceramic sealing face. Glands shall be bronze and of the water-flush design to provide lubrication flush across the face of the seal. Bypass line from pump discharge to flush connection in gland shall be provided, with filter or cyclone particle separator in line.

2.6.3 Stuffing-Box Type Seals

Stuffing box shall include minimum 4 rows of square, impregnated TFE (Teflon) or graphite cord packing and a bronze split-lantern ring. Packing gland shall be bronze interlocking split type.

2.7 EXPANSION TANKS

Tank shall be welded steel, constructed for, and tested to pressure-temperature rating of 125 psi at 150 degrees F. Provide tanks precharged to the minimum operating pressure. Tank shall have a replaceable polypropylene or butyl lined diaphragm which keeps the air charge separated from the water; shall be the captive air type.

Tanks shall accommodate expanded water of the system generated within the normal operating temperature range, limiting this pressure increase at all components in the system to the maximum allowable pressure at those components. Each tank air chamber shall be fitted with a drain, fill, an air charging valve, and system connections. Tank shall be supported by steel legs or bases for vertical installation or steel saddles for horizontal installations. The only air in the system shall be the permanent sealed-in air cushion contained within the expansion tank.

2.8 AIR SEPARATOR TANKS

External air separation tank shall have an internal design constructed of stainless steel and suitable for creating the required vortex and subsequent air separation. Tank shall be steel, constructed for, and
tested to pressure-temperature rating of 125 psi at 150 degrees F. Tank shall have tangential inlets and outlets connections, threaded for 2 inches and smaller and flanged for sizes 2-1/2 inches and larger. Air released from a tank shall be vented as indicated. Tank shall be provided with a blow-down connection.

2.9 WATER TREATMENT SYSTEMS

When water treatment is specified, the use of chemical-treatment products containing equivalent chromium (CPR) is prohibited. 2.9.1 Chilled and Hot Water

Water to be used in the chilled and hot water systems shall be treated to maintain the conditions recommended by this specification as well as the recommendations from the manufacturers of the condenser and evaporator coils. Chemicals shall meet all required federal, state, and local environmental regulations for the treatment of evaporator coils and direct discharge to the sanitary sewer. 2.9.2 Chilled and Hot Water System

A shot feeder shall be provided on the chilled and hot water piping as indicated. Size and capacity of feeder shall be based on local requirements and water analysis. The feeder shall be furnished with an air vent, gauge glass, funnel, valves, fittings, and piping. 2.10 ELECTRICAL WORK

Provide motors, controllers, integral disconnects, contactors, and controls with their respective pieces of equipment, except controllers indicated as part of motor control centers. Provide electrical equipment, including motors and wiring, as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Manual or automatic control and protective or signal devices required for the operation specified and control wiring required for controls and devices specified, but not shown, shall be provided. For packaged equipment, the manufacturer shall provide controllers including the required monitors and timed restart.

Provide high efficiency type, single-phase, fractional-horsepower alternating-current motors, including motors that are part of a system, in accordance with NEMA MG 11.

Provide polyphase, squirrel-cage medium induction motors, including motors that are part of a system, that meet the efficiency ratings for premium efficiency motors in accordance with NEMA MG 1. Provide motors in accordance with NEMA MG 1 and of sufficient size to drive the load at the specified capacity without exceeding the nameplate rating of the motor.

Motors shall be rated for continuous duty with the enclosure specified. Motor duty requirements shall allow for maximum frequency start-stop operation and minimum encountered interval between start and stop. Motor torque shall be capable of accelerating the connected load within 20 seconds with 80 percent of the rated voltage maintained at motor terminals during one starting period. Provide motor starters complete with thermal overload protection and other necessary appurtenances. Motor bearings shall be fitted with grease supply fittings and grease relief to outside of the enclosure.

Provide variable frequency drives for motors as specified on the drawings.
2.11 PAINTING OF NEW EQUIPMENT

New equipment painting shall be factory applied or shop applied, and shall be as specified herein, and provided under each individual section.

2.11.1 Factory Painting Systems

Manufacturer's standard factory painting systems may be provided. The factory painting system applied will withstand 125 hours in a salt-spray fog test, except that equipment located outdoors shall withstand 500 hours in a salt-spray fog test.

Salt-spray fog test shall be in accordance with ASTM B117, and for that test, the acceptance criteria shall be as follows: immediately after completion of the test, the paint shall show no signs of blistering, wrinkling, or cracking, and no loss of 0.125 inch on either side of the scratch mark. The film thickness of the factory painting system applied on the equipment shall not be less than the film thickness used on the test specimen.

If manufacturer's standard factory painting system is being proposed for use on surfaces subject to temperatures above 120 degrees F, the factory painting system shall be designed for the temperature service.

2.11.2 Shop Painting Systems for Metal Surfaces

Clean, retreat, prime and paint metal surfaces; except aluminum surfaces need not be painted. Apply coatings to clean dry surfaces. Clean the surfaces to remove dust, dirt, rust, oil and grease by wire brushing and solvent degreasing prior to application of paint, except metal surfaces subject to temperatures in excess of 120 degrees F shall be cleaned to bare metal.

Where hot-dip galvanized steel has been cut, resulting surfaces with no galvanizing shall be coated with a zinc-rich coating conforming to ASTM D520, Type I.

Where more than one coat of paint is specified, apply the second coat after the preceding coat is thoroughly dry. Lightly sand damaged painting and retouch before applying the succeeding coat. Color of finish coat shall be aluminum or light gray.

a. Temperatures Less Than 120 Degrees F: Immediately after cleaning, the metal surfaces subject to temperatures less than 120 degrees F shall receive one coat of pretreatment primer applied to a minimum dry film thickness of 0.3 mil, one coat of primer applied to a minimum dry film thickness of one mil; and two coats of enamel applied to a minimum dry film thickness of one mil per coat.

b. Temperatures Between 120 and 400 degrees F: Metal surfaces subject to temperatures between 120 and 400 degrees F shall receive two coats of 400 degrees F heat-resistant enamel applied to a total minimum thickness of 2 mils.

c. Temperatures Greater Than 400 degrees F: Metal surfaces subject to temperatures greater than 400 degrees F shall receive two coats of 600 degrees F heat-resistant paint applied to a total minimum dry film thickness of 2 mils.
2.12 FACTORY APPLIED INSULATION

Factory insulated items installed outdoors are not required to be fire-rated. As a minimum, factory insulated items installed indoors shall have a flame spread index no higher than 75 and a smoke developed index no higher than 150. Factory insulated items (no jacket) installed indoors and which are located in air plenums, in ceiling spaces, and in attic spaces shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50. Flame spread and smoke developed indexes shall be determined by ASTM E84.

Insulation shall be tested in the same density and installed thickness as the material to be used in the actual construction. Material supplied by a manufacturer with a jacket shall be tested as a composite material. Jackets, facings, and adhesives shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50 when tested in accordance with ASTM E84.

2.13 NAMEPLATES

Major equipment including pumps, pump motors, expansion tanks, and air separator tanks shall have the manufacturer's name, type or style, model or serial number on a plate secured to the item of equipment. The nameplate of the distributing agent will not be acceptable. Plates shall be durable and legible throughout equipment life and made of stainless steel. Plates shall be fixed in prominent locations with nonferrous screws or bolts.

2.14 RELATED COMPONENTS/SERVICES

2.14.1 Drain and Make-Up Water Piping

Requirements for drain and make-up water piping and backflow preventer is specified in Section 22 00 00 PLUMBING, GENERAL PURPOSE.

2.14.2 Field Applied Insulation

Requirements for field applied insulation is specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

2.14.3 Field Painting

Requirements for painting of surfaces not otherwise specified, and finish painting of items only primed at the factory, are specified in Section 09 90 00PAINTS AND COATINGS.

PART 3 EXECUTION

3.1 INSTALLATION

Cut pipe accurately to measurements established at the jobsite, and work into place without springing or forcing, completely clearing all windows, doors, and other openings. Cutting or other weakening of the building structure to facilitate piping installation is not permitted without written approval. Cut pipe or tubing square, remove burrs by reaming, and fashion to permit free expansion and contraction without causing damage to the building structure, pipe, joints, or hangers.

Notify the Contracting Officer in writing at least 15 calendar days prior to the date the connections are required. Obtain approval before
interrupting service. Furnish materials required to make connections into existing systems and perform excavating, backfilling, compacting, and other incidental labor as required. Furnish labor and tools for making actual connections to existing systems.

3.1.1 Welding

Provide welding work specified this section for piping systems in conformance with ASME B31.9, as modified and supplemented by this specification section and the accompanying drawings. The welding work includes: qualification of welding procedures, welders, welding operators, brazers, brazing operators, and nondestructive examination personnel; maintenance of welding records, and examination methods for welds.

3.1.1.1 Employer's Record Documents (For Welding)

Submit for review and approval the following documentation. This documentation and the subject qualifications shall be in compliance with ASME B31.9.

a. List of qualified welding procedures that is proposed to be used to provide the work specified in this specification section.

b. List of qualified welders, brazers, welding operators, and brazing operators that are proposed to be used to provide the work specified in this specification section.

c. List of qualified weld examination personnel that are proposed to be used to provide the work specified in this specification section.

3.1.1.2 Welding Procedures and Qualifications

a. Specifications and Test Results: Submit copies of the welding procedures specifications and procedure qualification test results for each type of welding required. Approval of any procedure does not relieve the Contractor of the responsibility for producing acceptable welds. Submit this information on the forms printed in ASME BPVC SEC IX or their equivalent.

b. Certification: Before assigning welders or welding operators to the work, submit a list of qualified welders, together with data and certification that each individual is performance qualified as specified. Do not start welding work prior to submitting welder, and welding operator qualifications. The certification shall state the type of welding and positions for which each is qualified, the code and procedure under which each is qualified, date qualified, and the firm and individual certifying the qualification tests.

3.1.1.3 Examination of Piping Welds

Conduct non-destructive examinations (NDE) on piping welds and brazing and verify the work meets the acceptance criteria specified in ASME B31.9. NDE on piping welds covered by ASME B31.9 is visual inspection only. Submit a piping welds NDE report meeting the requirements specified in ASME B31.9.

3.1.1.4 Welding Safety

Welding and cutting safety requirements shall be in accordance with AWS Z49.1.
3.1.2 Directional Changes

Make changes in direction with fittings, except that bending of pipe 4 inches and smaller is permitted, provided a pipe bender is used and wide weep bends are formed. Mitering or notching pipe or other similar construction to form elbows or tees is not permitted. The centerline radius of bends shall not be less than 6 diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations is not acceptable.

3.1.3 Functional Requirements

Pitch horizontal supply mains down in the direction of flow as indicated. The grade shall not be less than 1 inch in 40 feet. Reducing fittings shall be used for changes in pipe sizes. Cap or plug open ends of pipelines and equipment during installation to keep dirt or other foreign materials out of the system.

Pipe not otherwise specified shall be uncoated. Connections to appliances shall be made with malleable iron unions for steel pipe 2-1/2 inches or less in diameter, and with flanges for pipe 3 inches and above in diameter. Connections between ferrous and copper piping shall be electrically isolated from each other with dielectric waterways or flanges.

Piping located in air plenums shall conform to NFPA 90A requirements. Pipe and fittings installed in inaccessible conduits or trenches under concrete floor slabs shall be welded. Equipment and piping arrangements shall fit into space allotted and allow adequate acceptable clearances for installation, replacement, entry, servicing, and maintenance. Electric isolation fittings shall be provided between dissimilar metals.

3.1.4 Fittings and End Connections

3.1.4.1 Threaded Connections

Threaded connections shall be made with tapered threads and made tight with PTFE tape complying with ASTM D3308 or equivalent thread-joint compound applied to the male threads only. Not more than three threads shall show after the joint is made.

3.1.4.2 Brazed Connections

Brazing, AWS BRH, except as modified herein. During brazing, the pipe and fittings shall be filled with a pressure regulated inert gas, such as nitrogen, to prevent the formation of scale. Before brazing copper joints, both the outside of the tube and the inside of the fitting shall be cleaned with a wire fitting brush until the entire joint surface is bright and clean. Do not use brazing flux. Surplus brazing material shall be removed at all joints. Steel tubing joints shall be made in accordance with the manufacturer's recommendations. Piping shall be supported prior to brazing and not be sprung or forced.

3.1.4.3 Welded Connections

Branch connections shall be made with welding tees or forged welding branch outlets. Pipe shall be thoroughly cleaned of all scale and foreign matter before the piping is assembled. During welding, the pipe and fittings
shall be filled with an inert gas, such as nitrogen, to prevent the formation of scale. Beveling, alignment, heat treatment, and inspection of weld shall conform to ASME B31.9. Weld defects shall be removed and rewelded at no additional cost to the Government. Electrodes shall be stored and dried in accordance with AWS D1.1/D1.1M or as recommended by the manufacturer. Electrodes that have been wetted or that have lost any of their coating shall not be used.

3.1.4.4 Grooved Mechanical Connections

Prepare grooves in accordance with the coupling manufacturer's instructions. Pipe and groove dimensions shall comply with the tolerances specified by the coupling manufacturer. The diameter of grooves made in the field shall be measured using a "go/no-go" gauge, vernier or dial caliper, or narrow-land micrometer, or other method specifically approved by the coupling manufacturer for the intended application. Groove width and dimension of groove from end of pipe shall be measured and recorded for each change in grooving tool setup to verify compliance with coupling manufacturer's tolerances. Grooved joints shall not be used in concealed locations, such as behind solid walls or ceilings, unless an access panel is shown on the drawings for servicing or adjusting the joint.

3.1.4.5 Flanges and Unions

Except where copper tubing is used, union or flanged joints shall be provided in each line immediately preceding the connection to each piece of equipment or material requiring maintenance such as coils, pumps, control valves, and other similar items. Flanged joints shall be assembled square end tight with matched flanges, gaskets, and bolts. Gaskets shall be suitable for the intended application.

3.1.5 Valves

Isolation gate or ball valves shall be installed on each side of each piece of equipment, at the midpoint of all looped mains, and at any other points indicated or required for draining, isolating, or sectionalizing purpose. Isolation valves may be omitted where balancing cocks are installed to provide both balancing and isolation functions. Each valve except check valves shall be identified. Valves in horizontal lines shall be installed with stems horizontal or above.

3.1.6 Air Vents

Air vents shall be provided at all high points, on all water coils, and where indicated to ensure adequate venting of the piping system.

3.1.7 Drains

Drains shall be provided at all low points and where indicated to ensure complete drainage of the piping. Drains shall be accessible, and shall consist of nipples and caps or plugged tees unless otherwise indicated.

3.1.8 Flexible Pipe Connectors

Connectors shall be attached to components in strict accordance with the latest printed instructions of the manufacturer to ensure a vapor tight joint. Hangers, when required to suspend the connectors, shall be of the type recommended by the flexible pipe connector manufacturer and shall be provided at the intervals recommended.
3.1.9 Temperature Gauges

Temperature gauges shall be located on coolant supply and return piping at each heat exchanger, on condenser water piping entering and leaving a condenser, at each automatic temperature control device without an integral thermometer, and where indicated or required for proper operation of equipment. Thermal wells for insertion thermometers and thermostats shall extend beyond thermal insulation surface not less than 1 inch.

3.1.10 Pipe Hangers, Inserts, and Supports

Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69, except as supplemented and modified in this specification section. Pipe hanger types 5, 12, and 26 shall not be used. Hangers used to support piping 2 inches and larger shall be fabricated to permit adequate adjustment after erection while still supporting the load. Piping subjected to vertical movement, when operating temperatures exceed ambient temperatures, shall be supported by variable spring hangers and supports or by constant support hangers.

3.1.10.1 Hangers

Type 3 shall not be used on insulated piping. Type 24 may be used only on trapeze hanger systems or on fabricated frames.

3.1.10.2 Inserts

Type 18 inserts shall be secured to concrete forms before concrete is placed. Continuous inserts which allow more adjustments may be used if they otherwise meet the requirements for Type 18 inserts.

3.1.10.3 C-Clamps

Type 19 and 23 C-clamps shall be torqued per MSS SP-69 and have both locknuts and retaining devices, furnished by the manufacturer. Field-fabricated C-clamp bodies or retaining devices are not acceptable.

3.1.10.4 Angle Attachments

Type 20 attachments used on angles and channels shall be furnished with an added malleable-iron heel plate or adapter.

3.1.10.5 Saddles and Shields

Where Type 39 saddle or Type 40 shield are permitted for a particular pipe attachment application, the Type 39 saddle, connected to the pipe, shall be used on all pipe 4 inches and larger when the temperature of the medium is 60 degrees F or higher. Type 40 shields shall be used on all piping less than 4 inches and all piping 4 inches and larger carrying medium less than 60 degrees F. A high density insulation insert of cellular glass shall be used under the Type 40 shield for piping 2 inches and larger.

3.1.10.6 Horizontal Pipe Supports

Horizontal pipe supports shall be spaced as specified in MSS SP-69 and a support shall be installed not over 1 foot from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 5 feet apart at valves. Pipe hanger loads suspended from steel joist with hanger loads between panel points in excess of 50 pounds shall have
the excess hanger loads suspended from panel points.

3.1.10.7 Vertical Pipe Supports

Vertical pipe shall be supported at each floor, except at slab-on-grade, and at intervals of not more than 15 feet, not more than 8 feet from end of risers, and at vent terminations.

3.1.10.8 Pipe Guides

Type 35 guides using, steel, reinforced polytetrafluoroethylene (PTFE) or graphite slides shall be provided where required to allow longitudinal pipe movement. Lateral restraints shall be provided as required. Slide materials shall be suitable for the system operating temperatures, atmospheric conditions, and bearing loads encountered.

3.1.10.9 Steel Slides

Where steel slides do not require provisions for restraint of lateral movement, an alternate guide method may be used. On piping 4 inches and larger, a Type 39 saddle shall be used. On piping under 4 inches, a Type 40 protection shield may be attached to the pipe or insulation and freely rest on a steel slide plate.

3.1.10.10 Multiple Pipe Runs

In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support members shall not exceed the hanger and support spacing required for an individual pipe in the multiple pipe run.

3.1.10.11 Structural Attachments

Attachment to building structure concrete and masonry shall be by cast-in concrete inserts, built-in anchors, or masonry anchor devices. Inserts and anchors shall be applied with a safety factor not less than 5. Supports shall not be attached to metal decking. Supports shall not be attached to the underside of concrete filled floors or concrete roof decks unless approved by the Contracting Officer. Masonry anchors for overhead applications shall be constructed of ferrous materials only. Structural steel brackets required to support piping, headers, and equipment, but not shown, shall be provided under this section.

3.1.11 Pipe Alignment Guides

Pipe alignment guides shall be provided where indicated for expansion loops, offsets, and bends and as recommended by the manufacturer for expansion joints, not to exceed 5 feet on each side of each expansion joint, and in lines 4 inches or smaller not more than 2 feet on each side of the joint.

3.1.12 Pipe Anchors

Anchors shall be provided where indicated. Unless indicated otherwise, anchors shall comply with the requirements specified. Anchors shall consist of heavy steel collars with lugs and bolts for clamping and attaching anchor braces, unless otherwise indicated. Anchor braces shall be installed in the most effective manner to secure the desired results using turnbuckles where required.
Supports, anchors, or stays shall not be attached where they will injure the structure or adjacent construction during installation or by the weight of expansion of the pipeline. Where pipe and conduit penetrations of vapor barrier sealed surfaces occur, these items shall be anchored immediately adjacent to each penetrated surface, to provide essentially zero movement within penetration seal.

3.1.13 Building Surface Penetrations

Sleeves shall not be installed in structural members except where indicated or approved. Except as indicated otherwise piping sleeves shall comply with requirements specified. Sleeves in nonload bearing surfaces shall be galvanized sheet metal, conforming to ASTM A653/A653M, Coating Class G-90, 20 gauge. Sleeves in load bearing surfaces shall be uncoated carbon steel pipe, conforming to ASTM A53/A53M, Schedule 30. Sealants shall be applied to moisture and oil-free surfaces and elastomers to not less than 1/2 inch depth. Sleeves shall not be installed in structural members.

3.1.13.1 General Service Areas

Each sleeve shall extend through its respective wall, floor, or roof, and shall be cut flush with each surface. Pipes passing through concrete or masonry wall or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of construction. Sleeves shall be of such size as to provide a minimum of 1/4 inch all-around clearance between bare pipe and sleeves or between jacketed-insulation and sleeves. Except in pipe chases or interior walls, the annular space between pipe and sleeve or between jacket over-insulation and sleeve shall be sealed in accordance with Section 07 92 00 JOINT SEALANTS.

3.1.13.2 Waterproof Penetrations

Pipes passing through roof or floor waterproofing membrane shall be installed through a .17 ounce copper sleeve, or a 0.032 inch thick aluminum sleeve, each within an integral skirt or flange.

Flashing sleeve shall be suitably formed, and skirt or flange shall extend not less than 8 inches from the pipe and be set over the roof or floor membrane in a troweled coating of bituminous cement. The flashing sleeve shall extend up the pipe a minimum of 2 inches above the roof or floor penetration. The annular space between the flashing sleeve and the bare pipe or between the flashing sleeve and the metal-jacket-covered insulation shall be sealed as indicated. Penetrations shall be sealed by either one of the following methods.

a. Waterproofing Clamping Flange: Pipes up to and including 10 inches in diameter passing through roof or floor waterproofing membrane may be installed through a cast iron sleeve with caulking recess, anchor lugs, flashing clamp device, and pressure ring with brass bolts. Waterproofing membrane shall be clamped into place and sealant shall be placed in the caulking recess.

b. Modular Mechanical Type Sealing Assembly: In lieu of a waterproofing clamping flange, a modular mechanical type sealing assembly may be installed. Seals shall consist of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe/conduit and sleeve with corrosion protected carbon steel bolts, nuts, and pressure plates. Links shall be loosely assembled with bolts to form a
continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut.

After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal rubber sealing elements to expand and provide a watertight seal between the pipe/conduit seal between the pipe/conduit and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe/conduit and sleeve involved. The Contractor electing to use the modular mechanical type seals shall provide sleeves of the proper diameters.

3.1.13.3 Fire-Rated Penetrations

Penetration of fire-rated walls, partitions, and floors shall be sealed as specified in Section 07 84 00 FIRESTOPPING.

3.1.13.4 Escutcheons

Finished surfaces where exposed piping, bare or insulated, pass through floors, walls, or ceilings, except in boiler, utility, or equipment rooms, shall be provided with escutcheons. Where sleeves project slightly from floors, special deep-type escutcheons shall be used. Escutcheon shall be secured to pipe or pipe covering.

3.1.14 Access Panels

Access panels shall be provided where indicated for all concealed valves, vents, controls, and additionally for items requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced and maintained or completely removed and replaced.

3.2 ELECTRICAL INSTALLATION

Install electrical equipment in accordance with NFPA 70 and manufacturers instructions.

3.3 CLEANING AND ADJUSTING

Pipes shall be cleaned free of scale and thoroughly flushed of all foreign matter. A temporary bypass shall be provided for all water coils to prevent flushing water from passing through coils. Strainers and valves shall be thoroughly cleaned. Prior to testing and balancing, air shall be removed from all water systems by operating the air vents. Temporary measures, such as piping the overflow from vents to a collecting vessel shall be taken to avoid water damage during the venting process. Air vents shall be plugged or capped after the system has been vented. Control valves and other miscellaneous equipment requiring adjustment shall be adjusted to setting indicated or directed.

3.4 FIELD TESTS

Field tests shall be conducted in the presence of the QC Manager or his designated representative to verify systems compliance with specifications. Any material, equipment, instruments, and personnel required for the test shall be provided by the Contractor.
3.4.1 Equipment and Component Isolation

Prior to testing, equipment and components that cannot withstand the tests shall be properly isolated.

3.4.2 Pressure Tests

Each piping system shall be hydrostatically tested at a pressure not less than 188 psig for period of time sufficient to inspect every joint in the system and in no case less than 2 hours. Test pressure shall be monitored by a currently calibrated test pressure gauge. Leaks shall be repaired and piping retested until test requirements are met. No leakage or reduction in gage pressure shall be allowed.

Leaks shall be repaired by rewelding or replacing pipe or fittings. Caulking of joints will not be permitted. Concealed and insulated piping shall be tested in place before concealing.

Submit for approval pressure tests reports covering the above specified piping pressure tests; describe the systems tested, test results, defects found and repaired, and signature of the pressure tests' director. Obtain approval from the QC Manager before concealing piping or applying insulation to tested and accepted piping.

3.4.3 Related Field Inspections and Testing

3.4.3.1 Piping Welds

Examination of Piping Welds is specified in the paragraph above entitled "Examination of Piping Welds".

3.4.3.2 HVAC TAB

Requirements for testing, adjusting, and balancing (TAB) of HVAC water piping, and associated equipment is specified in Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC.

3.5 INSTRUCTION TO GOVERNMENT PERSONNEL

Furnish the services of competent instructors to give full instruction to the designated Government personnel in the adjustment, operation, and maintenance, including pertinent safety requirements, of the chilled water, and hot water piping systems. Instructors shall be thoroughly familiar with all parts of the installation and shall be instructed in operating theory as well as practical operation and maintenance work. Submit a lesson plan for the instruction course for approval. The lesson plan and instruction course shall be based on the approved operation and maintenance data and maintenance manuals.

Conduct a training course for the operating staff and maintenance staff selected by the Contracting Officer. Give the instruction during the first regular work week after the equipment or system has been accepted and turned over to the Government for regular operation. The number of man-days (8 hours per day) of instruction furnished shall be one man-day. Use approximately half of the time for classroom instruction and the other time for instruction at the location of equipment or system.

When significant changes or modifications in the equipment or system are made under the terms of the contract, provide additional instruction to
acquaint the operating personnel with the changes or modifications.

-- End of Section --
SECTION 23 73 13.00 40
MODULAR INDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the
extent referenced. The publications are referred to within the text by the
basic designation only.

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)
AMCA 211 (2013; Rev 2017) Certified Ratings Program
 Product Rating Manual for Fan Air
 Performance
AMCA 300 (2014) Reverberant Room Method for Sound
 Testing of Fans

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)
AHRI 430 (2009) Central-Station Air-Handling Units

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING
ENGINEERS (ASHRAE)
ASHRAE 51 (2016) Laboratory Methods of Testing Fans
 for Aerodynamic Performance Rating
ASHRAE 52.2 (2012) Method of Testing General
 Ventilation Air-Cleaning Devices for
 Removal Efficiency by Particle Size

ASTM INTERNATIONAL (ASTM)
 Sheet, Zinc-Coated (Galvanized) or
 Zinc-Iron Alloy-Coated (Galvannealed) by
 the Hot-Dip Process

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)
 Balance Quality Requirements for Rotors in
 a Constant (Rigid) State – Part 1:
 Specification and Verification of Balance
 Tolerances

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)
NFPA 90A (2018) Standard for the Installation of
 Air Conditioning and Ventilating Systems
UNDERWRITERS LABORATORIES (UL)

UL 900 (2015) Standard for Air Filter Units

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that reviews the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Installation Drawings; G

SD-03 Product Data
 Equipment and Performance Data;

SD-06 Test Reports
 Final Test Reports

SD-07 Certificates
 Listing of Product Installations; G
 Certificates of Conformance; G
 Unit Cabinet; G
 Fan; G
 Drain Pans; G
 Insulation; G
 Plenums; G
 Spare Parts; G

SD-10 Operation and Maintenance Data
 Operation and Maintenance Manuals

SD-11 Closeout Submittals
 Warranty

1.3 QUALITY ASSURANCE

Submit listing of product installations for air handling units showing a minimum of five installed units, similar to those proposed for use, that have been in successful service for a minimum period of 5 years. Provide list that includes purchaser, address of installation, service organization, and date of installation.
1.3.1 Certification of Conformance

Submit certificates of conformance for the following items, showing conformance with the referenced standards contained in this section:

a. Unit Cabinet
b. Fan
c. Drain Pans
d. Insulation
e. Plenums
f. Spare Parts

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver, handle, and store equipments and accessories in a manner that prevents damage or deformity.

1.5 WARRANTY

Final acceptance is dependent upon providing the warranty, based on approved sample warranty, to the Contracting Officer, along with final test reports. Ensure Warranty is valid for a minimum of 2 years from the date of project closeout, showing Government as warranty recipient.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Submit equipment and performance data for air handling units. Provide data that consists of use life, total static pressure and coil face area classifications, and performance ratings.

Submit drawings and manuals that include a spare parts data sheet, with manufactures recommended stock levels.

2.2 COMPONENTS

2.2.1 Air Handling Unit (AHU)

Provide a central-station type, factory fabricated, and fully assembled air handling unit (AHU). Provide AHU that includes components and auxiliaries in accordance with AHRI 430. Balance AHU fan and motor to ISO 1940-1-2005.

Ensure the total static pressure and coil face area classification conforms to AMCA 99.

Fans with enlarged outlets are not permitted.

2.2.2 Unit Cabinet

Provide AHU cabinet that is suitable for pressure class shown and that has leaktight joints, closures, penetrations, and access provisions. Provide a cabinet that does not expand or contract perceptibly during starting and stopping of fans and that does not pulsate during operation. Reinforce
cabinet surfaces with deflections in excess of 0.004167 of unsupported span prior to acceptance. Stiffen pulsating panels, which produce low frequency noise due to diaphragming of unstable panel walls, to raise natural frequency to an easily attenuated level. Fabricate enclosure from continuous hot-dipped galvanized steel no lighter than 20 gage thickness, to match industry standard. Provide mill-galvanized sheet metal that conforms to ASTM A653/A653M and that is coated with not less than 1.25 ounces of zinc per square foot of two-sided surface. Provide mill-rolled structural steel that is hot-dip galvanized or primed and painted. Corrosion protect cut edges, burns, and scratches in galvanized surfaces. Provide primed and painted black carbon steel cabinet construction that complies with this specification.

Provide removable panels to access the interior of the unit cabinet. Provide seams that are welded, bolted or gasketed and sealed with a rubber-based mastic. Make entire floor as well as ceiling unit hot-dipped galvanized steel. Provide removable access doors on both sides of all access, filter, and fan sections for inspection and maintenance.

Interior surfaces of cabinets constructed of intact mill-galvanized steel require no further protection.

Provide cabinets with exterior surfaces constructed of mill-galvanized steel that are left unpainted.

Provide cabinets and casings that are double walled with 2 inch insulation. Provide a galvanized interior wall.

Ensure fan wheels are dynamically and statically balanced at the factory. Provide fan with RPM that is 25 percent less than the first critical speed. Provide fan shaft that is solid, ground and polished steel and coated with a rust inhibitor. Provide direct drive fans that are designed for 50 percent overload capacity. For variable air volume air handling units that are provided with variable frequency drives, have their fans balanced over the entire range of operation (20 percent - 100 percent RPM). Balancing fans of only 100 percent design of RPM is not acceptable for air handling units to be used with variable frequency drives.

Mount fans on isolation bases. Internally mount motors on same isolation bases and internally isolate fans and motors. Install flexible canvas ducts or a vibration absorbent fan discharge seal between fan and casings to ensure complete isolation. Provide flexible canvas ducts that comply with NFPA 90A.

Weigh fan and motor assembly at air handling unit manufacturer's factory for isolator selection. Statically and dynamically balance fan section assemblies. Fan section assemblies include fan wheels, shafts, bearings, drives, isolation bases and isolators. Allow isolators to free float when performing fan balance. Measure vibration at each fan shaft bearing in horizontal, vertical and axial directions.

Provide heavy duty, open drip-proof, 3-phase fan motors. Provide high efficiency motors.

Provide a marine-type, vapor proof service light in the fan segment. Provide 100 watt service light that is wired to an individual switch. Light requires 115 Volt, single phase, 60 Hertz service that is separate from the main power to the AHU. Provide a single 115 volt outlet at the light switch.
2.2.3 Fan

Provide an overall fan-section depth that is equal to or greater than the manufacturer's free-standing fan. Provide multiple direct drive fans.

Locate fan inlet where it provides not less than one-half fan-wheel diameter clearance from cabinet wall or adjacent fan inlet where double wheels are permitted.

2.2.4 Drain Pans

Provide intermediate-coil, 3-inch deep drip pans for each tiered coil bank.

Extend top pan 12-inches beyond face of coil, and extend bottom pan not less than 24-inches beyond face of coil. Where more than two pans are used, make pan extension proportional. Make adequate supports from the same type material as pans or hot-dip galvanized angle iron with isolation at interface. Use 22-gage AISI Type 304 corrosion-resistant steel for pan material, with silver-soldered joints. Minimum size of drain opening is 1-1/4 inches. Slope pan to drain.

Extend integral cabinet drain pan under all areas where condensate is collected and make watertight with welded or brazed joints, piped to drain. Provide corrosion protection in condensate collection area, and insulate against sweating. Provide minimum 14-gage Type 304 sheet metal, except that 16-gage double-drain-pan construction is acceptable.

Provide cooling coil ends that are enclosed by cabinet and are factory insulated against sweating or drain to a drain pan.

Provide drain pans that are double pan construction, thermally isolated from the exterior casing with 1-inch thick fiberglass insulation. Provide drain pans that slope to drain and drain substantially dry by gravity alone when drains are open.

Provide pans that have a double slope to the drain point.

2.2.5 Insulation

Provide unit that is internally fitted at the factory with a sound-attenuating, thermal-attenuating, fibrous-glass material not less than 2-inch thick. Ensure insulation effectiveness precludes any condensation on any exterior cabinet surface under conditions normal to the unit's installed location. Provide acoustic treatment that attenuates fan noise in compliance with specified noise criteria. Apply material to the cabinet with waterproof adhesives and permanent fasteners on 100 percent coverage basis. Provide adhesive and insulating material in accordance with NFPA 90A.

Provide insulated plenums.

2.2.6 Plenums

Provide plenums in the following minimum widths:

6-inches for mounting temperature controls and to separate two or more coils of different size mounted in series

12-inches for access sections
2.2.7 Coils

2.2.7.1 Coil Section

Provide coil section that encases cooling coils and drain pipes. Arrange coils for horizontal air flow. Provide intermediate drain pans for multiple coils installation. Completely enclose coil headers with the insulated casing with only connections extended through the cabinet.

2.2.7.2 Coil Pressure and Temperature Ratings

Provide coils that are designed for the following fluid operating pressures and temperatures:

<table>
<thead>
<tr>
<th>Service</th>
<th>Pressure</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Water</td>
<td>200 PSI</td>
<td>250 degrees F</td>
</tr>
<tr>
<td>Chilled Water</td>
<td>200 PSI</td>
<td>40 degrees F</td>
</tr>
</tbody>
</table>

2.2.7.3 Coil Casings

Provide coils that are factory tested, dehydrated, vacuum tested, purged with inert gas, and sealed prior to shipment to the job site.

Provide stainless steel casings. Provide cast iron, brass, or copper coil headers. Fit water coil headers with 0.25 inch oops spring-loaded plug drains and vent petcocks. Provide automatic air vents with ball type isolation valves for each coil piped to the drain pan.

2.2.7.4 Chilled Water coils

Provide 0.625 inch outside diameter copper tubing for coils. Provide fins that are aluminum or copper mechanically bonded by tubing expansion with a maximum spacing of 12 fins per 1-inch unless otherwise noted. Provide coils that have supply and return connections on the same end. Provide a maximum of four coil rows.

2.2.7.5 Hot Water Coils

Provide heating coils that have copper tubing aluminum or copper fins.

2.2.7.6 Drainable Coils

Provide drainable coils that are capable of being purged free of water with compressed air.

2.2.8 Eliminators

Provide eliminators that are SMACNA three-break, hooked-edge design, constructed of reinforced 16 gage galvanized steel with assembled brazed joints. Provide easily removable eliminator sections for cleaning from side of the air handling unit without causing partial or complete disassembly of the Air Handler Unit casing.
2.2.9 Filters

2.2.9.1 Filter Housing

Provide factory fabricated filter section of the same construction and finish as unit casings. Provide filter sections that have filter guides and full height, double wall, hinged and removable access doors for filter removal. Provide air sealing gaskets to prevent air bypass around filters. Provide visible identification on media frames showing model number and airflow direction. Where a filter bank is indicated or required, provide a means of sealing to prevent bypass of unfiltered air. Ensure filters perform in accordance with ASHRAE 52.2.

2.2.9.2 Replaceable Air Filters

Select filters conforming to UL 900, Class 2. Provide permanent frames with replaceable media, 4-inch thickness, size as indicated. Filter shall meet minimum MERV 13 requirements.

PART 3 EXECUTION

3.1 INSTALLATION

Install equipment in accordance with manufacturer's recommendations.

Provide installation drawings in accordance with referenced standards in this section.

3.1.1 Coordination

Coordinate the size and location of concrete equipment pads, variable frequency drives, control and electrical requirements.

3.1.2 Temporary Construction Filters

Have temporary construction filters in place during normal building construction whenever the air handling units are run for general ventilation, building dehumidification, and for other purposes during construction. Install two (2) layers of blanket filter at a time. Replace temporary construction filters as required during construction and after completion of duct system cleaning.

After systems have been cleaned and temporary construction filters are removed, and before test and balance operations are started, install set of final filters. Avoid unnecessary filter loading with construction dust, do not have final filters in place while general building construction is taking place. Clean permanent filter bank before testing and balancing.

3.2 FIELD QUALITY CONTROL

3.2.1 Acceptance

Prior to final acceptance, use dial indicator gauges to demonstrate that fan and motor are aligned as specified.

3.2.2 AHU Testing

Conduct performance test and rate AHU and components in accordance with AMCA 211, AMCA 300, and ASHRAE 51. Provide AHU ratings in accordance with
AHRI 430.

Provide final test reports to the Contracting Officer. Provide reports with a cover letter/sheet clearly marked with the System name, Date, and the words "Final Test Reports - Forward to the Systems Engineer/Condition Monitoring Office/Predictive Testing Group for inclusion in the Maintenance Database."

Perform air handling unit start-up in the presence of the Contracting Officer.

3.3 CLOSEOUT ACTIVITIES

3.3.1 Operation And Maintenance

Submit operation and maintenance manuals prior to testing the air handling units. Update and resubmit data for final approval no later than 30 calendar days prior to contract completion.

3.3.2 Acceptance

With Warranty and final test reports, provide a cover letter/sheet clearly marked with the system name, date, and the words "Equipment Warranty" - "Forward to the Systems Engineer/Condition Monitoring Office/Predictive Testing Group for inclusion in the Maintenance Database."

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA 250 (2014) Enclosures for Electrical Equipment (1000 Volts Maximum)

NEMA ICS 2 (2000; R 2005; Errata 2008) Standard for Controllers, Contactors, and Overload Relays Rated 600 V

NEMA ICS 6 (1993; R 2016) Industrial Control and Systems: Enclosures

NEMA KS 1 (2013) Enclosed and Miscellaneous Distribution Equipment Switches (600 V Maximum)

NEMA MG 1 (2016; SUPP 2016) Motors and Generators

Medium AC Squirrel-Cage Polyphase Induction Motors

NEMA RN 1 (2005; R 2013) Polyvinyl-Chloride (PVC) Externally Coated Galvanized Rigid Steel Conduit and Intermediate Metal Conduit

NEMA WD 1 (1999; R 2015) Standard for General Color Requirements for Wiring Devices

NEMA WD 6 (2016) Wiring Devices Dimensions Specifications

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3; TIA 17-4; TIA 17-5; TIA 17-6; TIA 17-7; TIA 17-8; TIA 17-9; TIA 17-10; TIA 17-11; TIA 17-12; TIA 17-13; TIA 17-14) National Electrical Code

TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA)

TIA-607 (2011b) Generic Telecommunications Bonding and Grounding (Earthing) for Customer Premises

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910.147 Control of Hazardous Energy (Lock Out/Tag Out)

UNDERWRITERS LABORATORIES (UL)

UL 1 (2005; Reprint Jul 2012) Standard for Flexible Metal Conduit

UL 1242 (2006; Reprint Mar 2014) Standard for Electrical Intermediate Metal Conduit -- Steel

UL 1449 (2014; Reprint Mar 2016) UL Standard for Safety Surge Protective Devices
UL 20 (2010; Reprint Feb 2012) General-Use Snap Switches

UL 360 (2013; Reprint Jan 2015) Liquid-Tight Flexible Steel Conduit

UL 467 (2013) Grounding and Bonding Equipment

UL 486A-486B (2013; Reprint Jan 2016) Wire Connectors

UL 486C (2013; Reprint Jan 2016) Splicing Wire Connectors

UL 498 (2012; Reprint Jul 2016) UL Standard for Safety Attachment Plugs and Receptacles

UL 50 (2007; Reprint Apr 2012) Enclosures for Electrical Equipment, Non-environmental Considerations

UL 510 (2005; Reprint Jul 2013) Polyvinyl Chloride, Polyethylene and Rubber Insulating Tape

UL 514A (2013) Metallic Outlet Boxes

UL 514B (2012; Reprint Nov 2014) Conduit, Tubing and Cable Fittings

UL 514C (2014; Reprint Dec 2014) Nonmetallic Outlet Boxes, Flush-Device Boxes, and Covers

UL 6 (2007; Reprint Nov 2014) Electrical Rigid Metal Conduit-Steel

UL 651 (2011; Reprint Jun 2016) UL Standard for Safety Schedule 40 and 80 Rigid PVC Conduit and Fittings

UL 67 (2009; Reprint Jun 2016) UL Standard for Safety Panelboards

UL 797 (2007; Reprint Dec 2012) Electrical Metallic Tubing -- Steel

UL 83 (2014) Thermoplastic-Insulated Wires and Cables

1.2 DEFINITIONS

Unless otherwise specified or indicated, electrical and electronics terms used in these specifications, and on the drawings, are as defined in IEEE 100.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00.

SD-02 Shop Drawings
- Panelboards; G
- Marking strips drawings; G

SD-03 Product Data
- Receptacles; G
- Circuit breakers; G
- Switches; G
- Manual motor starters; G
- Telecommunications Grounding Busbar; G
- Surge protective devices; G
- Include performance and characteristic curves.

SD-06 Test Reports
- 600-volt wiring test; G
- Grounding system test; G
- Ground-fault receptacle test; G

SD-10 Operation and Maintenance Data
- Electrical Systems, Data Package 5; G

Submit operation and maintenance data in accordance with Section 01 78 23, OPERATION AND MAINTENANCE DATA and as specified herein.
1.4 QUALITY ASSURANCE

1.4.1 Regulatory Requirements

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" or "must" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer. Provide equipment, materials, installation, and workmanship in accordance with the mandatory and advisory provisions of NFPA 70 unless more stringent requirements are specified or indicated.

1.4.2 Standard Products

Provide materials and equipment that are products of manufacturers regularly engaged in the production of such products which are of equal material, design and workmanship and:

a. Have been in satisfactory commercial or industrial use for 2 years prior to bid opening including applications of equipment and materials under similar circumstances and of similar size.

b. Have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2-year period.

c. Where two or more items of the same class of equipment are required, provide products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in this section.

1.4.2.1 Material and Equipment Manufacturing Date

Products manufactured more than 3 years prior to date of delivery to site are not acceptable.

1.5 MAINTENANCE

1.5.1 Electrical Systems

Submit operation and maintenance manuals for electrical systems that provide basic data relating to the design, operation, and maintenance of the electrical distribution system for the building. Include the following:

a. Single line diagram of the "as-built" building electrical system.

b. Schematic diagram of electrical control system (other than HVAC, covered elsewhere).

c. Manufacturers' operating and maintenance manuals on active electrical equipment.

1.6 WARRANTY

Provide equipment items supported by service organizations that are reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.
PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

As a minimum, meet requirements of UL, where UL standards are established
for those items, and requirements of NFPA 70 for all materials, equipment,
and devices.

2.2 CONDUIT AND FITTINGS

Conform to the following:

2.2.1 Rigid Metallic Conduit

2.2.1.1 Rigid, Threaded Zinc-Coated Steel Conduit

ANSI C80.1, UL 6.

2.2.2 Rigid Nonmetallic Conduit

PVC Type EPC-40 in accordance with NEMA TC 2, UL 651.

2.2.3 Intermediate Metal Conduit (IMC)

UL 1242, zinc-coated steel only.

2.2.4 Electrical, Zinc-Coated Steel Metallic Tubing (EMT)

UL 797, ANSI C80.3.

2.2.5 Plastic-Coated Rigid Steel and IMC Conduit

NEMA RN 1, Type 40 (40 mils thick).

2.2.6 Flexible Metal Conduit

UL 1.

2.2.6.1 Liquid-Tight Flexible Metal Conduit, Steel

UL 360.

2.2.7 Fittings for Metal Conduit, EMT, and Flexible Metal Conduit

UL 514B. Ferrous fittings: cadmium- or zinc-coated in accordance with
UL 514B.

2.2.7.1 Fittings for Rigid Metal Conduit and IMC

Threaded-type. Split couplings unacceptable.

2.2.7.2 Fittings for EMT

Steel compression type.

2.2.8 Fittings for Rigid Nonmetallic Conduit

NEMA TC 3 for PVC, and UL 514B.
2.3 OUTLET BOXES AND COVERS

UL 514A, cadmium- or zinc-coated, if ferrous metal. UL 514C, if nonmetallic.

2.3.1 Floor Outlet Boxes

Provide the following:

a. Boxes: nonadjustable and concrete tight.

b. Each outlet: consisting of nonmetallic or cast-metal body with threaded openings, or sheet-steel body with knockouts for conduits, brass flange ring, and cover plate with 1 inch threaded plug.

c. Telecommunications outlets: consisting of flush, aluminum or stainless steel housing with a receptacle as specified and 1 inch bushed side opening.

d. Receptacle outlets: consisting of flush aluminum or stainless steel housing with duplex-type receptacle as specified herein.

e. Provide gaskets where necessary to ensure watertight installation.

2.3.2 Outlet Boxes for Telecommunications System

Provide the following:

a. Standard type 4 inches square by 2 1/8 inches deep.

b. Depth of boxes: large enough to allow manufacturers' recommended conductor bend radii.

2.4 CABINETS, JUNCTION BOXES, AND PULL BOXES

Volume greater than 100 cubic inches, UL 50, hot-dip, zinc-coated, if sheet steel.

2.5 WIRES AND CABLES

Provide wires and cables in accordance applicable requirements of NFPA 70 and UL for type of insulation, jacket, and conductor specified or indicated. Do not use wires and cables manufactured more than 12 months prior to date of delivery to site.

2.5.1 Conductors

Provide the following:

a. Conductor sizes and capacities shown are based on copper, unless indicated otherwise.

b. Conductors No. 8 AWG and larger diameter: stranded.

c. Conductors No. 10 AWG and smaller diameter: solid.

d. Conductors for remote control, alarm, and signal circuits, classes 1, 2, and 3: stranded unless specifically indicated otherwise.
2.5.1.1 Minimum Conductor Sizes

Provide minimum conductor size in accordance with the following:

a. Branch circuits: No. 12 AWG.
b. Class 1 remote-control and signal circuits: No. 14 AWG.
c. Class 2 low-energy, remote-control and signal circuits: No. 16 AWG.
d. Class 3 low-energy, remote-control, alarm and signal circuits: No. 22 AWG.

2.5.2 Color Coding

Provide color coding for service, feeder, branch, control, and signaling circuit conductors.

2.5.2.1 Ground and Neutral Conductors

Provide color coding of ground and neutral conductors as follows:

a. Grounding conductors: Green.

c. Exception, where neutrals of more than one system are installed in same raceway or box, other neutrals color coding: white with a different colored (not green) stripe for each.

2.5.2.2 Ungrounded Conductors

Provide color coding of ungrounded conductors in different voltage systems as follows:

a. 208/120 volt, three-phase
 (1) Phase A - black
 (2) Phase B - red
 (3) Phase C - blue

2.5.3 Insulation

Unless specified or indicated otherwise or required by NFPA 70, provide power and lighting wires rated for 600-volts, Type THWN/THHN conforming to UL 83, except that grounding wire may be type TW conforming to UL 83; remote-control and signal circuits: Type TW or TF, conforming to UL 83. Where lighting fixtures require 90-degree Centigrade (C) conductors, provide only conductors with 90-degree C insulation or better.

2.6 SPLICES AND TERMINATION COMPONENTS

UL 486A-486B for wire connectors and UL 510 for insulating tapes. Connectors for No. 10 AWG and smaller diameter wires: insulated,
pressure-type in accordance with UL 486A-486B or UL 486C (twist-on splicing connector). Provide solderless terminal lugs on stranded conductors.

2.7 DEVICE PLATES

Provide the following:

a. UL listed, one-piece device plates for outlets to suit the devices installed.

b. For metal outlet boxes, plates on unfinished walls: zinc-coated sheet steel or cast metal having round or beveled edges.

c. For nonmetallic boxes and fittings, other suitable plates may be provided.

d. Plates on finished walls: satin finish stainless steel or brushed-finish aluminum, minimum 0.03 inch thick.

e. Screws: machine-type with countersunk heads in color to match finish of plate.

f. Sectional type device plates are not be permitted.

g. Plates installed in wet locations: gasketed and UL listed for "wet locations."

2.8 SWITCHES

2.8.1 Toggle Switches

NEMA WD 1, UL 20, single pole, three-way, totally enclosed with bodies of thermoplastic or thermoset plastic and mounting strap with grounding screw. Include the following:

a. Handles: ivory thermoplastic.

b. Wiring terminals: screw-type, side-wired.

c. Contacts: silver-cadmium and contact arm - one-piece copper alloy.

d. Switches: rated quiet-type ac only, 120/277 volts, with current rating and number of poles indicated.

2.8.2 Disconnect Switches

NEMA KS 1. Provide heavy duty-type switches where indicated, where switches are rated higher than 240 volts, and for double-throw switches. Utilize Class R fuseholders and fuses for fused switches, unless indicated otherwise. Provide horsepower rated for switches serving as the motor-disconnect means. Provide switches in NEMA, enclosure as indicated per NEMA ICS 6.

2.9 RECEPTACLES

Provide the following:

a. UL 498, hard use (also designated heavy-duty), grounding-type.
b. Ratings and configurations: as indicated.

c. Bodies: ivory as per NEMA WD 1.

d. Face and body: thermoplastic supported on a metal mounting strap.

e. Dimensional requirements: per NEMA WD 6.

f. Screw-type, side-wired wiring terminals or of the solderless pressure type having suitable conductor-release arrangement.

g. Grounding pole connected to mounting strap.

h. The receptacle: containing triple-wipe power contacts and double or triple-wipe ground contacts.

2.9.1 Weatherproof Receptacles

Provide receptacles, UL listed for use in "wet locations". Include cast metal box with gasketed, hinged, lockable and weatherproof while-in-use, polycarbonate, UV resistant/stabilized cover plate.

2.9.2 Ground-Fault Circuit Interrupter Receptacles

UL 943, duplex type for mounting in standard outlet box. Provide device capable of detecting current leak of 6 milliamperes or greater and tripping per requirements of UL 943 for Class A ground-fault circuit interrupter devices. Provide screw-type, side-wired wiring terminals or pre-wired (pigtail) leads.

2.10 PANELBOARDS

Provide panelboards in accordance with the following:

a. UL 67 and UL 50.

b. Panelboards for use as service disconnecting: additionally conform to UL 869A.

d. Designed such that individual breakers can be removed without disturbing adjacent units or without loosening or removing supplemental insulation supplied as means of obtaining clearances as required by UL.

e. Where "space only" is indicated, make provisions for future installation of breaker sized as indicated.

f. Directories: indicate load served by each circuit of panelboard.

g. Directories: indicate source of service (upstream panel, switchboard, motor control center, etc.) to panelboard.

h. Type directories and mount in holder behind transparent protective covering.

i. Panelboard nameplates: provided in accordance with paragraph FIELD FABRICATED NAMEPLATES.
2.10.1 Enclosure

Provide panelboard enclosure in accordance with the following:

a. UL 50.

b. Cabinets mounted outdoors or flush-mounted: hot-dipped galvanized after fabrication.

c. Cabinets: painted in accordance with paragraph PAINTING.

d. Front edges of cabinets: form-flanged or fitted with structural shapes welded or riveted to the sheet steel, for supporting the panelboard front.

e. All cabinets: fabricated such that no part of any surface on the finished cabinet deviates from a true plane by more than 1/8 inch.

f. Holes: provided in the back of indoor surface-mounted cabinets, with outside spacers and inside stiffeners, for mounting the cabinets with a 1/2 inch clear space between the back of the cabinet and the wall surface.

g. Flush doors: mounted on hinges that expose only the hinge roll to view when the door is closed.

h. Each door: fitted with a combined catch and lock, except that doors over 24 inches long provided with a three-point latch having a knob with a T-handle, and a cylinder lock.

i. Keys: two provided with each lock, with all locks keyed alike.

j. Finished-head cap screws: provided for mounting the panelboard fronts on the cabinets.

2.10.2 Panelboard Buses

Support bus bars on bases independent of circuit breakers. Design main buses and back pans so that breakers may be changed without machining, drilling, or tapping. Provide isolated neutral bus in each panel for connection of circuit neutral conductors. Provide separate ground bus identified as equipment grounding bus per UL 67 for connecting grounding conductors; bond to steel cabinet. All buses shall be copper.

2.10.3 Circuit Breakers

UL 489, thermal magnetic-type having a minimum short-circuit current rating equal to the short-circuit current rating of the panelboard in which the circuit breaker will be mounted. Breaker terminals: UL listed as suitable for type of conductor provided. Where indicated on the drawings, provide circuit breakers with shunt trip devices. Series rated circuit breakers and plug-in circuit breakers are unacceptable.

2.10.3.1 Multipole Breakers

Provide common trip-type with single operating handle. Design breaker such that overload in one pole automatically causes all poles to open. Maintain phase sequence throughout each panel so that any three adjacent breaker poles are connected to Phases A, B, and C, respectively.
2.10.3.2 Circuit Breakers for HVAC Equipment

Provide circuit breakers for HVAC equipment having motors (group or individual) marked for use with HACR type and UL listed as HACR type.

2.11 MOTORS

Provide motors in accordance with the following:

a. NEMA MG 1.

b. Hermetic-type sealed motor compressors: Also comply with UL 984.

c. Provide the size in terms of HP, or kVA, or full-load current, or a combination of these characteristics, and other characteristics, of each motor as indicated or specified.

d. Determine specific motor characteristics to ensure provision of correctly sized starters and overload heaters.

e. Rate motors for operation on 208-volt, 3-phase circuits with a terminal voltage rating of 200 volts, and those for operation on 480-volt, 3-phase circuits with a terminal voltage rating of 460 volts.

f. Use motors designed to operate at full capacity with voltage variation of plus or minus 10 percent of motor voltage rating.

g. Unless otherwise indicated, use continuous duty type motors if rated 1 HP and above.

h. Where fuse protection is specifically recommended by the equipment manufacturer, provide fused switches in lieu of non-fused switches indicated.

2.11.1 High Efficiency Single-Phase Motors

Single-phase fractional-horsepower alternating-current motors: high efficiency types corresponding to the applications listed in NEMA MG 11. In exception, for motor-driven equipment with a minimum seasonal or overall efficiency rating, such as a SEER rating, provide equipment with motor to meet the overall system rating indicated.

2.11.2 Premium Efficiency Polyphase Motors

Select polyphase motors based on high efficiency characteristics relative to typical characteristics and applications as listed in NEMA MG 10. In addition, continuous rated, polyphase squirrel-cage medium induction motors must meet the requirements for premium efficiency electric motors in accordance with NEMA MG 1, including the NEMA full load efficiency ratings. In exception, for motor-driven equipment with a minimum seasonal or overall efficiency rating, such as a SEER rating, provide equipment with motor to meet the overall system rating indicated.

2.11.3 Motor Sizes

Provide size for duty to be performed, not exceeding the full-load nameplate current rating when driven equipment is operated at specified capacity under most severe conditions likely to be encountered. When motor
size provided differs from size indicated or specified, make adjustments to wiring, disconnect devices, and branch circuit protection to accommodate equipment actually provided. Provide controllers for motors rated 1-hp and above with electronic phase-voltage monitors designed to protect motors from phase-loss, undervoltage, and overvoltage. Provide protection for motors from immediate restart by a time adjustable restart relay.

2.11.4 Wiring and Conduit

Provide internal wiring for components of packaged equipment as an integral part of the equipment. Provide power wiring and conduit for field-installed equipment as specified herein. Power wiring and conduit: conform to the requirements specified herein. Control wiring: provided under, and conform to, the requirements of the section specifying the associated equipment.

2.12 MANUAL MOTOR STARTERS (MOTOR RATED SWITCHES)

Single pole designed for surface mounting with overload protection and pilot lights.

2.12.1 Pilot Lights

Provide yoke-mounted, seven element LED cluster light module. Color: in accordance with NEMA ICS 2.

2.13 LOCKOUT REQUIREMENTS

Provide disconnecting means capable of being locked out for machines and other equipment to prevent unexpected startup or release of stored energy in accordance with 29 CFR 1910.147. Comply with requirements of Division 23, "Mechanical" for mechanical isolation of machines and other equipment.

2.14 GROUNDING AND BONDING EQUIPMENT

2.14.1 Ground Rods

UL 467. Ground rods: copper-clad steel, with minimum diameter of 3/4 inch and minimum length 10 feet. Sectional ground rods are permitted.

2.14.2 Ground Bus

Copper ground bus: provided in the electrical equipment rooms as indicated.

2.14.3 Telecommunications Grounding Busbar

Provide corrosion-resistant grounding busbar suitable for indoor installation in accordance with TIA-607. Busbars: plated for reduced contact resistance. If not plated, clean the busbar prior to fastening the conductors to the busbar and apply an anti-oxidant to the contact area to control corrosion and reduce contact resistance. Provide a telecommunications main grounding busbar (TMGB) in the telecommunications entrance facility. The telecommunications main grounding busbar (TMGB): sized in accordance with the immediate application requirements and with consideration of future growth. Provide telecommunications grounding busbars with the following:

a. Predrilled copper busbar provided with holes for use with standard sized lugs,
b. Minimum dimensions of 0.25 in thick by 4 in wide for the TMGB with length as indicated;

c. Listed by a nationally recognized testing laboratory.

2.15 MANUFACTURER'S NAMEPLATE

Provide on each item of equipment a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

2.16 FIELD FABRICATED NAMEPLATES

Provide field fabricated nameplates in accordance with the following:

a. ASTM D709.

b. Provide laminated plastic nameplates for each equipment enclosure, relay, switch, and device; as specified or as indicated on the drawings.

c. Each nameplate inscription: identify the function and, when applicable, the position.

d. Nameplates: melamine plastic, 0.125 inch thick, white with black center core.

e. Surface: matte finish. Corners: square. Accurately align lettering and engrave into the core.

f. Minimum size of nameplates: one by 2.5 inches.

g. Lettering size and style: a minimum of 0.25 inch high normal block style.

2.17 WARNING SIGNS

Provide warning signs for flash protection in accordance with NFPA 70E and NEMA Z535.4 for switchboards, panelboards, industrial control panels, and motor control centers that are in other than dwelling occupancies and are likely to require examination, adjustment, servicing, or maintenance while energized. Provide field installed signs to warn qualified persons of potential electric arc flash hazards when warning signs are not provided by the manufacturer. Provide marking that is clearly visible to qualified persons before examination, adjustment, servicing, or maintenance of the equipment.

2.18 FIRESTOPPING MATERIALS

Provide firestopping around electrical penetrations as required.

2.19 SURGE PROTECTIVE DEVICES

Provide parallel type surge protective devices (SPD) which comply with UL 1449 at the service entrance, panelboards. Provide surge protectors in a NEMA 1 enclosure per NEMA ICS 6. Use Type 1 or Type 2 SPD and connect on the load side of a dedicated circuit breaker.
Provide the following modes of protection:

FOR SINGLE PHASE AND THREE PHASE WYE CONNECTED SYSTEMS-
 Phase to phase (L-L)
 Each phase to neutral (L-N)
 Neutral to ground (N-G)
 Phase to ground (L-G)

SPDs at the service entrance: provide with a minimum surge current rating of 80,000 amperes for L-L mode minimum and 40,000 amperes for other modes (L-N, L-G, and N-G) and downstream SPDs rated 40,000 amperes for L-L mode minimum and 20,000 amperes for other modes (L-N, L-G, and N-G).

Provide SPDs. Maximum L-N, L-G, and N-G Voltage Protection Rating:
 700V for 208Y/120V, three phase system
Maximum L-L Voltage Protection Rating:
 1,200V for 208Y/120V, three phase system

The minimum MCOV (Maximum Continuous Operating Voltage) rating for L-N and L-G modes of operation: 120% of nominal voltage for 240 volts and below.

2.20 FACTORY APPLIED FINISH

Provide factory-applied finish on electrical equipment in accordance with the following:

a. NEMA 250 corrosion-resistance test and the additional requirements as specified herein.

b. Interior and exterior steel surfaces of equipment enclosures: thoroughly cleaned followed by a rust-inhibitive phosphatizing or equivalent treatment prior to painting.

c. Exterior surfaces: free from holes, seams, dents, weld marks, loose scale or other imperfections.

d. Interior surfaces: receive not less than one coat of corrosion-resisting paint in accordance with the manufacturer's standard practice.

e. Exterior surfaces: primed, filled where necessary, and given not less than two coats baked enamel with semigloss finish.

g. Provide manufacturer's coatings for touch-up work and as specified in paragraph FIELD APPLIED PAINTING.

PART 3 EXECUTION

3.1 INSTALLATION

Electrical installations, including weatherproof and hazardous locations and ducts, plenums and other air-handling spaces: conform to requirements of NFPA 70 and IEEE C2 and to requirements specified herein.
3.1.1 Underground Service

Underground service conductors and associated conduit: continuous from service entrance equipment to outdoor power system connection.

3.1.2 Service Entrance Identification

Service entrance disconnect devices, switches, and enclosures: labeled and identified as such.

3.1.2.1 Labels

Wherever work results in service entrance disconnect devices in more than one enclosure, as permitted by NFPA 70, label each enclosure, new and existing, as one of several enclosures containing service entrance disconnect devices. Label, at minimum: indicate number of service disconnect devices housed by enclosure and indicate total number of enclosures that contain service disconnect devices. Provide laminated plastic labels conforming to paragraph FIELD FABRICATED NAMEPLATES. Use lettering of at least 0.25 inch in height, and engrave on black-on-white matte finish. Service entrance disconnect devices in more than one enclosure: provided only as permitted by NFPA 70.

3.1.3 Wiring Methods

Provide insulated conductors installed in rigid steel conduit, IMC, rigid nonmetallic conduit, or EMT, except where specifically indicated or specified otherwise or required by NFPA 70 to be installed otherwise. Grounding conductor: separate from electrical system neutral conductor. Provide insulated green equipment grounding conductor for circuit(s) installed in conduit and raceways. Minimum conduit size: 1/2 inch in diameter for low voltage lighting and power circuits. Vertical distribution in multiple story buildings: made with metal conduit in fire-rated shafts, with metal conduit extending through shafts for minimum distance of 6 inches. Firestop conduit which penetrates fire-rated walls, fire-rated partitions, or fire-rated floors as required.

3.1.3.1 Pull Wire

Install pull wires in empty conduits. Pull wire: plastic having minimum 200-pound force tensile strength. Leave minimum 36 inches of slack at each end of pull wire.

3.1.4 Conduit Installation

Unless indicated otherwise, conceal conduit under floor slabs and within finished walls, ceilings, and floors. Keep conduit minimum 6 inches away from parallel runs of flues and steam or hot water pipes. Install conduit parallel with or at right angles to ceilings, walls, and structural members where located above accessible ceilings and where conduit will be visible after completion of project.

3.1.4.1 Restrictions Applicable to EMT

a. Do not install underground.

b. Do not encase in concrete, mortar, grout, or other cementitious materials.
c. Do not use in areas subject to severe physical damage including but not limited to equipment rooms where moving or replacing equipment could physically damage the EMT.

d. Do not use in hazardous areas.

e. Do not use outdoors.

f. Do not use in fire pump rooms.

3.1.4.2 Restrictions Applicable to Nonmetallic Conduit

a. PVC Schedule 40 and PVC Schedule 80

(1) Do not use in areas where subject to severe physical damage, including but not limited to, mechanical equipment rooms, electrical equipment rooms, hospitals, power plants, missile magazines, and other such areas.

(2) Do not use in hazardous (classified) areas.

(3) Do not use in fire pump rooms.

(4) Do not use in penetrating fire-rated walls or partitions, or fire-rated floors.

(5) Do not use above grade, except where allowed in this section for rising through floor slab or indicated otherwise.

3.1.4.3 Restrictions Applicable to Flexible Conduit

Use only as specified in paragraph FLEXIBLE CONNECTIONS.

3.1.4.4 Underground Conduit

Plastic-coated rigid steel; plastic-coated steel IMC; PVC, Type EPC-40. Convert nonmetallic conduit, other than PVC Schedule 40 or 80, to plastic-coated rigid, or IMC, steel conduit before rising through floor slab. Plastic coating: extend minimum 6 inches above floor.

3.1.4.5 Conduit for Circuits Rated Greater Than 600 Volts

Rigid metal conduit or IMC only.

3.1.4.6 Conduit Support

Support conduit by pipe straps, wall brackets, threaded rod conduit hangers, or ceiling trapeze. Fasten by wood screws to wood; by toggle bolts on hollow masonry units; by concrete inserts or expansion bolts on concrete or brick; and by machine screws, welded threaded studs, or spring-tension clamps on steel work. Threaded C-clamps may be used on rigid steel conduit only. Do not weld conduits or pipe straps to steel structures. Do not exceed one-fourth proof test load for load applied to fasteners. Provide vibration resistant and shock-resistant fasteners attached to concrete ceiling. Do not cut main reinforcing bars for any holes cut to depth of more than 1 1/2 inches in reinforced concrete beams or to depth of more than 3/4 inch in concrete joints. Fill unused holes. In partitions of light steel construction, use sheet metal screws. In suspended-ceiling
construction, run conduit above ceiling. Do not support conduit by ceiling support system. Conduit and box systems: supported independently of both (a) tie wires supporting ceiling grid system, and (b) ceiling grid system into which ceiling panels are placed. Do not share supporting means between electrical raceways and mechanical piping or ducts. Coordinate installation with above-ceiling mechanical systems to assure maximum accessibility to all systems. Spring-steel fasteners may be used for lighting branch circuit conduit supports in suspended ceilings in dry locations. Where conduit crosses building expansion joints, provide suitable expansion fitting that maintains conduit electrical continuity by bonding jumpers or other means. For conduits greater than 2 1/2 inches inside diameter, provide supports to resist forces of 0.5 times the equipment weight in any direction and 1.5 times the equipment weight in the downward direction.

3.1.4.7 Directional Changes in Conduit Runs

Make changes in direction of runs with symmetrical bends or cast-metal fittings. Make field-made bends and offsets with hickey or conduit-bending machine. Do not install crushed or deformed conduits. Avoid trapped conduits. Prevent plaster, dirt, or trash from lodging in conduits, boxes, fittings, and equipment during construction. Free clogged conduits of obstructions.

3.1.4.8 Locknuts and Bushings

Fasten conduits to sheet metal boxes and cabinets with two locknuts where required by NFPA 70, where insulated bushings are used, and where bushings cannot be brought into firm contact with the box; otherwise, use at least minimum single locknut and bushing. Provide locknuts with sharp edges for digging into wall of metal enclosures. Install bushings on ends of conduits, and provide insulating type where required by NFPA 70.

3.1.4.9 Flexible Connections

Provide flexible steel conduit between 3 and 6 feet in length for recessed and semi-recessed lighting fixtures; for equipment subject to vibration, noise transmission, or movement; and for motors. Install flexible conduit to allow 20 percent slack. Minimum flexible steel conduit size: 1/2 inch diameter. Provide liquidtight flexible conduit in wet and damp locations for equipment subject to vibration, noise transmission, movement or motors. Provide separate ground conductor across flexible connections.

3.1.5 Boxes, Outlets, and Supports

Provide boxes in wiring and raceway systems wherever required for pulling of wires, making connections, and mounting of devices or fixtures. Boxes for metallic raceways: cast-metal, hub-type when located in wet locations, when surface mounted on outside of exterior surfaces, when surface mounted on interior walls exposed up to 7 feet above floors and walkways, and when specifically indicated. Boxes in other locations: sheet steel, except that aluminum boxes may be used with aluminum conduit. Provide each box with volume required by NFPA 70 for number of conductors enclosed in box. Boxes for mounting lighting fixtures: minimum 4 inches square, or octagonal, except that smaller boxes may be installed as required by fixture configurations, as approved. Boxes for use in masonry-block or tile walls: square-cornered, tile-type, or standard boxes having square-cornered, tile-type covers. Provide gaskets for cast-metal boxes installed in wet locations and boxes installed flush with outside of
exterior surfaces. Provide separate boxes for flush or recessed fixtures when required by fixture terminal operating temperature; provide readily removable fixtures for access to boxes unless ceiling access panels are provided. Support boxes and pendants for surface-mounted fixtures on suspended ceilings independently of ceiling supports. Fasten boxes and supports with wood screws on wood, with bolts and expansion shields on concrete or brick, with toggle bolts on hollow masonry units, and with machine screws or welded studs on steel. In open overhead spaces, cast boxes threaded to raceways need not be separately supported except where used for fixture support; support sheet metal boxes directly from building structure or by bar hangers. Where bar hangers are used, attach bar to raceways on opposite sides of box, and support raceway with approved-type fastener maximum 24 inches from box. When penetrating reinforced concrete members, avoid cutting reinforcing steel.

3.1.5.1 Boxes

Boxes for use with raceway systems: minimum 1 1/2 inches deep, except where shallower boxes required by structural conditions are approved. Boxes for other than lighting fixture outlets: minimum 4 inches square, except that 4 by 2 inch boxes may be used where only one raceway enters outlet. Telecommunications outlets: a minimum of 4 11/16 inches square by 2 1/8 inches deep. Mount outlet boxes flush in finished walls.

3.1.5.2 Pull Boxes

Construct of at least minimum size required by NFPA 70 of code-gauge aluminum or galvanized sheet steel, except where cast-metal boxes are required in locations specified herein. Provide boxes with screw-fastened covers. Where several feeders pass through common pull box, tag feeders to indicate clearly electrical characteristics, circuit number, and panel designation.

3.1.5.3 Extension Rings

Extension rings are not permitted for new construction. Use only on existing boxes in concealed conduit systems where wall is furred out for new finish.

3.1.6 Mounting Heights

Mount panelboards, circuit breakers, motor controller and disconnecting switches so height of operating handle at its highest position is maximum 78 inches above floor. Mount lighting switches 48 inches above finished floor. Mount receptacles and telecommunications outlets 18 inches above finished floor, unless otherwise indicated. Mount other devices as indicated. Measure mounting heights of wiring devices and outlets to center of device or outlet.

3.1.7 Conductor Identification

Provide conductor identification within each enclosure where tap, splice, or termination is made. For conductors No. 6 AWG and smaller diameter, provide color coding by factory-applied, color-impregnated insulation. For conductors No. 4 AWG and larger diameter, provide color coding by plastic-coated, self-sticking markers; colored nylon cable ties and plates; or heat shrink-type sleeves. Identify control circuit terminations in accordance with. Manufacturer's recommendations.
3.1.7.1 Marking Strips

Provide marking strips in accordance with the following:

a. Provide white or other light-colored plastic marking strips, fastened by screws to each terminal block, for wire designations.

b. Use permanent ink for the wire numbers

c. Provide reversible marking strips to permit marking both sides, or provide two marking strips with each block.

d. Size marking strips to accommodate the two sets of wire numbers.

e. Assign a device designation in accordance with NEMA ICS 1 to each device to which a connection is made. Mark each device terminal to which a connection is made with a distinct terminal marking corresponding to the wire designation used on the Contractor's schematic and connection diagrams.

f. The wire (terminal point) designations used on the Contractor's wiring diagrams and printed on terminal block marking strips may be according to the Contractor's standard practice; however, provide additional wire and cable designations for identification of remote (external) circuits for the Government's wire designations.

g. Prints of the marking strips drawings submitted for approval will be so marked and returned to the Contractor for addition of the designations to the terminal strips and tracings, along with any rearrangement of points required.

3.1.8 Splices

New conductors shall be continuous.

3.1.9 Covers and Device Plates

Install with edges in continuous contact with finished wall surfaces without use of mats or similar devices. Plaster fillings are not permitted. Install plates with alignment tolerance of 1/16 inch. Use of sectional-type device plates are not permitted. Provide gasket for plates installed in wet locations.

3.1.10 Electrical Penetrations

Seal openings around electrical penetrations through fire resistance-rated walls, partitions, floors, or ceilings as required.

3.1.11 Grounding and Bonding

Provide in accordance with NFPA 70. Ground exposed, non-current-carrying metallic parts of electrical equipment, access flooring support system, metallic raceway systems, grounding conductor in metallic and nonmetallic raceways, telecommunications system grounds, and neutral conductor of wiring systems. Make ground connection at main service equipment, and extend grounding conductor to point of entrance of metallic water service. Make connection to water pipe by suitable ground clamp or lug connection to plugged tee. If flanged pipes are encountered, make connection with lug bolted to street side of flanged connection. Supplement metallic water
service grounding system with additional made electrode in compliance with NFPA 70. Make ground connection to driven ground rods on exterior of building. Interconnect all grounding media in or on the structure to provide a common ground potential. This includes lightning protection, electrical service, telecommunications system grounds, as well as underground metallic piping systems. Make interconnection to the gas line on the customer's side of the meter. In addition to the requirements specified herein, provide telecommunications grounding in accordance with TIA-607. Where ground fault protection is employed, ensure that connection of ground and neutral does not interfere with correct operation of fault protection.

3.1.11.1 Ground Rods

Provide cone pointed ground rods. Measure the resistance to ground using the fall-of-potential method described in IEEE 81. Do not exceed 25 ohms under normally dry conditions for the maximum resistance of a driven ground. If this resistance cannot be obtained with a single rod, additional rods, spaced on center, not less than twice the distance of the length of the rod, or if sectional type rods are used, additional sections may be coupled and driven with the first rod. If the resultant resistance exceeds 25 ohms measured not less than 48 hours after rainfall, notify the Contracting Officer who will decide on the number of ground rods to add.

3.1.11.2 Grounding Connections

Make grounding connections which are buried or otherwise normally inaccessible, excepting specifically those connections for which access for periodic testing is required, by exothermic weld or compression connector.

a. Make exothermic welds strictly in accordance with the weld manufacturer's written recommendations. Welds which are "puffed up" or which show convex surfaces indicating improper cleaning are not acceptable. Mechanical connectors are not required at exothermic welds.

b. Make compression connections using a hydraulic compression tool to provide the correct circumferential pressure. Provide tools and dies as recommended by the manufacturer. Use an embossing die code or other standard method to provide visible indication that a connector has been adequately compressed on the ground wire.

3.1.11.3 Ground Bus

Provide a copper ground bus in the electrical equipment rooms as indicated. Noncurrent-carrying metal parts of transformer neutrals and other electrical equipment: effectively grounded by bonding to the ground bus. Bond the ground bus to both the entrance ground, and to a ground rod or rods as specified above having the upper ends terminating approximately 4 inches above the floor. Make connections and splices of the brazed, welded, bolted, or pressure-connector type, except use pressure connectors or bolted connections for connections to removable equipment. For raised floor equipment rooms in computer and data processing centers, provide a minimum of 4, one at each corner, ground buses connected to the building grounding system. Use bolted connections in lieu of thermoweld, so they can be changed as required by additions and/or alterations.

3.1.11.4 Resistance

Maximum resistance-to-ground of grounding system: do not exceed 5 ohms.
under dry conditions. Where resistance obtained exceeds 5 ohms, contact Contracting Officer for further instructions.

3.1.12 Equipment Connections

Provide power wiring for the connection of motors and control equipment under this section of the specification. Except as otherwise specifically noted or specified, automatic control wiring, control devices, and protective devices within the control circuitry are not included in this section of the specifications and are provided under the section specifying the associated equipment.

3.1.13 Government-Furnished Equipment

Contractor make connections to Government-furnished equipment to make equipment operate as intended, including providing miscellaneous items such as plugs, receptacles, wire, cable, conduit, flexible conduit, and outlet boxes or fittings.

3.1.14 Repair of Existing Work

Perform repair of existing work, demolition, and modification of existing electrical distribution systems as follows:

3.1.14.1 Workmanship

Lay out work in advance. Exercise care where cutting, channeling, chasing, or drilling of floors, walls, partitions, ceilings, or other surfaces is necessary for proper installation, support, or anchorage of conduit, raceways, or other electrical work. Repair damage to buildings, piping, and equipment using skilled craftsmen of trades involved.

3.1.14.2 Existing Concealed Wiring to be Removed

Disconnect existing concealed wiring to be removed from its source. Remove conductors; cut conduit flush with floor, underside of floor, and through walls; and seal openings.

3.1.14.3 Removal of Existing Electrical Distribution System

Removal of existing electrical distribution system equipment includes equipment's associated wiring, including conductors, cables, exposed conduit, surface metal raceways, boxes, and fittings, back to equipment's power source as indicated.

3.1.14.4 Continuation of Service

Maintain continuity of existing circuits of equipment to remain. Maintain existing circuits of equipment energized. Restore circuits wiring and power which are to remain but were disturbed during demolition back to original condition.

3.1.15 Surge Protective Devices

Connect the surge protective devices in parallel to the power source, keeping the conductors as short and straight as practically possible. Maximum allowed lead length is 3 feet.
3.2 FIELD FABRICATED NAMEPLATE MOUNTING

Provide number, location, and letter designation of nameplates as indicated. Fasten nameplates to the device with a minimum of two sheet-metal screws or two rivets.

3.3 WARNING SIGN MOUNTING

Provide the number of signs required to be readable from each accessible side. Space the signs in accordance with NFPA 70E.

3.4 FIELD APPLIED PAINTING

Paint electrical equipment as required to match finish of adjacent surfaces or to meet the indicated or specified safety criteria. Where field painting of enclosures for panelboards, load centers or the like is specified to match adjacent surfaces, to correct damage to the manufacturer's factory applied coatings, or to meet the indicated or specified safety criteria, provide manufacturer's recommended coatings and apply in accordance to manufacturer's instructions.

3.5 FIELD QUALITY CONTROL

Furnish test equipment and personnel and submit written copies of test results. Give Contracting Officer 5 working days notice prior to each test.

3.5.1 Devices Subject to Manual Operation

Operate each device subject to manual operation at least five times, demonstrating satisfactory operation each time.

3.5.2 600-Volt Wiring Test

Test wiring rated 600 volt and less to verify that no short circuits or accidental grounds exist. Perform insulation resistance tests on wiring No. 6 AWG and larger diameter using instrument which applies voltage of approximately 500 volts to provide direct reading of resistance. Minimum resistance: 250,000 ohms.

3.5.3 Ground-Fault Receptacle Test

Test ground-fault receptacles with a "load" (such as a plug in light) to verify that the "line" and "load" leads are not reversed.

3.5.4 Grounding System Test

Test grounding system to ensure continuity, and that resistance to ground is not excessive. Test each ground rod for resistance to ground before making connections to rod; tie grounding system together and test for resistance to ground. Make resistance measurements in dry weather, not earlier than 48 hours after rainfall. Submit written results of each test to Contracting Officer, and indicate location of rods as well as resistance and soil conditions at time measurements were made.

--- End of Section ---
SECTION 28 31 00: FIRE DETECTION AND ALARM SYSTEMS

PART 1 GENERAL

1.01 APPLICABLE PUBLICATIONS
 A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.
 1. Factory Mutual System (FM) Publication
 2. National Fire Protection Association (NFPA) Standards:
 a) NFPA 70 National Electrical Code.
 b) NFPA 72 National Fire Alarm Code.
 c) NFPA90A Installation of Air Conditioning and Ventilating System.
 3. Underwriters Laboratories, Inc. (UL) Publications:
 b) UL 38 Manually Actuated Signaling Boxes for Use with Fire-Protective Signaling Systems
 c) UL 228 Door Closers-Holders, with or without Integral Smoke Detector.
 d) UL 268 Smoke Detectors for Fire Protective Signaling Systems.
 (1) e) UL 268A Smoke Detectors for Duct Application
 e) UL 464 Audible Signal Appliances.
 g) UL 864 Control Units for Fire-Protective Signaling Systems.
 4. Unified Facility Criteria (UFC) 3-600-01, Design: Fire Protection Engineering for Facilities
 5. Unified Facility Criteria (UFC) 4-021-01 Design and O&M: Mass Notification Systems (dated 9 April 08, change 1, January 2010)
 B. National Fire Protection Association:
 2. NFPA 262 - Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

1.02 SUBMITTALS
 A. Submit shop drawings showing all system components under provisions of Section 01 33 00. Plans and calculations must be prepared by a registered professional fire protection engineer or individual that has obtained National Institute for Certification in Engineering Technologies, Fire Alarm Systems Level IV. All fire alarm system designs must be reviewed and stamped by a registered professional fire protection engineer. If the MNS portion is used to notify occupants of fire condition than it must adhere to this provision.
 B. Submit manufacturer’s data on all components used in the system under provisions of Section 01 33 00.
 C. The authority having jurisdiction and the alarm shop 1 SOCES/CEOFA shall be notified prior to installation or alteration of equipment or wiring. Complete information regarding the system or system alterations, including specifications, type of system or service, shop drawings, input/output matrix, battery calculations, and notification appliance circuit voltage drop calculations shall be submitted for approval.
 D. Under no circumstances will installation begin prior to approval of SUBMITTALS.
 E. Submit Qualification of Installer per PART 2, Paragraph 2.05.

1.03 SCOPE
 A. A new intelligent reporting, microprocessor controlled fire detection system shall be installed in accordance to the project specifications and drawings. Only an addressable fire alarm system shall be accepted.
 B. Basic Performance:
 1. Alarm, trouble and supervisory signals from all intelligent reporting devices shall be encoded on NFPA Style 6 (Class A) Signaling Line Circuits (SLC).
 2. Initiation Device Circuits (IDC) shall be wired Class A as part of an addressable device connected by the SLC Circuit.
3. Notification Appliance Circuits (NAC) shall be wired Class A as part of an addressable device connected by the SLC Circuit.

4. On Style 6 (Class A) configurations a single ground fault or open circuit on the system Signaling Line Circuit shall not cause system malfunction, loss of operating power or the ability to report an alarm.

5. Alarm signals arriving at the FACP shall not be lost following a primary power failure (or outage) until the alarm signal is processed and recorded.

C. Basic System Functional Operation

1. When a fire alarm condition is detected and reported by one of the system initiating devices, the following functions shall immediately occur:
 a. The system alarm LED on the system display shall flash.
 b. A local piezo electric signal in the control panel shall sound.
 c. A backlit LCD display shall indicate all information associated with the fire alarm condition, including the type of alarm point and its location within the protected premises.
 d. The fire alarm strobe horns shall sound or if MNS, the clear strobe shall flash and the fire message shall be announced through the fire/MNS speakers.
 e. Printing and history storage equipment shall log the information associated each new fire alarm control panel condition, along with time and date of occurrence.
 f. All system output programs assigned via control by event interlock programming to be activated by the particular point in alarm shall be executed, and the associated system outputs (notification appliances and/or relays) shall be activated.
 g. An associated signal is sent VIA Monaco transceiver to the fire department.

1.04 Operation

A. Activation of any automatic fire detection device or manual station shall result in the continuous operation of all fire audio/visual devices in the building, shutdown of air-handling units below 2000CFM, and activation of the radio transceiver for transmission of a radio signal to central monitor location. The fire alarm system shall be wired and all associated conduits shall be Class A in accordance with NFPA 72 ch.6.4.2.2.2. All suppression system shall activate a separate zone for each water flow device on the transceiver for off normal conditions and water flow. Flow, tamper switches and Duct detectors shall not be on the same zone in the BTXM transceiver. Any alarm or trouble condition silenced at the panel shall not remove that condition from the radio transceiver inputs.

PART 2 PRODUCTS

2.01 General Requirements

A. Materials and equipment shall be new standard products of the manufacturer’s latest design, and suitable to perform the function intended. Components of two or more models will not be combined to form a single control unit. This equipment shall be in service and supported by the manufacture for five years after the install date. Where two or more pieces of equipment must perform the same functions, the same manufacturer shall produce this equipment. The name of the manufacturer shall appear on all major components. Locks for all cabinets shall be keyed the same as the Monaco Radio Transceiver. (CORE NUMBER C415A). Fire alarm points shall be labeled by device type and location. There shall only be one central fire alarm panel located in any facility. Heat detectors and all associated conduit and wiring shall be removed from the facility when a fire sprinkler system is installed.

2.02 Quality Requirements

A. All materials and equipment shall conform to the requirements of the UL, or the FMS for fire-alarm systems of the type indicated. The Contractor shall submit proof that the items furnished under this specification conform to these requirements. The UL label or seal, or listing in the UL Fire Protection Equipment Directory will be accepted as evidence that the items conform to UL requirements. The FMS label or seal, or listing in the Factory Mutual Approval Guide will be accepted as sufficient evidence that the items conform to the FMS requirements.

2.03 Shop Drawing and System Designer Qualifications

A. Within 30 days after receipt of notice to proceed and prior to starting installation, the Contractor shall submit to the Contracting Officer for approval a complete set of shop drawings to include all material and equipment proposed for installation Sealed by a registered fire protection engineer, by a registered professional engineer having at least four years of current experience in the design of fire protection and detection systems, or by an engineering technologist qualified at NICET Level IV in fire systems. The
individual’s name, signature, and professional engineer number or NICET certification number shall be included on all final design documents. All fire alarm system designs must be reviewed and stamped by a registered professional fire protection engineer. Include manufacturer's name(s), model numbers, ratings, power requirements, equipment layout, device arrangement, device addresses, candela ratings, speaker wattage taps settings, complete wiring point to point diagrams, and conduit layouts. Show annunciator layout, configurations, and terminations.

2.04 Spare-Parts Data
A. After submittal of the list of equipment, and no later than 2 months prior to contract scheduled completion, the Contractor shall furnish two copies of spare parts data for each different item of equipment listed. The data shall include a complete list of parts and supplies; a list of parts and supplies that are either normally furnished at no extra cost with the purchase of the equipment or specified below to be furnished as part of the contract and a list of additional items recommended by the manufacturer to assure efficient operation for a period of 120 days at the particular installation.

2.05 Qualifications of Installer
A. System Installer: Installation personnel shall be qualified or shall be supervised by persons who are qualified in the installation, inspection, and testing of fire alarm systems and shall be on-site at all times during system installation, modification or upgrade. Evidence of qualifications or certification shall be provided when requested by the authority having jurisdiction. Qualified personnel shall include, but not be limited to, one or more of the following:
1. Personnel who are factory trained and certified for fire alarm system installation of the specific type and brand of system being installed
2. Personnel who are certified by a nationally recognized fire alarm certification organization acceptable to the authority having jurisdiction
3. Personnel who are registered, licensed, or certified by a state or local authority.
 The Contracting Officer shall reject any proposed installer who cannot show evidence of such qualifications.

PART 3 EXECUTION

3.01 Pre-Construction Test
A. Prior to starting any work on existing systems the contractor shall schedule through the contracting office a fire alarm system pre-test to establish the baseline for the alarm system. Any discrepancies identified shall be signed off by the contractor, 1 SOCES/CEOFA Alarm Shop, and contracting officer or his/her representative. Failure to conduct this test will hold the contractor solely responsible for all discrepancies during final inspection.

3.02 Installation and Wiring
A. 1. The FACP and control units shall be installed in a room directly accessible from the building exterior and shall be condition as office space.
 2. Runs of conduit, tubing, wire and cable shall be straight, neatly arranged, properly supported, red in color and parallel or perpendicular to walls and partitions. Installation of wiring shall conform to NFPA 70.
 NOTE: 300.11
 3. Wiring located within the cavity of a non–fire-rated floor–ceiling or roof–ceiling assembly shall not be secured to, or supported by, the ceiling assembly, including the ceiling support wires. An independent means of secure support shall be provided and shall be permitted to be attached to the assembly.
 4. All wiring shall be installed in conduit (minimum ¾” EMT). The sum of the cross-sectional areas of Individual conductors shall not exceed 40 percent of the interior cross-sectional area of the conduit.
 5. All wiring for the system shall be solid wires. The fire alarm system wiring shall not share the same conduit as other low voltage wiring, such as cameras, access control, etc.
 6. Wiring for audible visual circuits shall be color-coded red for positive and black for negative.
 7. Cable must be separated from any open conductors of Power, or Class 1 circuits, and shall not be placed in any conduit, junction box or raceway containing these conductors, as per NEC Article 760-29.
 8. Conduits shall not enter the Fire Alarm Control Panel, or any other remotely mounted Control Panel equipment or back boxes, except where conduit entry is specified by the FACP manufacturer.
 9. Wiring shall be in accordance with local, state and national codes (e.g., NEC Article 760) and as recommended by the manufacturer of the fire alarm system.
10. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for Initiating Device Circuits and signaling Line Circuits, and 14 AWG for Notification Appliance circuits.

11. The Fire Alarm Control Panel shall be connected to a separate dedicated branch circuit, maximum 20 amperes. This circuit shall be labeled at the Main Power Distribution Panel as Fire Alarm; circuit breaker shall be protected from operation by unauthorized personnel by a circuit breaker guard. Fire Alarm Control Panel primary power wiring shall be 12 AWG. The control panel cabinet shall be grounded. Label all wire termination with shrink wrap labels, clearly marked with the circuit information.

12. All wire and cable shall be listed and/or approved by recognized testing agency for use with a protective signaling system. Wiring used for the multiplex communication circuit (SLC) shall be twisted and unshielded and support a minimum wiring distance of 12,500 feet.

13. System components shall be securely fastened to their supports independently of the wiring.

14. Existing wiring in facilities being renovated shall not be reused and must be removed.

B. Twist-on connectors (wire nuts) shall not be used. Connections shall be permitted to be made using a set-screw, pressure-type conductor connector, provided a means is used to prevent the set screw from bearing directly on the conductor.

C. Mount the BTXM radio transceiver panels at a height of 60 inches, measured from the Floor to the top of the panel.

D. All circuits shall be installed CLASS A, wiring and conduit shall comply with NFPA 72 CH. 6.4.2.2.2.

E. All modules shall have their address clearly and permanently labeled on the outside of the devices.

F. All address modules shall be integrated with the device.

G. Fire circuits shall not be run in the same raceway, cable or conduit as high voltage circuits (120vac).

H. Fire alarm circuits derived from the fire alarm panel shall not be terminated on the same device with 120VAC power unless it is a relay designed for the use.

3.03 Audible and Visual Alarm Devices

A. Audible and Visual devices shall be furnished to indicate an alarm throughout the building. Devices shall be ceiling mounted unless waived in writing by the AHJ. All devices shall be supervised and operate on low voltage D.C. furnished by the control panel. All audible devices shall meet U 464.

B. Where audible appliances are installed to provide signals for sleeping areas, they shall have a sound level of at least 15 dB above the average ambient sound level or 5 dB above the maximum sound level having a duration of at least 60 seconds or a sound level of at least 75 dBA, whichever is greater, measured at the pillow level in the area required to be served by the system using the A-weighted scale (dBA).

C. If any barrier, such as a door, curtain, or retractable partition, is located between the notification appliance and the pillow, the sound pressure level shall be measured with the barrier placed between the appliance and the pillow.

D. Where permitted and if ceiling heights allows, and unless otherwise permitted all wall mounted appliances shall comply with7.5.4 thru 7.5.4.4.8.

E. Install clear/white strobes for the building fire alarm system with a factory applied and none removable word “FIRE“ RED in color to alert the occupants for complete evacuation.

F. Signal for occupants to seek information or instructions shall be amber. Provide amber colored strobes with a factory applied and none removable word “ALERT“ RED in color to alert the hearing impaired.

G. Recessed appliances shall not be permitted.

H. Monitoring Integrity of Emergency Voice/Alarm Communications Systems.
1. Speaker Amplifier and Tone-Generating Equipment. If speakers are used to produce audible fire
alarm signals, the required trouble signal for NFPA 72, Ch 4.4.7.2.1.1 through 4.4.7.2.1.3 shall be in
accordance with 4.4.3.5. When primary power is available, failure of any audio amplifier shall result
in a trouble signal. When an alarm is present and primary power is not available (i.e., system is
operating from the secondary power source), failure of any audio amplifier shall result in a trouble
signal.

I. All ceiling mounted devices shall be securely mounted in an approved box attached to the ceiling grid
using a T bar and the ceiling tile shall have clips installed to prevent movement of tiles.

J. Any system installed where the audible devices are used for fire evacuation shall comply with all the
requirements of 3.03 A-I and shall be tested for system integrity as a fire alarm system.

K. Devices shall not be mixed.

L. Strobe and speakers shall be mounted in the manufacturers back box. If the manufacturer does not
make a box then use the manufacturers recommended box.

3.04 Mass Notification Systems

A. Mass Notification System Functions

1. Notification Appliance Network: The notification appliance network consists of audio speakers located
to provide intelligible instructions at areas as indicated on the drawings.

2. Strobes: Strobes are also provided to alert hearing-impaired occupants. Provide amber-colored strobes
with a factory applied and none removable word “ALERT" RED in color to alert the hearing impaired.
Install clear/white strobes for the building fire alarm system with a factory applied and none removable
word “ALERT" RED in color to alert the user.

3. Voice Notification: An autonomous voice notification control unit is used to monitor and control the
notification appliance network and provide consoles for local operation. Using a console, personnel in
the building can initiate delivery of pre-recorded voice messages, provide live voice messages and
instructions, and initiate visual strobe notification appliances.

4. Mass notification systems that are integrated with the building fire alarm system shall be consider a
component of the fire alarm system and therefore shall meet all requirements of “Installed Fire Alarm
Systems” subject to the AHJ and inspected as life safety equipment.

5. All power extenders, amplifiers, and control cabinets shall be protected in accordance with NFPA 72
Ch 4.4.5 (2007 Edition)

6. All audio circuits shall be installed in accordance with UFC 4-021-01 chapter 4 (9 April 2008,change 1,
January 2010) Clear/white strobes activated by the fire alarm system shall not operate during those
periods when the amber strobes are in operation, but otherwise shall operate continuously until the fire
alarm system is reset. Switching off the fire alarm strobes shall not cause a trouble at the fire alarm
panel.

7. Interface with the FACP to override fire alarm audible and visual notification appliances. The FACP
shall provide supervised circuit integrity of interconnecting wiring between the MNS and FACP.

8. MNS shall temporarily override fire alarm audible messages and visual signals, and provide intelligible
voice commands during simultaneous fire and terrorist events. All other features of the fire system,
including the transmission of signals to the fire department, shall function properly. MNS messages
shall take priority and continue to override fire alarm audible messages until the MNS message is either
manually or automatically ended. If not manually ended, the MNS message will automatically end after
10 minutes.

9. Provide a supervisory signal if the MNS is used to override fire alarm audible messages and visible
signals during simultaneous fire and terrorist events. The supervisory signal shall be at the FACP and
any remote fire alarm annunciators, and be transmitted to the fire department. The visual annunciation
of the separate supervisory signal shall be distinctly labeled or otherwise clearly identified.

10. Make general paging or other non-emergency messages available without the activation of strobes. A
separate microphone must be provided for this purpose.

11. Disable use of any microphones intended solely for general paging or other non-emergency messages
upon loss of normal AC power.

12. a. A Local Operating Console (LOC) shall be provided so that the travel distance to the nearest LOC
will not be in excess of 61 m (200 ft) measured horizontally on the same floor. Have a single
switch capable of shutting down all HVAC equipment in the facility in accordance with the
requirements of UFC 4-010-01. The HVAC shutdown switch shall be supervised by the FACP.
Circuits shall be provided for operation of auxiliary appliance during trouble conditions. During a Mass trouble reporting circuits. Form “C” contacts shall be provided for system alarm and trouble conditions. All outputs and operational modules shall be fully supervised with on-board diagnostics and could render the digitalized voice module inoperative shall automatically cause the slow whoop tone to strobe NAC Circuits shall provide at least 2 amps of 24 VDC power to operate strobes and have the or 100 volt output. The audio amplifier outputs shall be not greater than 100 watts RMS output. The operation of the speaker NAC circuits. Audio output shall be selectable for line level (600 ohms), 25, 70.7 provided for the activation of strobe appliances. The activation of the NAC Circuits shall follow the take over all functions assigned to the failed unit. Class “A” Notification Appliance Circuits (NAC) shall be priority 1; live voice from the fire department is priority 2; and the live voice from the LOC shall be priority 3. The digitalized voice message shall consist of a non-volatile (EPROM) microprocessor based input to the amplifiers. The microprocessor shall actively interrogate circuitry, field wiring, and digital coding necessary for the immediate and accurate rebroadcasting of the stored voice data into the microphone, live messages shall be broadcast through speakers throughout the building. The system shall be capable of operating all speakers at the same time. The live voice from the ACU shall be microphone for delivering live messages. Provide adequate discrete outputs to initiate/synchronize strobes. Provide a complete set of self-diagnostics for controller and appliance network. Provide local diagnostic information display and local diagnostic information and system event log file. Provide all necessary components to interface with fire alarm and detection system.

3.05 Mass Notification Control Panel
A. Provide a complete control panel fully enclosed in a lockable steel enclosure as specified herein. Operations required for testing or for normal care and maintenance of the systems shall be performed from the front of the enclosure. If more than a single unit is required at a location to form a complete control panel, the unit enclosures shall match exactly. Control unit shall provide power, supervision, control, and logic for the entire system, utilizing solid state, modular components, internally mounted and arranged for easy access. Control unit shall be suitable for operation on a 120 volt, 60 hertz, normal building power supply. Provide secure operator console for initiating recorded messages, strobes and displays; and for delivering live voice messages. Provide capacity for at least eight pre-recorded messages. Provide the ability to automatically repeat pre-recorded messages. Provide a secure microphone for delivering live messages. Provide adequate discrete outputs to initiate/synchronize strobes. Provide a complete set of self-diagnostics for controller and appliance network. Provide local diagnostic information display and local diagnostic information and system event log file. Provide all necessary components to interface with fire alarm and detection system.

B. Cabinet: Install control panel components in cabinets large enough to accommodate all components and also to allow ample gutter space for interconnection of panels as well as field wiring. No external wires to pass through cabinet. The enclosure shall be identified by an engraved laminated phenolic resin nameplate. Lettering on the nameplate shall say "Mass Notification Control Panel" and shall not be less than one inch high. The cabinet shall be provided in sturdy steel housing, complete with back box, hinged steel door with cylinder lock keyed to C415A, and surface mounting provisions. Mount the fire/MNS panels at a height of no higher than 72 inches, measured from the floor to the TOP of the cabinet.

C. Voice Notification System: The Voice Notification System shall comply with the requirements of NFPA 72 for Emergency Voice/Alarm Communications System requirements IEC 60849, IEC 60268, Part 16, except as specified herein. The system shall be a one-way multi-channel voice notification system incorporating user selectability of a minimum 8 distinct sounds for tone signaling, and the incorporation of a voice module for delivery of prerecorded messages. Textual audible appliances shall produce a slow whoop tone for three cycles followed by a voice message that is repeated until the control panel is reset or silenced. Automatic messages shall be broadcast through speakers on appropriate floor, but not in stairs or elevator cabs. A live voice message shall override the automatic audible output through use of a microphone input at the control panel or live voice transmitted from the fire department. When using the microphone, live messages shall be broadcast through speakers throughout the building. The system shall be capable of operating all speakers at the same time. The live voice from the ACU shall be priority 1; live voice from the fire department is priority 2; and the live voice from the LOC shall be priority 3. The digitalized voice message shall consist of a non-volatile (EPROM) microprocessor based input to the amplifiers. The microprocessor shall actively interrogate circuitry, field wiring, and digital coding necessary for the immediate and accurate rebroadcasting of the stored voice data into the appropriate amplifier input. Loss of operating power, supervisory power, or any other malfunction that could render the digitalized voice module inoperative shall automatically cause the slow whoop tone to take over all functions assigned to the failed unit. Class “A” Notification Appliance Circuits (NAC) shall be provided for the activation of strobe appliances. The operation of the NAC Circuits shall follow the operation of the speaker NAC circuits. Audio output shall be selectable for line level (600 ohms), 25, 70.7 or 100 volt output. The audio amplifier outputs shall be not greater than 100 watts RMS output. The strobe NAC Circuits shall provide at least 2 amps of 24 VDC power to operate strobes and have the ability to synchronize all strobes. A hand held microphone shall be provided and, upon activation, shall take priority over any tone signal, recorded message while maintaining the strobe NAC Circuits activation. All outputs and operational modules shall be fully supervised with on-board diagnostics and trouble reporting circuits. Form “C” contacts shall be provided for system alarm and trouble conditions. Circuits shall be provided for operation of auxiliary appliance during trouble conditions. During a Mass
Notification event the panel shall not generate nor cause any trouble signals to be generated at the Fire Alarm system but shall transmit a supervisory signal via the BTX-M transceiver to the fire department. Mass Notification functions shall take precedence over all other function performed by the Voice Notification System. PA systems and Background music are not authorized. Messages shall be as follows:

<table>
<thead>
<tr>
<th>Priority</th>
<th>Type</th>
<th>*Pre-tone</th>
<th>**Voice</th>
<th>Message Script (tones and messages repeat a minimum of three times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bomb Threat</td>
<td>Continuous</td>
<td>Female</td>
<td>May I have your attention please! A bomb threat has been reported in or around the building. Please follow the pre-plan and await further instructions.</td>
</tr>
<tr>
<td>2</td>
<td>Intruder</td>
<td>Continuous</td>
<td>Female</td>
<td>May I have your attention please! An intruder/hostile person has been sighted within or around the building. Please follow the pre-plan and await further instructions.</td>
</tr>
<tr>
<td>3</td>
<td>Alternate Exit</td>
<td>Continuous</td>
<td>Female</td>
<td>May I have your attention please! Please evacuate the building – using the designated alternate exits.</td>
</tr>
<tr>
<td>4</td>
<td>Fire</td>
<td>Code 3</td>
<td>Female</td>
<td>May I have your attention please! A fire emergency has been reported in the building. While this is being verified, please leave by the nearest exit and report to your designated assembly area.</td>
</tr>
<tr>
<td>5</td>
<td>Shelter In Place</td>
<td>Continuous</td>
<td>Female</td>
<td>May I have your attention please! Please shelter in place, and await further instructions.</td>
</tr>
<tr>
<td>6</td>
<td>Weather</td>
<td>none</td>
<td>Female</td>
<td>May I have your attention please! The National Weather Service has issued a severe weather warning for our area.</td>
</tr>
<tr>
<td>7</td>
<td>All Clear</td>
<td>none</td>
<td>Female</td>
<td>May I have your attention please! The building emergency has ended. An all clear has been given. Please resume normal activities.</td>
</tr>
<tr>
<td>8</td>
<td>Test</td>
<td>none</td>
<td>Female</td>
<td>May I have your attention please! This is a test of the mass notification system, this is only a test.</td>
</tr>
</tbody>
</table>

D. Memory: Provide each control unit with non-volatile memory and logic for all functions. The use of long life batteries, capacitors, or other age-dependent devices shall not be considered as equal to non-volatile processors, PROMS, or EPROMS.

E. Field Programmability: Provide control units and control panels that are fully field programmable for control, initiation, notification, supervisory, and trouble functions of both input and output. The system program configuration shall be menu driven. System changes shall be password protected and shall be accomplished using personal computer based equipment.

3.06 Notification Appliances

A. Mass Notification Speakers: Audible appliances shall conform to the applicable requirements of UL 464. Appliances shall be connected into notification appliance circuits. Audible appliances shall generate a unique audible sound from other devices provided in the building and surrounding area. Surface mounted audible appliances shall be painted white. Recessed audible appliances shall be installed with a grill that is painted white with a factory finish to match the surface to which it is mounted.

1. Provide appliances capable of satisfying all Uniform Federal Accessibility Standards (UFAS) and Americans with Disability Act Accessibility Guidelines (ADAAG) Speakers shall conform to the applicable requirements of UL 1480. Speakers shall have six different sound output levels and operate with audio line input levels of 100 Vac, 70 Vac, 7 Vac, and 25 Vac, by means of selectable tap settings. Tap settings shall include taps of 1/4, 1/2, 1, and 2 watt. Speakers shall incorporate a high efficiency speaker for maximum output at minimum power across a frequency range of 400Hz to 4000Hz, and shall have a sealed back construction. Speakers shall be capable of installation on standard 4 inch square electrical boxes. All inputs shall be polarized for compatibility with standard reverse polarity supervision of circuit wiring via the Voice Notification System.

2. Provide speaker mounting plates constructed of cold rolled steel having a minimum thickness of 16 gauges and equipped with mounting holes and other openings as needed for a complete installation. Fabrication marks and holes shall be ground and finished to provide a smooth and neat appearance for each plate. Each plate shall be primed and painted.

3. Provide speakers and installation methods compliant with Director of Central Intelligence Directive (DCID) 6/9 for areas classified as sensitive, compartmented information facilities (SCIF).
4. Verify intelligibility by measurement after installation. Ensure that a Common Intelligibility Scale (CIS) score greater than .8 is provided in each area where building occupants normally could be found. Areas of the building provided with hard wall and ceiling surfaces (such as metal or concrete) that are found to cause excessive sound reflections may be permitted to have a CIS score less than .8 if approved by the DOD installation, and if building occupants in these areas can determine that a voice signal is being broadcast and they must walk no more than 33 ft to find a location with a CIS score of at least .8. Areas of the building where occupants are not expected to be normally present are permitted to have a CIS score less than .8 if personnel can determine that a voice signal is being broadcast and they must walk no more than 50 ft to a location with a CIS score of at least .8.

Measurements should be taken near the head level applicable for most personnel in the space under normal conditions (e.g., standing, sitting, sleeping, as appropriate). Commercially available test instruments shall be used to measure intelligibility as specified by IEC 60849 and IEC 60268-16. The mean value of at least three readings shall be used to compute the intelligibility score at each test location. The installer is required to demonstrate these test result at commissioning.

5. Strobe and speakers shall be mounted in the manufacturer's back box. If the manufacturer does not make a box, then the user shall use a manufacturer's recommended box, speakers shall be totally enclosed so as not to allow dust or flytings to enter.

6. Ensure speakers in the vicinity of the control panel and LOC will not create acoustical feedback or otherwise interfere with the ability to deliver live voice messages.

3.07 Wiring

A. Visual Notification Appliances: Visual notification appliances shall conform to the applicable requirements of UL 1971 and conform to the Americans with Disabilities Act (ADA). Mass Notification Appliances shall have clear high intensity optic lens and xenon flash tubes. The clear optic lens shall have the special wording “FIRE,” the amber lens shall have the special wording “Alert” factory embossed on the device. The light pattern shall be dispersed so that it is visible above and below the strobe and from a 90 degree angle on both sides of the strobe. Strobe flash rate shall be 1 flash per second and a minimum of 75 candelas based on the UL 1971 test. Strobe shall be ceiling-flush mounted only. Where more than two appliances are located in the same room or corridor, provide synchronized operation.

B. Twist-on connectors (wire nuts) shall not be used. Connections shall be permitted to be made using set
screw, pressure-type conductor connector, provided a means is used to prevent the set screw from bearing directly on the conductor.

C. Mount the MNS panels at a MAX height of 72 inches, measured from the floor to the top of the cabinet.

D. All circuits shall be installed CLASS A, wiring and conduit shall comply with NFPA 72 CH. 6.4.2.2.2.

E. All modules shall have their address, loop and power supply number clearly and permanently labeled on the outside of the devices.

F. All address modules shall be integrated with the device.

G. MNS circuits shall not be run in the same raceway, cable or conduit as high voltage circuits (120vac).

H. MNS circuits derived from the MNS panel shall not be terminated on the same device with 120VAC power unless it is a relay designed for the use.

3.08 LCD Alphanumeric Display
A. LCD Alphanumeric Display Annunciator: A minimum of at least one annunciator shall be installed.
 1. The alphanumeric display annunciator shall be a supervised, back-lit LCD display containing a
 minimum of eighty (80) characters for alarm annunciation in clear English text.
 2. The LCD annunciator shall display all alarm and trouble (Note: must be able to disable trouble
 pizio of the annunciator) conditions in the system.
 3. Up to 32 LCD annunciators may be connected to a EIA 485 interface. LCD annunciators shall not
 reduce the annunciation or point capacity of the system. Each LCD shall include vital system wide
 functions such as, System Acknowledge, Silence and Reset.
 4. LCD display annunciators shall mimic the main control panel 80 character displays and shall not
 require special programming.
 5. The LCD annunciator shall have switches which may be programmed for System control such as,
 Global Acknowledge, Global Signal Silence and Global System Reset. These switch inputs shall be
 capable of being disabled permanently. Mount LCD annunciator at the main entrance to the facility.

3.09 Future Use

3.10 Drawings and Manuals
A. Upon completion of the installation and prior to final inspection, the Contractor shall furnish two copies of
 "as-built" drawings. Drawings shall show equipment configuration, control panel equipment and
 subassembly locations, and the location of all connecting Wiring. Drawings shall include all wiring color
 codes and terminal numbers and termination points for all wires. In addition, the Contractor shall furnish
 two copies of a manual giving complete instructions for the operation, inspection, testing, and
 maintenance of the system including wiring diagrams. The drawings shall include a detailed wiring layout
 showing all junction boxes and all system wiring, including number of wires, with speaker and strobe
 circuits identified with speaker taps and candela ratings. Show module location and address. The layout
 shall be done on the building floor plans and combined with fire detection and alarm system. See section
 01 70 00 CONTRACT CLOSE OUT.

3.11 Manual and Fire alarm Stations
A. Addressable manual fire alarm boxes shall, on command from the control panel, send data to the panel
 operation, they cannot be restored to normal use except by the use of a key.

B. All operated stations shall have a positive, visual indication of operation and utilize a key type reset.

C. Manual fire alarm boxes shall be constructed of Lexan with clearly visible operating instructions provided
 on the cover. The word FIRE shall appear in the front of the stations in raised letters, 1.75 inches (44 mm)
 or larger.

D. The operable part of each manual fire alarm box shall be not less than 1.1 m (3½ ft) and not more than
 1.37 m (4½ ft) above floor level.

E. Manual fire alarm boxes shall be installed so that they are conspicuous, unobstructed, and accessible.

F. Manual fire alarm boxes shall be located within 1.5 m (5 ft) of the exit doorway opening at each exit on
each floor and located on the side of the opening.

G. Manual fire alarm boxes shall be mounted on both sides of grouped openings over 12.2m (40 ft) in width, and within 1.5 m (5 ft) of each side of the opening.

H. Additional manual fire alarm boxes shall be provided so that the travel distance to the nearest fire alarm box will not be in excess of 61 m (200 ft) measured horizontally on the same floor.

3.12 Fire-Detecting Equipment

A. Fire detecting equipment shall conform to NFPA 72 and shall be of the following types, as indicated on the drawings and as approved by the AHJ. All devices shall be addressable, no conventional devices allowed. Detector circuit design shall be suitable for the types and numbers of detectors, as approved, and shall limit detector circuit current not to exceed ratings of the detectors and associated relays. Smoke detectors shall not be installed or have protective cover removed until after the construction cleanup of all trades is complete and final. Furthermore, during renovation projects, existing detectors shall be removed and reinstalled or covered during construction.

B. Location: Detecting equipment shall be installed as shown on the drawings. Should a conflict occur between the drawings and the NFPA codes, the NFPA codes shall take precedence. Fire alarm components will not be installed on building exteriors unless expressly required by NFPA codes and then must be weather proof. Pull stations shall have removable plastic covers without sounders and be sealed around their mounting surface. Heat detectors shall be placed to provide total (complete) coverage as required in NFPA 72.

C. Photoelectric Type Smoke Detectors: Ceiling smoke detectors, which operate on the light scattering or the light obstruction principle, shall be furnished. In sleeping rooms, ceiling mounted smoke detectors shall be powered by DC circuits from the FACP, sound an audible alarm within the room only, does not activate or transmit signal to fire department and if removed from mount or disconnected, send a trouble signal with room location to the fire alarm panel to be transmitted to the fire department. AC powered detectors shall not be installed. Where combination heat smoke detectors are installed in sleeping areas, the smoke detector will operate as indicated above and the heat detector side shall announce a general alarm throughout the facility and transmit and alarm signal to the fire department. Smoke detectors shall not be located in a direct airflow or closer than 3 feet from an air supply diffuser or return air opening.

1. The area of protection for smoke detection devices permitted by NFPA 72 must be reduced by 50% where destratification (ceiling) fans are used. UFC 3-600-01 5-43.1

D. Duct-Mounted Smoke Detectors: Duct-mounted photoelectric smoke detectors shall be furnished and installed in accordance with NFPA 72 and NFPA 90A. Sampling tubes of sufficient length shall be provided so that the sampling tube can extend out of the opposite side of the duct for inspection. The sampling tubes must be secured to the duct on both sides of the duct regardless of size. A remote key/reset/test switch shall be furnished for duct detectors that are at a location that is not easily accessible for testing the installed duct detector. The detector housing shall be equipped with a transparent viewing port which shall permit viewing of detector head Alarm/Power-On indicator -at viewing angles up to 80 degrees off normal and inspection of cleanliness conditions inside the detector head mounting chamber. The detector shall be the plug-in type in which the detector base contains terminals for making all wiring connections. The detector indicator shall blink intermittently during standby conditions and shall glow red during alarm conditions. All LED’s to indicate the operating and alarm condition and test and reset buttons or test part shall be visible, and accessible, with the unit installed and the cover in place. Detector operating voltage will be supplied from the DC circuits of the fire alarm panel.

1. Air Handler Units (AHU) with a capacity below 2000CFM shall not have duct smoke detectors installed but shall be shut down from the fire alarm panel during an alarm activation. AHU’s with a capacity between 2000 - 15,000 CFM shall have one duct detector installed in the supply air duct. AHU’s with a capacity greater than 15,000 CFM will have two duct detectors installed, one in the supply air duct and one in the return air duct. Duct smoke detectors (2000 and larger) will shut down their respective AHU’s upon activation will initiate a supervisory signal at the fire alarm panel. The fire alarm panel shall activate a separate zone for duct detectors on the Monaco Radio to send a supervisory signal to the fire department.

2. A key switch shall be installed to bypass AIR Handler shutdown, for system testing, all other function shall not be impaired, the switch shall be supervised and send a signal via the Monaco transceiver to the fire department on a separate and distinct zone.

E. Fixed-Temperature Heat Detectors: Only Addressable Fixed temperature heat detectors shall be
The UL 521 test rating shall be 135 degrees F. or as shown. Heat detectors installed in attics and mechanical rooms shall be rated at 194 degrees F only. Heat detectors installed in exterior applications such as open storage units shall be all weather detectors.

3.13 System Components Addressable Devices

A. Addressable Devices General

1. Addressable devices shall use simple to install and maintain decade, decimal address switches. Devices shall be capable of being set to an address in a range of 001 to 159.

2. Addressable devices, which use a binary coded address setting method, such as a DIP switch, are not an allowable substitute.

3. Detectors shall be intelligent (analog) and addressable, and shall connect with two wires to the fire alarm control panel Signaling Line Circuits.

4. Addressable smoke and thermal detectors shall provide dual alarm and power/polling LEDs. Both LEDs shall flash green under normal conditions, indicating that the detector is operational and in regular communication with the control panel, and both LEDs shall be placed into steady red illumination by the control panel, indicating that an alarm condition has been detected. If required, the LED flash shall have the ability to be removed from the system program. An output connection shall also be provided in the base to connect an external remote alarm LED.

5. The fire alarm control panel shall provide detector sensitivity adjustment through field programming of the system. The panel on a time of day basis shall automatically adjust sensitivity.

6. Using software in the FACP, detectors shall automatically compensate for dust accumulation and other slow environmental changes that may affect their performance. The detectors shall be listed by UL as meeting the calibrated sensitivity test requirements of NFPA Standard 72, Chapter 7.

7. The detectors shall be ceiling mount and shall include a separate twist lock base with tamper proof feature. Bases shall include a sounder base with a built-in (local) sounder rated at 85 DBA minimum, a relay base and an isolator base designed for Style 6 applications. (Applies only to sleeping quarters)

8. The detectors shall provide a test means whereby they will simulate an alarm condition and report that condition to the control panel. Such a test may be initiated at the detector itself (by activating a magnetic switch) or initiated remotely on command from the control panel.

9. Detectors shall also store an internal identifying type code that the control panel shall use to identify the type of device (ION, PHOTO, THERMAL).

10. Detectors will operate in an analog fashion, where the detector simply measures its designed environment variable and transmits an analog value to the FACP based on real-time measured values. The FACP software, not the detector, shall make the alarm/normal decision, thereby allowing the sensitivity of each detector to be set in the FACP program and allowing the system operator to view the current analog value of each detector.

11. Addressable devices shall store an internal identifying code that the control panel shall use to identify the type of device.

12. A magnetic test switch shall be provided to test detectors and modules. Detectors shall report an indication of an analog value reaching 100% of the alarm threshold.

13. Addressable modules shall mount in a 4inch square (101.6 mm square), 21/8 inch (54 mm) deep electrical box.

14. All manual pull stations shall be mounted in the manufactures back box. If the manufacture does not make a box then use the manufactures recommended box.

B. Addressable Manual Fire Alarm Box (manual station)

1. Addressable manual fire alarm boxes shall, on command from the control panel, send data to the panel representing the state of the manual switch and the addressable communication module status. They shall use a key operated test reset lock, and shall be designed so that after actual emergency operation, they cannot be restored to normal use except by the use of a key.

2. All operated stations shall have a positive, visual indication of operation and utilize a key type reset.

3. Manual fire alarm boxes shall be constructed of Lexan with clearly visible operating instructions provided on the cover. The word FIRE shall appear on the front of the stations in raised letters, 1.75 inches (44 mm) or larger.

4. All manual pull stations shall be mounted in the manufactures back box. If the manufacture does not make a box then use the manufactures recommended box.

C. Intelligent Photoelectric Smoke Detector

1. The detectors shall use the photoelectric (light scattering) principal to send data to the panel representing the analog level of smoke density.
D. Intelligent Laser Photo Smoke Detector
1. The intelligent laser photo smoke detector shall be a spot type detector that incorporates an extremely bright laser diode and an integral lens that focuses the light beam to a very small volume near a receiving photo sensor. The scattering of smoke particles shall activate the photo sensor.
2. The laser detector shall have conductive plastic so that dust accumulation is reduced significantly.
3. The intelligent laser photo detector shall have nine sensitivity levels and be sensitive to a minimum obscuration of 0.03 percent per foot.
4. The laser detector shall not require expensive conduit, special fittings or PVC pipe.
5. The intelligent laser photo detector shall support standard, relay, isolator and sounder detector bases.
6. The laser photo detector shall not require other cleaning requirements than those listed in NFPA 72. Replacement, refurbishment or specialized cleaning of the detector head shall not be required.
7. The laser photo detector shall include two bicolor LEDs that flash green in normal operation and turn on steady red in alarm.

E. Intelligent Ionization Smoke Detector
1. The detectors shall use the dual chamber ionization principal to measure products of combustion and shall, on command from the control panel, send data to the panel representing the analog level of products of combustion.

F. Intelligent Multi Criteria Acclimating Detector
1. The intelligent multi criteria Acclimate detector shall be an addressable device that is designed to monitor a minimum of photoelectric and thermal technologies in a single sensing device. The design shall include the ability to adapt to its environment by utilizing a built-in microprocessor to determine its environment and choose the appropriate sensing settings. The detector design shall allow a wide sensitivity window, no less than 1 to 4% per foot obscuration. This detector shall utilize advanced electronics that react to slow smoldering fires and thermal properties all within a single sensing device.
2. The microprocessor design shall be capable of selecting the appropriate sensitivity levels based on the environment type it is in (office, manufacturing, kitchen etc.) and then have the ability to automatically change the setting as the environment changes (as walls are moved or as the occupancy changes).
3. The intelligent multi criteria detection device shall include the ability to combine the signal of the thermal sensor with the signal of the photoelectric signal in an effort to react hastily in the event of a fire situation. It shall also include the inherent ability to distinguish between a fire condition and false alarm condition by examining the characteristics of the thermal and smoke sensing chambers and comparing them to a database of actual fire and deceptive phenomena.

G. Intelligent Thermal Detectors
1. Thermal detectors shall be intelligent addressable devices rated at 135 degrees Fahrenheit (58 degrees Celsius) fix temp.

H. Future Use

I. Hostile Area Smoke Detector
1. The detector shall be designed to provide early warning smoke detection in environments where traditional smoke detectors are not practical.
2. The detector shall have a filter system to remove particles down to 25 microns.
3. This filter system shall remove unwanted airborne particles and water mist. This shall allow the detector to operate in environments where traditional smoke detectors would have nuisance alarms.
4. The filter system shall consist of 2 filters one of which is field replaceable.
5. The filter system shall have an intake fan to draw air and smoke through the filters into the sensing chamber.
6. The filter system shall be supervised so that if the filter is clogged or the fan fails the control panel reports trouble.
7. The filter system shall be powered from 24 VDC separate from the SLC communications.
8. The detector shall utilize a photoelectric sensing chamber.
J. Water-flow Indicator:
 1. Water-flow Switches shall be an integral, mechanical, non-coded, non-accumulative retard type.
 2. Water-flow Switches shall have an alarm transmission delay time which is conveniently adjustable from 0 to 60 seconds. Initial settings shall be 30 to 45 seconds.
 3. All water-flow switches shall come from a single manufacturer and series.
 4. Water-flow switches shall be provided and connected under this section but installed by the mechanical contractor.
 5. Where possible, locate water-flow switches a minimum of one (1) foot from a fitting which changes the direction of the flow and a minimum of three (3) feet from a valve.
 6. Water flow switches shall be wired to an addressable monitoring module, shall activate a non silenceable alarm at the FACP and transmit a signal from the BTXM on a dedicated Zone.

K. Sprinkler and Standpipe Valve Supervisory Switches:
 1. Each sprinkler system water supply control valve riser, zone control valve, and standpipe system riser control valve shall be equipped with a supervisory switch. Standpipe hose valves, and test and drain valves shall not be equipped with supervisory switches.
 2. PIV (post indicator valve) or main gate valves shall be secured with a chain and lock.
 3. Each valve supervisory switches shall be provided and connected as separate addressable points to the fire alarm system and shall report a separate and distinct supervisory alarm to the fire department (SPRINKLER TAMPER). Rope type tamper switches are not permitted.

L. Addressable Dry Contact Monitor Module Note: If approved by AHJ
 1. Addressable monitor modules shall be provided to connect one supervised IDC zone of conventional alarm initiating devices (any N.O. dry contact device) to one of the fire alarm control panel SLCs.
 2. The IDC zone shall be suitable for Class A operation. An LED shall be provided that shall flash under normal conditions, indicating that the monitor module is operational and in regular communication with the control panel.
 3. For difficult to reach areas, the monitor module shall be available in a miniature package and shall be no larger than 2 3/4 inch (70 mm) x 1 1/4 inch (31.7 mm) x 1/2 inch (12.7 mm). This version need not include Style D or an LED.

M. Two Wire Detector Monitor Module
 1. Addressable monitor modules shall be provided to connect one supervised IDC zone of conventional 2wire smoke detectors or alarm initiating devices (any N.O. dry contact device).
 2. The IDC zone shall be wired for Class A operation. An LED shall be provided that shall flash under normal conditions, indicating that the monitor module is operational and in regular communication with the control panel.

N. Addressable Control Module
 1. Addressable control modules shall be provided to supervise and control the operation of one conventional NACs of compatible, 24 VDC powered polarized audio/visual notification appliances.
 2. The control module NAC may be wired for Class A signal operation.
 3. Audio/visual power shall be provided by a separate supervised power circuit from the main fire alarm control panel or from a supervised UL listed remote power supply.
 4. The control module shall be suitable for pilot duty and rated for a minimum of 0.6 amps at 30 VDC.

O. Addressable Relay Module
 1. Addressable Relay Modules shall be available for HVAC control and other building functions. The relay shall be form C and rated for a minimum of 2.0 Amps resistive or 1.0 Amps inductive. The relay coil shall be magnetically latched to reduce wiring connection requirements, and to same time on the same pair of wires.

3.14 Suppression Systems
A. Control Valve Supervisory Signal-Initiating Device.
 1. Two separate and distinct signals shall be initiated: one indicating movement of the valve from its normal position (off-normal) and the other indicating restoration of the valve to its normal position. The off-normal signal shall be initiated during the first two revolutions of the wheel or during one-fifth of the travel distance of the valve control apparatus from its normal position. The off-normal signal shall not be restored at any valve position except normal.
Initiating device for supervising the position of a control valve shall not interfere with the operations of the valve, obstruct the view of its indicator, or prevent access for valve maintenance.

2. Control valve supervisor signals shall be sent to the fire station as a separate supervisor signal via the Monaco BTX-M radio transceiver.

3. Fire pumps are required to be monitored. Individual supervisory signals shall be provided for the following conditions:
 a. Fire pump running signals are ALARMS
 b. Fire pump loss of power of a phase
 c. Fire pump phase reversal
 d. Activation of a fire pump supervisory signal shall initiate a supervisory alarm at the system control panel and at the remote annunciators. Each set of contacts in the fire pump controller shall have address. All fire pump supervisory signals shall be transmitted to Fire Department VIA the BTX-M radio as a separate supervisory signal.

B. RELEASING SYSTEMS: Testing personnel shall be qualified and experienced in the specific arrangement and operation of a suppression system(s) and a releasing function(s) and shall be cognizant of the hazards associated with inadvertent system discharge. Testing shall include verification that the releasing circuits and components energized or actuated by the fire alarm system are electrically supervised and operate as intended on alarm.

C. A complete system discharge test including releasing of suppression agent activated from the overhead riser shall be required on all new systems and any system that is modified. Suppression systems and releasing components shall be returned to their functional operating condition upon completion of system testing.

D. Outside water/Electric gongs shall not be required.

3.15 Kitchen Hood Suppression System
 A. Kitchen hood suppression system shall not be installed in a manner that a loss of power would generate an alarm however; a trouble single would be required. A system test shall be required use air to simulate agent.

 B. All system regardless of size shall be connected to the fire alarm system.

3.16 Access Control
 A. Access control shall comply with Life Safety Code 101 para 7.2.1.5.2. Any device or system intended to actuate the locking or unlocking of exits shall be connected to the fire alarm system serving the protected premises. All exits connected in accordance with NFPA 72 ch 6.16.7.1 shall unlock upon receipt of any fire alarm signal by means of the fire alarm system serving the protected premises. Exception: Where otherwise required or permitted by the authority having jurisdiction or other codes. For all exits connected in accordance with NFPA 72 ch 6.16.7.1 and where batteries are used in accordance with NFPA 72 ch 4.4.1.5.1(1) as the secondary power supply, the batteries shall not be utilized to maintain these doors in the locked condition unless the fire alarm control unit is arranged with circuitry and sufficient secondary power to ensure the exits will unlock within 10 minutes of loss of primary power. If exit doors are unlocked by the fire alarm system, the unlocking function shall occur prior to or concurrent with activation of any public-mode notification appliances in the area(s) served by the normally locked exits. All doors that are required to be unlocked by the fire alarm system in accordance with NFPA 72 ch 6.16.7.1 through 6.16.7.5 shall remain unlocked until the fire alarm condition is manually reset.

3.17 CONTROL UNIT
 A. Control unit (Fire alarm panel) shall be addressable and be fully field programmable from the internal keyboard unless waived by the AHJ in writing. This shall include the addition of points, modification of points, and deletions. ALL system software required to perform uploads/downloads by base maintenance personnel shall be supplied. This includes the program for the facility system as well as the software and computer key that the laptop computer must use to perform these functions. Any connecting cables required to interface the laptop with the FACP shall be supplied. Installed as part of the system in each protected building and shall be approved for use with the fire detecting equipment, manual fire-alarm stations, and alarm-sounding devices. The unit shall operate with 24 volts DC derived from its internal AC rectifier/power supply. The control unit circuits shall be exclusively solid state. The control unit shall be housed in a substantial steel cabinet with lock and key C415A. The cabinet shall be painted inside and out. The control unit shall include light emitting diodes (LED's)(Lamps or neon tubes
not acceptable) to visually indicate the system condition, e.g., alarm and trouble by zone, system trouble conditions, primary and backup power supply status, etc. The control unit shall include a means to test all control unit functions. This includes a system test switch, zone disable, system reset, auxiliary disconnect and audible trouble silence switch, etc. The silence switch shall be provided with an audible resound feature. The unit shall supervise all alarm initiating circuits and all alarm sounding circuits. It shall also provide regulated and unregulated DC power for smoke detectors, which do not operate on zone voltage. With a point disabled the control unit shall repeat the alarm sequence when a second, third, etc., alarm is initiated on other zones. All LED’s shall be plainly visible when the door on the control unit is closed. The control unit shall operate separate audible and visual signals when a ground fault is detected in any supervised circuit or device. It shall sound a distinct audible alarm and activate the notification appliance circuit throughout the building when any manual or automatic device on the system is activated. The fire alarm panel shall be equipped with at least one alarm, one supervisory and one trouble relay as integral components of the panel. Add on relays are not acceptable. Alarm relay and the trouble relay dry contacts shall be used solely to activate a radio transceiver, Monaco BTXM. Only low voltage (24) will be brought into the panel for auxiliary functions. The use of plug-on units and special devices not supplied by the manufacturer in conjunction with this feature is unacceptable. The control unit shall meet the requirements of UL 864 and shall be listed for NFPA 72.

B. A separate supervisory module will be provided for sprinkler tampers and supervisory circuits.

C. Main FACP or network node shall be a NOTIFIER Model NFS2640 or equal and shall contain a microprocessor based Central Processing Unit (CPU) and power supply in an economical space saving single board design. The CPU shall communicate with and control the following types of equipment used to make up the system: intelligent addressable smoke and thermal (heat) detectors, addressable modules, printer, annunciators, and other system controlled devices.

D. Water-flow Operation
An alarm from a water-flow detection device shall activate the appropriate alarm message on the main panel display, turn on all programmed notification appliance circuits and shall not be affected by the signal silence switch.

E. Operator Control
1. Acknowledge Switch:
 a. Activation of the control panel acknowledges switch in response to new alarms and/or troubles shall silence the local panel piezo electric signal and change the alarm and trouble LEDs from flashing mode to steady ON mode. If multiple alarm or trouble conditions exist, depression of this switch shall advance the LCD display to the next alarm or trouble condition.
 b. Depression of the Acknowledge switch shall also silence all remote annunciator piezo sounders.
2. Alarm Silence Switch:
 a. Activation of the alarm silence switch shall cause all programmed alarm notification appliances and relays to return to the normal condition after an alarm condition. The selection of notification circuits and relays that are silenceable by this switch shall be fully field programmable within the confines of all applicable standards. The FACP software shall include silence inhibit and auto silence timers.

F. Alarm Activate (Drill) Switch:
1. The Alarm Activate switch shall activate all notification appliance circuits. The drill function shall latch until the panel is silenced or reset.

G. System Reset Switch:
1. Activation of the System Reset switch shall cause all electronically latched initiating devices, appliances or software zones, as well as all associated output devices and circuits, to return to their normal condition.

H. Future Use.

I. System Capacity and General Operation
1. The control panel or each network node shall provide, or be capable of expansion to 636 intelligent/addressable devices.
2. The control panel or each network node shall include Form C alarm, trouble, supervisory, and security relays rated at a minimum of 2.0 amps @ 30 VDC.

3. It shall also include two Class A (NFPA Style Z) programmable Notification Appliance Circuits.

4. The Notification Appliance Circuits shall be programmable to Synchronize with System Sensor, Gentex and Wheelock Notification Appliances.

5. The system shall include a full featured operator interface control and annunciation panel that shall include a backlit Liquid Crystal Display (LCD), individual color coded system status LEDs, and an alphanumeric keypad with easy touch rubber keys for the field programming and control of the fire alarm system.

6. The system shall be programmable, configurable, and expandable in the field without the need for special tools, PROM programmers or PC based programmers. It shall not require replacement of memory ICs to facilitate programming changes.

7. The system shall allow the programming of any input to activate any output or group of outputs. The system shall provide a minimum of 8 programmable form C contacts for triggering zones on the Monaco transceiver. Systems that have limited programming (such as general alarm), have complicated programming (such as a diode matrix), or require a laptop personal computer are not considered suitable substitutes. The FACP shall support up to 20 logic equations, including "and," "or," and "not," or time delay equations to be used for advanced programming. Logic equations shall require the use of a PC with a software utility designed for programming. The system shall provide a minimum of 8 programmable form C contacts triggering zones on the Monaco Transceiver.

8. The FACP or each network node shall provide the following features:
 a. Drift compensation to extend detector accuracy over life. Drift compensation shall also include a smoothing feature, allowing transient noise signals to be filtered out.
 b. Detector sensitivity test, meeting requirements of NFPA 72, Chapter 5.
 c. Maintenance alert, with two levels (maintenance alert/maintenance urgent), to warn of excessive smoke detector dirt or dust accumulation.
 d. Nine sensitivity levels for alarm, selected by detector. The alarm level range shall be .5 to 2.35 percent per foot for photoelectric detectors and 0.5 to 2.5 percent per foot for ionization detectors. The system shall also support sensitive advanced detection laser detectors with an alarm level range of .03 percent per foot to 1.0 percent per foot. The system shall also include up to nine levels of Pre-alarm, selected by detector, to indicate impending alarms to maintenance personnel.
 e. The ability to display or print system reports.
 f. Alarm verification, with counters and a trouble indication to alert maintenance personnel when a detector enters verification 20 times.
 g. PAS pre-signal, meeting NFPA 72 6.8.1.3 requirements.
 h. Periodic detector test, conducted automatically by the software.
 i. Self optimizing pre-alarm for advanced fire warning, which allows each detector to learn its particular environment and set its pre-alarm level to just above normal peaks.
 j. Cross zoning with the capability of counting: two detectors in alarm, two software zones in alarm, or one smoke detector and one thermal detector.
 k. Walk test, with a check for two detectors set to same address.
 l. Control by time for non-fire operations, with holiday schedules.
 m. Day/night automatic adjustment of detector sensitivity.
 n. Device blink control for sleeping areas.

9. The FACP shall be capable of coding main panel node notification circuits in March Time (120 PPM), Temporal, and California Code. The panel shall also provide a coding option that will synchronize specific strobe lights designed to accept a specific "sync pulse." Notification Appliances shall meet the requirements specified in chapter 7 of NFPA 72.

J. Remote LCD annunciator’s will be required. Exact numbers and location will be determined by design and approved by the AHJ at least one annunciator will be installed. The location of an operated initiating device shall be annunciated by visible mean and at location accessible to first responders. Visible annunciation shall be by an alphanumeric display. The visible annunciation of the location of operated initiating devices shall not be canceled by the means used to deactivate alarm notification appliances.

K. Protection of Fire Alarm System. Automatic smoke detection shall be provided at the location of each fire alarm control unit(s), notification appliance circuit power extenders, and supervising station transmitting equipment to provide notification of fire at that location.

L. Audible Trouble Signal Silencing Means. The panel shall not utilize a key function to control unauthorized access to the panel.
M. No penetration will be made at the top of any control cabinet except where provided by manufacture and shall not be altered.

3.18 TRANSCEIVERS
A. Radio transceiver shall be provided for interface of the building fire alarm system and the existing Base central monitor receiver.
B. The transceiver required is a Building Transceiver BTX-M with a minimum of one transceiver, one relay board and one audio board manufactured by Monaco Enterprises, Inc.
C. Wiring used to interface the transceiver alarm and trouble Inputs with the fire alarm control panel shall be no greater in size than 18 AWG. Mount the radio at a height of 54 inches, measured from the floor.
D. The frequency of operation for the transceiver shall be 163.5375 MHz.
E. The minimum zone shall be as follows:
 1. Fire Alarm/trouble
 2. Sprinkler Flow
 3. Sprinkler Tamper
 4. MNS override of a fire alarm signal
 5. Duct Detector supervisory
F. No penetration will be made at the top transceiver cabinet.
G. 1SOCES/CEOFA alarm shop will program the BTXM radio.

3.19 ANTENNA
A. Antenna: Antenna Monaco Assembly Part No. 190-400-00. Antenna shall be installed in accordance with Hurlburt Field Specification 28 31 00 Part 3, section 3.19. Lightning arrestor kit shall be Monaco Assembly Part No. 190-007-01.
B. Contractor shall provide a radio frequency (RF) power meter to test and verify that the standing wave ratio (SWR) is within the manufacturer’s specifications.
C. Future Use.
D. Frequency: Antennas shall be designed to operate on the specified radio frequency of 163.5375 MHZ.
E. Environmental Requirements: All antenna assemblies shall be of corrosion-resistant materials and designed for reliable operation under adverse conditions including 100-mph winds, ice, snow, and rain. Antenna mast shall be ¾ inch rigid aluminum and use a ¾ coupling at the top for the pl 259 connector. Antenna structure to include brackets, lightning arrestor box and all conduits shall be painted in accordance with Hurlburt Field regulation to match the structure were attached.
F. Antenna Cables: Coaxial cables shall be 50 ohm RG-8x with minimum 95% shield and shall include PL 259 and BNC type fittings or connectors as appropriate. Antenna cable for transmitter shall be RG-8x coaxial cable if length is under 200 feet, 9913 if over 200 feet. Utilize proper fittings PL259 and BNC. Cables is excess of 2 feet of the required length are not acceptable with a minimum 10 inches in the panel. The antenna cable shall be installed in ¾ rigid aluminum conduit from radio to base of antenna with no cables exposed use a ¾ coupling at the top of mast for the PL259.
G. Grounding of Antenna Systems: Antenna masts and static discharge unit ground terminals shall be grounded in accordance with the requirements of NFPA 70, Article 810-21, AFI 32-1065 and the manufacturer's instructions, bonded to the facility lighting grid. Static discharge units and their enclosures shall be located inside the buildings as close as practical to the antenna lead-in point of entry. Ground rods shall be of copper-clad steel conforming to UL 4561 not less than 5/8 inch in diameter by ten feet in length. Ground rods shall not protrude above grade, ground wire from rod to equipment shall be protected in ½ EMT conduit. Ground rod shall be bonded to the building grounding system. Non-current-carrying metallic parts associated with mass notification equipment shall have maximum resistance to solid earth ground not to exceed the following values: Antennas/static discharge units 10 ohms; Radio alarm transceivers 10 ohms.
3.20 Power Supply
A. Primary Power Supply: Primary power supply for ALL control units (this includes but not limited to FACP, MNS, BTXM transceiver and power supplies. Shall be on a dedicated 20-amp branch circuit and individually protected by surge protection devices part number EDCO Hsp121bt1r2 the circuit breaker shall be protected from operation by unauthorized personnel by a circuit breaker guard. At locations where the circuit breaker is out of sight of the fire alarm control panel, a disconnect switch shall be installed adjacent to the control panel and clearly marked “FIRE ALARM”. The conductors feeding the control panel shall be #12 AWG. Stake-on terminal lugs are not acceptable for wire terminations. Id tag will be rigid plastic. Primary power supply wiring shall be installed in electrical metallic tubing in accordance with the applicable requirements of the NEC 70.

B. Standby Power Supply: Standby power to insure operation of the fire alarm system in the event of primary power failure shall be provided by no more than two each maintenance free storage batteries.

C. Power supply shall be provided with an automatic battery charger capable of a high/low charge rate.

D. Battery shall have the capacity to operate the fire system for 24 hours and then be capable of sounding all general alarms for fifteen minutes for all fire alarm systems.

E. Space for Future Use.

F. The charging circuit for all systems shall be supervised to indicate a low battery condition and be rated to recharge fully discharged batteries in 24 hours.

3.21 Fire Department Equipment
A. The Contractor shall furnish transceiver that will interface, and be fully compatible with the Government system installed at fire department. The existing system is a Monaco D21-M Radio Fire ALARM System.

B. Contractor shall supply and install signage displaying the building number meeting base specification.

3.22 Drawing and Manuals
A. Upon completion of the installation and prior to final inspection, the Contractor shall furnish two copies of "as-built" drawings on CD or DVD and shall be in CAD format. Drawings shall show equipment configuration, control panel equipment and subassembly locations, and the location of the transceiver and all connecting Wiring. Drawings shall include all wiring color codes and terminal numbers and termination points for all wires. They shall include a detailed wiring layout showing all junction boxes, all system wiring, including number of wires, with zones and alarm sounding circuits, initiating and alarm sounding devices identified by module number and strobes with candela rating. In addition, the Contractor shall furnish two copies of a manual giving complete instructions for the operation, inspection, testing, and maintenance of the system including wiring diagrams. The layout shall be done on the building floor plans. The final inspection cannot take place without the drawings.

3.23 Special Tools
A. All special tools or equipment necessary for the operation and maintenance of the equipment including testing shall be furnished this includes but not limited to a laptop, software, cables and hardware keys (dongle) if required. The items furnished will be new/unused items with packaging and manuals.

3.24 Repair of Existing Work
A. The work shall be carefully laid out in advance. Cutting, channeling, chasing, or drilling of floors, walls, partitions, ceilings or other surfaces as necessary for the proper installation, support, or anchorage of the conduit or other work shall be carefully done. Damage to buildings, piping or equipment shall be repaired and refinished by skilled mechanics of the trades involved.

3.25 Tests
A. After all equipment for this system has been installed and made operational, and at a time directed by the Contracting Office, the contractor shall conduct tests to demonstrate that the installation and the system operation is in accordance with the plans and specifications. Testing of the system shall include remote annunciation of alarms and trouble conditions to the fire department. In addition to the request letter, the Contractor shall submit a test plan/procedure to the Contracting Officer to indicate his proposed method to demonstrate compliance with the plans and specifications. The contractor will also certify in writing that the work accomplished meets all contractual requirements. The government will provide one retest.
Subsequent testing will result in reimbursement of expenses to the Government. Satisfactory operation of each of the following devices shall be demonstrated during the test:
1. Each automatic detector.
2. Each manual fire alarm station.
3. Each transceiver, all functions.
4. Each audible alarm device.
5. Each visual alarm device.
6. Supervision of each device such as; heat detectors, pull stations, smoke detectors, etc; and alarm zone circuits to include ground faults.
7. Satisfactory operation after loss of primary power supply.
8. Satisfactory operation of each device shut down circuit with correct zone correspondence. This shall not be simulated but shall actually be demonstrated by actual device/equipment shutdown.
9. All control panel functions, alarm and trouble, audible and visual indicators, silence switches and their resound function and alarm resound features of the control unit.
10. In each zone containing automatic smoke detectors, each detector will be put into the alarm mode and stay in that mode for 10 minutes after the last detector goes into alarm, to verify satisfactory operation of the detectors and the detector power supply module under alarm load. Smoke is expressly forbidden for this test.
11. Supervision of DC power on each automatic detector circuit.

B. Documentation Required. Every system shall include the following documentation, which shall be delivered to the contracting officer two weeks prior to any initial inspections the system:
1. An owner’s manual and manufacturer's published instructions covering all system equipment. Provide all manuals, drawings, technical/programming manual on a DVD disk.
2. Record drawings
3. For software-based systems, provide programming software, database, dongle key and computer cable to connect to fire panel.

3.26 TRAINING
A. Equipment installer shall provide 1 day on site training for maintenance personnel.

B. 5 days of technical training to the government at the manufacturing facility. Training shall be accomplished by the manufacturer of the equipment within 90 days. Training shall allow for classroom instruction as well as individual hands on programming, troubleshooting and diagnostics exercises. The contractor shall furnish all literature, materials and training aids. Travel, Per Diem and hotel cost will be at the government’s expense. Factory training shall occur within 3 months of system acceptance. The training days will be Monday through Friday between 0700 and 1600.

C. Provide 2 days of training onsite for Hurlburt Fire Department.

D. The Contracting Officer will approve all training dates and times.

3.27 Quality Control
A. The Contractor shall establish and maintain quality control for operations under the section to assure compliance with contract requirements, and maintain records of his quality control for all materials, equipment, and construction operations, including but not limited to the following:
1. Preparatory Inspection: (To be conducted prior to commencing work.)
2. Submittal of all materials and shop drawings necessary for accomplishment.
3. Have in hand equipment and wiring layout-showing sequence of wiring.
4. Qualifications of installing firm.

B. Initial inspection: (To be conducted after a representative sample of the work is complete.)
1. Check mounting heights, supports, accessibility of all items.
2. Check temperature ratings of detection against ceiling temperatures anticipated at detector locations.
3. Check size of conduit, boxes, and wires for proper sizing in accordance with National Electrical Code and Contracts.

C. Follow-Up Inspection: (to be conducted daily to assure compliance with results of initial inspection.)
1. Determine that noted deficiencies are corrected.
2. Make corrections for "as-built" fire alarm system drawings.
3. Determine that all installed equipment is functional and in accordance with the contract requirement.
4. Operational test performed.
5. Damages or defects corrected.
A copy of these records and Contractor tests as well as records of corrective action taken, shall be furnished the government as directed by the contracting officer.

3.28 Final Inspection
A. At the final inspection, a factory trained representative of the manufacturer of the major equipment shall demonstrate that the system functions properly in every respect.

END OF SECTION
ASBESTOS SURVEYS
Appendix A
Limited Asbestos and LBP Survey
October 20, 2014

Mr. Philip Morgan
Heffner Holland and Morgan Architecture
312 South Alcaniz Street
Pensacola, Florida 32501

Re: Limited Asbestos and LBP Survey
Building 90337
Hurlburt Field, Florida
PSI Project Number: 0638551

Dear Mr. Morgan:

Professional Service Industries, Inc. (PSI) is pleased to inform you of our findings for the above referenced project. The project encompassed surveys for asbestos-containing materials (ACM) and lead-based paint (LBP) in Building 90337. The surveys were limited to building components likely to be impacted by the renovations to the existing building structure. The site visit was conducted on October 7, 2014 by PSI’s Mr. John C. Harris, a U.S. Environmental Protection Agency (EPA) accredited asbestos and lead paint inspector.

ASBESTOS SURVEY

The asbestos survey was conducted to assist the client in complying with requirements of 40 CFR Part 61, the National Emission Standards for Hazardous Air Pollutants (NESHAP). PSI investigated for both friable and non-friable ACM. Friable ACM is defined by the EPA as any material that when dry, can be crumbled, pulverized, or reduced to powder by hand pressure. The EPA defines ACM as any material that contains greater than one-percent asbestos. All samples collected were submitted for analysis by the EPA recommended Polarized Light Microscopy (PLM) with dispersion staining. The following materials were sampled as suspect ACM:

<table>
<thead>
<tr>
<th>Material</th>
<th>Location</th>
<th>Estimated Quantity</th>
<th>Condition</th>
<th>Friable</th>
<th>Asbestos Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Pipe Mastic</td>
<td>Exterior Heating, Ventilation, and Air Conditioning (HVAC) System</td>
<td>N/A</td>
<td>Good</td>
<td>Yes</td>
<td>NAD</td>
</tr>
<tr>
<td>Stucco Finish</td>
<td>Building Exterior Finish</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>Concrete</td>
<td>Foundation</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>Drywall System</td>
<td>Game Side Lounge</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>Gray Covebase w/White Mastic</td>
<td>Game Side Lounge</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>2’x2’ Black Ceiling Tile</td>
<td>Game Side Lounge</td>
<td>N/A</td>
<td>Good</td>
<td>Yes</td>
<td>NAD</td>
</tr>
<tr>
<td>Window Caulking</td>
<td>Interior Window Kids Library</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>12” Brown Floor Tile w/Black Mastic</td>
<td>Library Storage Room</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>Covebase w/Yellow Mastic</td>
<td>Library</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>Drywall System</td>
<td>Library</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>Spray Applied Ceiling</td>
<td>Library - Above Drop Ceiling</td>
<td>3,500</td>
<td>Good</td>
<td>Yes</td>
<td>3% CH</td>
</tr>
</tbody>
</table>
Bulk samples of these materials were collected and sent to PSI's environmental laboratory in Pittsburgh, Pennsylvania for analysis by PLM. The U. S. National Institute of Standards and Technology (NIST) accredits PSI's laboratory under the National Voluntary Laboratory Accreditation Program (NVLAP) for the analysis of bulk asbestos.

The Spray Applied Ceiling Finish is considered friable and a regulated asbestos containing material (RACM) under the NESHAP regulation. Removal of this material is considered to be Class I Asbestos Work under the U.S. Occupational Safety and Health Administration (OSHA) Asbestos Construction Standard. The material is not required to be removed, unless planned renovation activities will disturb the material.

A Notice of Asbestos Renovation or Demolition form is required to be filed with the FDEP at least ten business days before beginning removal of the RACM from the building. If applicable, the FDEP will invoice the party identified on the notification form for the notification fee, which is determined based on the quantity of RACM being removed.

If additional suspect materials are discovered that were not assessed during this survey, work should be stopped and the materials tested by a Florida licensed asbestos consultant.

LEAD PAINT SURVEY

The lead paint survey was conducted to identify components coated with LBP that may be impacted by renovation. Testing was conducted with a using a *Radiation Monitoring Devices LPA-1* x-ray fluorescence (XRF) analyzer. XRF readings of 1.0 milligrams per square centimeter (mg/cm²) or greater are considered positive under U.S. Housing and Urban Development Department (HUD) guidelines and the EPA.

A total of twenty-seven (27) XRF readings were collected from various components in Building 90337. None of these indicated lead concentrations equal to or in excess of 1.0 mg/cm². A copy of the XRF Testing Log is attached.

It must be noted that OSHA does not have any standard concerning the concentration of lead in paint. Rather, the OSHA Construction Lead Standard regulates the concentration of airborne lead that workers are exposed to during construction related activities. Therefore, it is possible for disturbance of painted surfaces containing lead at concentrations below the EPA and HUD standard to result in airborne concentrations of lead that exceed the OSHA Action Level (AL) of 30 micrograms per cubic meter or the Permissible Exposure Level (PEL), which is 50 micrograms per cubic meter. A case by case assessment of each construction activity should be conducted to determine which components should be abated prior to disturbance. The assessment should include an evaluation of the type of work that will be conducted (i.e. drilling, sawing, demolition, repainting etc.), the concentration of lead detected in the painted surface, and the results of any available prior negative exposure air monitoring data.
WARRANTY

The information contained in this report is based upon the data furnished by the Client and observations and test results provided by PSI. These observations and results are time dependent, are subject to changing site conditions, and revisions to Federal, State and local regulations.

PSI warrants that these findings have been promulgated after being prepared in general accordance with generally accepted practices in the asbestos and/or lead-based paint testing and abatement industries. PSI also recognizes that raw laboratory test data are not usually sufficient to make all abatement and management decisions.

This report was prepared pursuant to the contract PSI has with Hefferman Holland and Morgan Architecture. That contractual relationship included an exchange of information about the subject site that was unique and between PSI and its client and serves as the basis upon which this report was prepared. Because of the importance of the communication between PSI and its client, reliance or any use of this report by anyone other than Hefferman Holland and Morgan Architecture, for whom it was prepared, is prohibited and therefore not foreseeable to PSI.

Reliance or use by any such third party without explicit authorization in the report does not make said third party a third party beneficiary to PSI’s contract with Hefferman Holland and Morgan Architecture. Any such unauthorized reliance on or use of this report, including any of its information or conclusions, will be at third party’s risk. For the same reasons, no warranties or representations, expressed or implied in this report, are made to any such third party.

No other warranties are implied or expressed.

UNIDENTIFIABLE CONDITIONS

This report is necessarily limited to the conditions observed and to the information available at the time of the work. Due to the nature of the work, there is a possibility that there may exist conditions which could not be identified within the scope of work or which were not apparent at the time of our site work. This report is also limited to information available from the client at the time it was conducted. The report may not represent all conditions at the subject site as it only reflects the information gathered from specific locations.
PSI appreciates the opportunity to have been of service to you. If you have any questions regarding our findings, please do not hesitate to give us a call.

Sincerely,
PROFESSIONAL SERVICE INDUSTRIES, INC.

John C. Harris
Project Manager

Christopher M. Hundley
Principal Consultant - Lead

Jeremy Jernigan, CIH, CSP, CHMM
Florida Licensed Asbestos Consultant
License No. AX73

Attachments: Asbestos Analytical Results/Bulk Sample Logs/Chain of Custodies
XRF Testing Results
Inspector Training Certificates
REPORT OF BULK SAMPLE ANALYSIS FOR ASBESTOS

TESTED FOR: PSI, Inc.
175 South "A" Street
Pensacola, FL 32502
Attn: John Harris

Date Received: 10/8/2014
Date Completed: 10/9/2014
Date Reported: 10/9/2014

Project ID: 0638551
Hurlburt - 90337
HHMA
Hurlburt Field

<table>
<thead>
<tr>
<th>Client ID</th>
<th>Lab ID (Layer)</th>
<th>Sample Description (Color, Texture, Etc.)</th>
<th>Analyst's Comment</th>
<th>Asbestos Content (Percent and Type)</th>
<th>Non-asbestos Fibers (Percent and Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>001A (1)</td>
<td>Black, Other, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Fibrous Glass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Black pipe mastic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>002A (1)</td>
<td>Black, Other, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Fibrous Glass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Black pipe mastic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>003A (1)</td>
<td>Black, Other, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Fibrous Glass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Black pipe mastic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>004A (1)</td>
<td>Gray, Stucco, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>05</td>
<td>005A (1)</td>
<td>Gray, Stucco, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>06</td>
<td>006A (1)</td>
<td>Gray, Stucco, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>07</td>
<td>007A (1)</td>
<td>Gray, Concrete, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>08</td>
<td>008A (1)</td>
<td>Gray, Concrete, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>09</td>
<td>009A (1)</td>
<td>Gray, Drywall, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td>(2) White, Joint Compound, Homogeneous</td>
<td></td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>10</td>
<td>010A (1)</td>
<td>Gray, Drywall, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td>(2) White, Joint Compound, Homogeneous</td>
<td></td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>11</td>
<td>011A (1)</td>
<td>Gray, Covebase, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td>(2) Yellow, Mastic, Homogeneous</td>
<td></td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
</tbody>
</table>

Quantitation is based on a visual estimation of the relative area of bulk sample components, unless otherwise noted in the “Comments” section of this report. The results are valid only for the item tested. This report may not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. Method used: E.P.A. Method for the Determination of Asbestos in Bulk Building Materials (EPA / 600/R-93/116 July 1993). Polarized Light Microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Quantitative Transmission Electron Microscopy is currently the only method that can be used to determine if the material can be considered or treated as non-asbestos containing. Samples will be disposed of within 30 days unless notified in writing by the client. No part of this report may reproduced, except in full, without written permission of the laboratory. The reporting limit is 1% by weight. NVLAP Lab Code 101350-0.

Respectfully submitted,
PSI, Inc.

Mary Cantley

Approved Signatory
Mary Cantley
<table>
<thead>
<tr>
<th>Client ID</th>
<th>Lab ID (Layer)</th>
<th>Sample Description (Color, Texture, Etc.)</th>
<th>Asbestos Content (Percent and Type)</th>
<th>Non-asbestos Fibers (Percent and Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>012A</td>
<td>(1) Gray, Covebase, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Yellow, Mastic, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>13</td>
<td>013A</td>
<td>(1) Beige, Ceiling Tile, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>30% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30% Fibrous Glass</td>
</tr>
<tr>
<td>14</td>
<td>014A</td>
<td>(1) Beige, Ceiling Tile, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>30% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30% Fibrous Glass</td>
</tr>
<tr>
<td>15</td>
<td>015A</td>
<td>(1) White, Caulking, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>16</td>
<td>016A</td>
<td>(1) White, Caulking, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>17</td>
<td>017A</td>
<td>(1) Brown, Floor Tile, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>018A</td>
<td>(1) Brown, Floor Tile, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Black, Mastic, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>19</td>
<td>019A</td>
<td>(1) Gray, Covebase, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Yellow, Mastic, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>20</td>
<td>020A</td>
<td>(1) Gray, Covebase, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Yellow, Mastic, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>21</td>
<td>021A</td>
<td>(1) Gray, Drywall, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) White, Joint Compound, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>22</td>
<td>022A</td>
<td>(1) Gray, Drywall, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) White, Joint Compound, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>23</td>
<td>023A</td>
<td>(1) White, Spray-On, Homogeneous</td>
<td>3% Chrysotile</td>
<td>None Reported</td>
</tr>
<tr>
<td>24</td>
<td>024A</td>
<td>(1) White, Spray-On, Homogeneous</td>
<td>3% Chrysotile</td>
<td>None Reported</td>
</tr>
<tr>
<td>25</td>
<td>025A</td>
<td>(1) White, Spray-On, Homogeneous</td>
<td>3% Chrysotile</td>
<td>None Reported</td>
</tr>
<tr>
<td>26</td>
<td>026A</td>
<td>(1) White, Spray-On, Homogeneous</td>
<td>3% Chrysotile</td>
<td>None Reported</td>
</tr>
<tr>
<td>27</td>
<td>027A</td>
<td>(1) White, Spray-On, Homogeneous</td>
<td>3% Chrysotile</td>
<td>None Reported</td>
</tr>
<tr>
<td>28</td>
<td>028A</td>
<td>(1) Beige, Ceiling Tile, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>30% Cellulose Fiber</td>
</tr>
</tbody>
</table>

Quantitation is based on a visual estimation of the relative area of bulk sample components, unless otherwise noted in the "Comments" section of this report. The results are valid only for the item tested. This report may not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. Method used: E.P.A. Method for the Determination of Asbestos in Bulk Building Materials (EPA / 600/R-93/116 July 1993). Polarized Light Microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Quantitative Transmission Electron Microscopy is currently the only method that can be used to determine if the material can be considered or treated as non-asbestos containing. Samples will be disposed of within 30 days unless notified in writing by the client. No part of this report may reproduced, except in full, without written permission of the laboratory. The reporting limit is 1% by weight. NVLAP Lab Code 101350-0.

Respectfully submitted,
PSI, Inc.

Approved Signatory
Mary Cantley

Professional Service Industries, Inc. 850 Poplar Street, Pittsburgh, PA 15220 Phone 412/922-4010 Fax 412/922-4014
<table>
<thead>
<tr>
<th>Client ID</th>
<th>Lab ID (Layer)</th>
<th>Sample Description (Color, Texture, Etc.)</th>
<th>Asbestos Content (Percent and Type)</th>
<th>Non-asbestos Fibers (Percent and Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>029A</td>
<td>Beige, Ceiling Tile, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>30% Cellulose Fiber</td>
</tr>
</tbody>
</table>

Report Notes: (PT) Point Count Results

Quantitation is based on a visual estimation of the relative area of bulk sample components, unless otherwise noted in the "Comments" section of this report. The results are valid only for the item tested. This report may not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. Method used: E.P.A. Method for the Determination of Asbestos in Bulk Building Materials (EPA / 600/R-93/116 July 1993). Polarized Light Microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Quantitative Transmission Electron Microscopy is currently the only method that can be used to determine if the material can be considered or treated as non-asbestos containing. Samples will be disposed of within 30 days unless notified in writing by the client. No part of this report may reproduced, except in full, without written permission of the laboratory. The reporting limit is 1% by weight. NVLAP Lab Code 101350-0.

Respectfully submitted,

PSI, Inc.

Approved Signatory

Mary Cantley
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Location And Description</th>
<th>Friable (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Exterior HVAC System / Black Pipe Mastic</td>
<td>Y</td>
</tr>
<tr>
<td>02</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>03</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>04</td>
<td>Building Exterior / Stucco Finish</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>Foundation / Concrete</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Game Side lounge / Drywall System</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Library / Interior Window Caulk</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Number</td>
<td>Sample Location And Description</td>
<td>Friable (Y/N)</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>28</td>
<td>Library</td>
<td>Y</td>
</tr>
<tr>
<td>29</td>
<td>ox White Ceiling Tile</td>
<td>Y</td>
</tr>
</tbody>
</table>

- 24x48 Drywall Ceiling 33 x 69
- 16 x 28 Floor Tile
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Component Description</th>
<th>Project No.</th>
<th>Component Location</th>
<th>BGS</th>
<th>PC</th>
<th>XRF Reading (mg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calibrate</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Tan Wall</td>
<td>E</td>
<td></td>
<td>P</td>
<td>I</td>
<td>-0.2</td>
</tr>
<tr>
<td>(n) Column</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>(n) Door</td>
<td></td>
<td>M</td>
<td></td>
<td>I</td>
<td></td>
<td>-0.2</td>
</tr>
<tr>
<td>(n) Frame</td>
<td></td>
<td>M</td>
<td></td>
<td>I</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td>(n) Ladder</td>
<td></td>
<td>M</td>
<td></td>
<td>I</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>Green Tile</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td>(n) Wall</td>
<td></td>
<td>P</td>
<td></td>
<td>I</td>
<td></td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>Brown Stair Railings</td>
<td>M</td>
<td>E</td>
<td>D</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Tan Wall</td>
<td>C</td>
<td>Library Entry</td>
<td>I</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>White Wall</td>
<td>CB</td>
<td>Storage</td>
<td>I</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>Brown Door</td>
<td>M</td>
<td>Frame</td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>(n) Door</td>
<td></td>
<td>M</td>
<td></td>
<td>I</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>M, Yc Wall</td>
<td>C</td>
<td>Break</td>
<td>I</td>
<td></td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>White Door</td>
<td>M</td>
<td></td>
<td>I</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td>(n) Frame</td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Green 4” Wall Tile</td>
<td>C</td>
<td>Men’s Rest. Lib.</td>
<td>I</td>
<td></td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>Tan Floor Tile</td>
<td>C</td>
<td></td>
<td>I</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>Yellow Wall</td>
<td>C</td>
<td>Community Hall</td>
<td>I</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>Green Wall</td>
<td>C</td>
<td></td>
<td>I</td>
<td></td>
<td>-0.0</td>
</tr>
<tr>
<td></td>
<td>Gray Wall</td>
<td>CB</td>
<td></td>
<td>I</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>Blue Wall</td>
<td>G</td>
<td></td>
<td>I</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>Tan Floor Tile</td>
<td>C</td>
<td></td>
<td>I</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>Red Structural Beam</td>
<td>M</td>
<td></td>
<td>I</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Tan Wall</td>
<td>C</td>
<td></td>
<td>I</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>White Door</td>
<td>M</td>
<td></td>
<td>I</td>
<td></td>
<td>0.1</td>
</tr>
</tbody>
</table>

PC = Paint Condition: I = Intact, D = Defective

BGS = Background Substrate: M = Metal, C =Concrete W = Wood, B = Brick, CB = Concrete Block, GB = Gypsum Board
ACM LOCATIONS

PSI Project No.: 0638551
Asbestos Survey
Hurlburt Field, Florida
certifies

John C. Harris

PSI, Inc., 175 South A Street, Pensacola, FL 32502
Having passed a 25-question exam with a score of 70% or higher has successfully met training requirements for

Asbestos Refresher: Inspector
FDBPR Asbestos Licensing Unit: Provider #0000995; Course #FL49-0004731 (½ Day; 3.40 Contact Hours)
(Reaccreditation for Inspector under TSCA Title II/AHERA)
Conducted

08/05/2014

Certificate #: 150142-4625
Exam Date: 08/05/2014
EPA accreditation expires: 08/05/2015
Principal Instructor: Brian Duchene, P.E.
CEUs: .4
FBPR LAC: #0000995; Course #0004731
FBPE PDHs: #0004021; Course #0009083/Educational Institutions: 4 PDHs

Carol Hinton, Associate Director

University of Florida TREEO Center • 3900 SW 63 Boulevard • Gainesville, FL 32608-3800 • 352-392-9570 • www.treeo.ufl.edu
The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.
Table of Contents

- Cover Page ... 1
- Table of Contents ... 2
- Sample Summary ... 3
- Chain of Custody .. 4
- Receipt Checklists ... 5
- Certification Summary ... 6
- Subcontract Data ... 7
Sample Summary

Client: 1SO CES
Project/Site: Hazwaste

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Client Sample ID</th>
<th>Matrix</th>
<th>Collected</th>
<th>Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-124503-1</td>
<td>90377-ASB-1, BLACK MASTIC ON CERAMIC TILE</td>
<td>Solid</td>
<td>07/11/16 09:30</td>
<td>07/15/16 08:00</td>
</tr>
<tr>
<td>Sample Date/Time</td>
<td>Sample Identification</td>
<td>Hazard Value</td>
<td>Matrix</td>
<td>No. of Containers Submitted</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>07/11/2016 9:30 AM</td>
<td>90377-ASB-1, Black mastic on ceramic tile</td>
<td>X</td>
<td>X</td>
<td>1</td>
</tr>
</tbody>
</table>

RELINQUISHED BY (SIGNATURE):
Fred Javier
DATE: 11/11/11
TIME: 11:05

RECEIVED BY (SIGNATURE):
DATE: 11/11/11
TIME: 11:05

LABORATORY USE ONLY

RECEIVED FOR LABORATORY BY:
DATE: 07/15/16
TIME: 08:00

CUSTOM INTACT? △ YES △ NO
CUSTOM SEAL NO.
TEMPERATURE OF COOLERS & REMARKS:
Login Sample Receipt Checklist

Client: ISO CES
Job Number: 400-124503-1
Login Number: 124503
List Number: 1
Creator: Perez, Trina M
List Source: TestAmerica Pensacola

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity wasn't checked or is \leq background as measured by a survey meter.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>The cooler's custody seal, if present, is intact.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample custody seals, if present, are intact.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>The cooler or samples do not appear to have been compromised or tampered with.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Samples were received on ice.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is acceptable.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is recorded.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>COC is present.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink and legible.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>COC is filled out with all pertinent information.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Is the Field Sampler's name present on COC?</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>There are no discrepancies between the containers received and the COC.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Samples are received within Holding Time (excluding tests with immediate HTs)</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample containers have legible labels.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Containers are not broken or leaking.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample collection date/times are provided.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Appropriate sample containers are used.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample bottles are completely filled.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample Preservation Verified.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Containers requiring zero headspace have no headspace or bubble is \leq 6mm (1/4").</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Multiphasic samples are not present.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Samples do not require splitting or compositing.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Residual Chlorine Checked.</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
Certification Summary

Client: ISO CES
Project/Site: Hazwaste
Laboratory: TestAmerica Pensacola
Laboratory: EMLab P&K - Fort Lauderdale

Laboratory: TestAmerica Pensacola

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

<table>
<thead>
<tr>
<th>Authority</th>
<th>Program</th>
<th>EPA Region</th>
<th>Certification ID</th>
<th>Expiration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>State Program</td>
<td>4</td>
<td>40150</td>
<td>06-30-17</td>
</tr>
<tr>
<td>Arizona</td>
<td>State Program</td>
<td>9</td>
<td>AZ0710</td>
<td>01-11-17</td>
</tr>
<tr>
<td>Arkansas DEQ</td>
<td>State Program</td>
<td>6</td>
<td>88-0689</td>
<td>09-01-16</td>
</tr>
<tr>
<td>California</td>
<td>ELAP</td>
<td>9</td>
<td>2510</td>
<td>03-31-18</td>
</tr>
<tr>
<td>Florida</td>
<td>NELAP</td>
<td>4</td>
<td>E81010</td>
<td>06-30-17</td>
</tr>
<tr>
<td>Georgia</td>
<td>State Program</td>
<td>4</td>
<td>N/A</td>
<td>06-30-17</td>
</tr>
<tr>
<td>Illinois</td>
<td>NELAP</td>
<td>5</td>
<td>200041</td>
<td>10-09-16</td>
</tr>
<tr>
<td>Iowa</td>
<td>State Program</td>
<td>7</td>
<td>367</td>
<td>07-31-16</td>
</tr>
<tr>
<td>Kansas</td>
<td>NELAP</td>
<td>7</td>
<td>E-10253</td>
<td>07-31-16 *</td>
</tr>
<tr>
<td>Kentucky (UST)</td>
<td>State Program</td>
<td>4</td>
<td>53</td>
<td>06-30-16 *</td>
</tr>
<tr>
<td>Kentucky (WW)</td>
<td>State Program</td>
<td>4</td>
<td>98030</td>
<td>12-31-16</td>
</tr>
<tr>
<td>Louisiana</td>
<td>NELAP</td>
<td>6</td>
<td>30976</td>
<td>06-30-17</td>
</tr>
<tr>
<td>Maryland</td>
<td>State Program</td>
<td>3</td>
<td>233</td>
<td>09-30-16</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>State Program</td>
<td>1</td>
<td>M-FL094</td>
<td>06-30-16 *</td>
</tr>
<tr>
<td>Michigan</td>
<td>State Program</td>
<td>5</td>
<td>9912</td>
<td>06-30-16 *</td>
</tr>
<tr>
<td>New Jersey</td>
<td>NELAP</td>
<td>2</td>
<td>FL006</td>
<td>06-30-17</td>
</tr>
<tr>
<td>North Carolina (WW/SW)</td>
<td>State Program</td>
<td>4</td>
<td>314</td>
<td>12-31-16</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>State Program</td>
<td>6</td>
<td>9810</td>
<td>08-31-16</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>NELAP</td>
<td>3</td>
<td>68-00467</td>
<td>01-31-17</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>State Program</td>
<td>1</td>
<td>LA000307</td>
<td>12-30-16</td>
</tr>
<tr>
<td>South Carolina</td>
<td>State Program</td>
<td>4</td>
<td>96026</td>
<td>06-30-16 *</td>
</tr>
<tr>
<td>Tennessee</td>
<td>State Program</td>
<td>4</td>
<td>TN02907</td>
<td>06-30-17</td>
</tr>
<tr>
<td>Texas</td>
<td>NELAP</td>
<td>6</td>
<td>T104704286-15-9</td>
<td>09-30-16</td>
</tr>
<tr>
<td>USDA</td>
<td>Federal</td>
<td></td>
<td>P330-16-00172</td>
<td>05-24-19</td>
</tr>
<tr>
<td>Virginia</td>
<td>NELAP</td>
<td>3</td>
<td>460166</td>
<td>06-14-17</td>
</tr>
<tr>
<td>Washington</td>
<td>State Program</td>
<td>10</td>
<td>C915</td>
<td>05-15-17</td>
</tr>
<tr>
<td>West Virginia DEP</td>
<td>State Program</td>
<td>3</td>
<td>136</td>
<td>08-31-16</td>
</tr>
</tbody>
</table>

Laboratory: EMLab P&K - Fort Lauderdale

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

<table>
<thead>
<tr>
<th>Authority</th>
<th>Program</th>
<th>EPA Region</th>
<th>Certification ID</th>
<th>Expiration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIHA-LAP, LLC</td>
<td>EMLAP</td>
<td>173067</td>
<td>03-01-18</td>
<td></td>
</tr>
<tr>
<td>AIHA-LAP, LLC</td>
<td>IHLAP</td>
<td>173067</td>
<td>03-01-18</td>
<td></td>
</tr>
</tbody>
</table>

* Certification renewal pending - certification considered valid.
Report for:

Cheyenne Whitmire
TestAmerica-Pensacola
3355 McLemore Drive
Pensacola, FL 32514

Regarding:
Project: 400-124503-1; Hazwaste
EML ID: 1570083

Approved by:

Approved Signatory
Balu Krishnan

Dates of Analysis:
Asbestos PLM: 07-18-2016

Service SOPs: Asbestos PLM (EPA Methods 600/R-93/116 & 600/M4-82-020, SOP EM-AS-S-1267)

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. The results relate only to the items tested. The results include an inherent uncertainty of measurement associated with estimating percentages by polarized light microscopy. Measurement uncertainty data for sample results with >1% asbestos concentration can be provided when requested.

EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.
Client: TestAmerica-Pensacola
C/O: Cheyenne Whitmire
Re: 400-124503-1; Hazwaste
Date of Sampling: 07-11-2016
Date of Receipt: 07-18-2016
Date of Report: 07-18-2016

ASBESTOS PLM REPORT: EPA-600/M4-82-020 & EPA METHOD 600/R-93-116

<table>
<thead>
<tr>
<th>Location: 90377-ASB-1, Black Mastic on Ceramic Tile (400-124503-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Layers</td>
</tr>
<tr>
<td>Brown Ceramic Tile</td>
</tr>
<tr>
<td>Black Mastic</td>
</tr>
</tbody>
</table>

Sample Composite Homogeneity: Good

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. EMLab P&K reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

‡ A “Version” indicated by -“x” after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of “x”.

Lab ID-Version‡: 7282536-1